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The Diploma Programme (DP) Physics course is for 

16-19 year old students. This course aims to develop a 

conceptual understanding of physics and the nature of 

science, enabling students to apply their knowledge 

in familiar and unfamiliar contexts. The course also 

encourages students to further apply and strengthen the 

IB Learner Prole attributes.

The course is split into 5 'themes' which are labeled A to 

E. These cover broad areas of knowledge, such as 'Wave 

behaviour' or 'Fields'. Each theme is then broken down 

into four or ve 'topics' which are labeled with numbers, 

for example Topic B.3. Each topic focuses on a more 

specic area of knowledge, such as 'Wave phenomena' 

or 'Gravitational elds'. 

Physics deals with the structure and interactions of the 

matter that makes up the observable Universe, and in 

studying physics, we aim to formulate universal principles 

that explain the many dierent phenomena around them. 

Three over-riding scientic concepts used to explain 

physics are: particles, forces, and energy, and the 2023 

DP Physics course uses these broad concepts to bind 

together all of the topics it covers. 

Physics uses the idea of a particle – a small piece of 

matter – to describe nature at both the macroscopic 

(large scale) and microscopic (small scale) levels. Both 

terms recur throughout the course as you reconcile 

practical observations of the macroscopic world with 

explanations that attempt to model it at the microscopic 

level. While the nature of the 'particle' used in the 

modelling varies from theme to theme, the concept of 

a small piece of matter and the idea that we can model 

the average behaviour of many such particles is repeated 

throughout.

Particles interact through the forces that act between 

them. A 'force' is oen described as a push or a pull. 

A more sophisticated description is that force is the 

concept linking a particle property to the acceleration 

that the particle experiences. Physics still has diculty 

in describing the origins of some forces even though 

it can describe the eects of these forces well. For 

example, in Topic D.1 we have a convincing link between 

gravitational force/acceleration and mass, but only a 

poor understanding of what causes gravity.

One of the reasons for the technological progress of our 

species is our ability to control the transfer of energy. 

Cooking, heating, transport and communication all 

rely on civilization maintaining control of this transfer. 

Again, we nd it dicult to describe what energy is 

other than to say that it is the ability to do work. Topic 

A.3 tells us that energy comes in many forms and that we 

recognise its presence best when it is moving from one 

state to another. The way we treat particles, forces, and 

energy are linked by the ve themes of this book. The 

introduction to each theme describes the links between 

these concepts and the individual theme. The topics 

that make up that theme then examine how the three 

concepts are developed through the ideas, theories and 

laws discussed in that individual topic.

Course book denition
The IB Diploma Programme course books are resource 

materials designed to support students throughout 

their two-year Diploma Programme course of study 

in a particular subject. They will help students gain an 

understanding of what is expected from the study of 

an IB Diploma Programme subject while presenting 

content in a way that illustrates the purpose and aims of 

the IB. They reect the philosophy and approach of the 

IB and encourage a deep understanding of each subject 

by making connections to wider issues and providing 

opportunities for critical thinking.

The books mirror the IB philosophy of viewing the 

curriculum in terms of a whole-course approach; the use 

of a wide range of resources, international mindedness, 

the IB learner prole and the IB Diploma Programme core 

requirements, theory of knowledge, the extended essay, 

and creativity, activity, service (CAS).

IB mission statement
The International Baccalaureate aims to develop 

inquiring, knowledgeable and caring young people who 

help to create a better and more peaceful world through 

intercultural understanding and respect.

To this end, the organization works with schools, 

governments and international organizations to develop 

challenging programmes of international education and 

rigorous assessment.

These programmes encourage students across the world 

to become active, compassionate and lifelong learners 

who understand that other people, with their dierences, 

can also be right.

Introduction
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• Observations and experiments 

Sometimes the observations in experiments are 

unexpected and lead to serendipitous results. 

• Measurements

Measurements can be qualitative or quantitative, 

but all data are prone to error. It is important to 

know the limitations of your data.

• Evidence

Scientists learn to be sceptical about their 

observations and they require their knowledge to 

be fully supported by evidence. 

• Patterns and trends 

Recognition of a pattern or trend forms an 

important part of the scientist’s work whatever the 

science.

• Hypotheses

Patterns lead to a possible explanation. The 

hypothesis is this provisional view and it requires 

further verication.

• Falsication

Hypotheses can be proved false using other 

evidence, but they cannot be proved to be 

denitely true. This has led to paradigm shis in 

science throughout history.

• Models

Scientists construct models as simplied 

explanations of their observations. Models oen 

contain assumptions or unrealistic simplications, 

but the aim of science is to increase the complexity 

of the model, and to reduce its limitations.

• Theories

A theory is a broad explanation that takes observed 

patterns and hypotheses and uses them to generate 

predictions. These predictions may conrm a 

theory (within observable limitations) or may falsify 

it.

• Science as a shared activity 

Scientic activities are oen carried out in 

collaboration, such as peer review of work before 

publication or agreement on a convention for clear 

communication.

• Global impact of science 

Scientists are responsible to society for the 

consequences of their work, whether ethical, 

environmental, economic or social. Scientic 

knowledge must be shared with the public clearly 

and fairly.

Nature of Science
Science has features that make it dierent from other pursuits such as the arts, 

social sciences, mathematics, or the study of language. Science has particular 

methodologies and purposes. 

We return many times in this course to the Nature of Science (NOS). We 

illustrate the work you need to understand with the methodology and 

philosophy of scientists’ work. We examine how they measure its impact on 

science and on society. The eective pursuit of modern scientic work and its 

theories depends on the Nature of Science, which can be summarized in the 

following eleven aspects:
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This is an important part of the IB Diploma course. It focuses on critical 

thinking and understanding how we arrive at our knowledge of the world. 

The TOK features in this book pose questions for you that highlight these 

issues.

Theory of knowledge

Linking questions within each topic highlight the connections between 

content discussed there and other parts of the course. Physicists oen 

connect dissimilar phenomena using similar approaches, both conceptual 

and mathematical.

Linking questions

How to use this book

The aim of this book is to develop conceptual understanding, aid in skills 

development and provide opportunities to cement knowledge and 

understanding through practice.

Feature boxes and sections throughout the book are designed to support these 

aims, by signposting content  relating to particular ideas and concepts, as well as 

opportunities for practice. This is an overview of these features:

Guiding questions

Each topic begins with two or more guiding questions to get you thinking. 

When you start studying a topic, you might not be able to answer these 

questions condently or fully, but by studying that topic, you will be able to 

answer them with increasing depth. Hence, you should consider these as 

you work through the topic and come back to them when you revise your 

understanding.

A
H

L

Parts of the book have a coloured bar on the edge of the page or next to a 

question. This indicates that the material is for students studying at DP Physics 

Higher Level. AHL means “additional higher level”.

Developing conceptual understanding

Nature of Science

These illustrate NOS using issues from both modern science and science 

history, and show how the ways of doing science have evolved over the 

centuries. There is a detailed description of what is meant by NOS and the 

dierent aspects of NOS on the previous page. The headings of NOS 

feature boxes show which of the eleven aspects they highlight.

These boxes in the 

margin will direct you 

to other parts of the 

book where a concept 

is explored further or 

in a dierent context. 

They may also direct 

you to prior knowledge 

or a skill you’ll need, or 

give a dierent way to 

think about something.

vi
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These ATL features give examples of how famous scientists have demon-

strated the ATL skills of communication, self-management, research, think-

ing and social skills, and prompt you to think about how to develop your 

own strategies.

Approaches to learning

These contain ways to develop your mathematical, experimental or inquiry 

skills, especially through experiments and practical work. Some of these  

can be used as springboards for your Internal Assessment: don't be afraid to 

modify these to suit the experimental setup available to you. 

• The bullet points at the top of these boxes link the content to the skills it 

helps you develop.

 Physics skills

 ATL

Part of your nal assessment requires you to answer questions that are based 

on the interpretation of data. Use these questions to prepare for this. They 

are also designed to make you aware of the possibilities for data acquisition 

and analysis for day-to-day experiments and for your IA. 

Data-based questions

Worked examples

These are step-by-step examples of how to answer 

questions or how to complete calculations. You 

should review these examples carefully, preferably 

aer attempting the question yourself.

These are designed to give you further practice at 

using your physics and to allow you to check your own 

understanding and progress. 

Practice questions

End-of-theme questions
Use these questions at the end of each theme to draw together concepts from that theme and other parts of 

the book, and to practise answering exam-style questions. Many of these are past IB physics exam questions. 

You will also nd some practice extended-response questions near the back of the book. 

Developing skills

Practicing

These three section of the book are full of reference 

material for all the essential mathematical and ex-

perimental tools required for DP Physics, details on 

data analysis and modelling physics, as well as guid-

ance on how to use the inquiry process in the study 

of the subject and to work through your internal 

assessment (IA). Flick to this section as your working 

through the rest of the book for more information. 

Links in the margin throughout the book will direct 

you towards it too.

Tools for physics, the inquiry process and internal assessment
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The aim of all IB programmes to develop internationally minded people who work to create a 

better and more peaceful world. The aim of the programme is to develop this person through 

ten learner attributes, as described below.

Inquirers: They develop their natural curiosity. They acquire the skills necessary to conduct 

inquiry and research and snow independence in learning. They actively enjoy learning and this 

love of learning will be sustained throughout their lives.

Knowledgeable: They explore concepts, ideas and issues that have local and global 

signicance. In so doing, they acquire in-depth knowledge and develop understanding across 

a broad and balanced range of disciplines.

Thinkers: They exercise initiative in applying thinking skills critically and creatively to recognize 

and approach complex problems, and to make reasoned, ethical decisions.

Communicators: They understand and express ideas and information condently and 

creatively in more than one language and in a variety of modes of communication. They work 

eectively and willingly in collaboration with others.

Principled: They act with integrity and honesty, with a strong sense of fairness, justice and 

respect for the dignity of the individual, groups and communities. They take responsibility for 

their own action and the consequences that accompany them.

Open-minded: They understand and appreciate their own cultures and personal histories, and 

are open to the perspectives, values and traditions of other individuals and communities. They 

are accustomed to seeking and evaluating a range of points of view, and are willing to grow 

from the experience.

Caring: They show empathy, compassion and respect towards the needs and feelings of 

others. They have a personal commitment to service, and to act to make a positive dierence 

to the lives of others and to the environment. 

Risk-takers: They approach unfamiliar situations and uncertainty with courage and 

forethought, and have the independence of spirit to explore new roles, ideas and strategies. 

They are brave and articulate in defending their beliefs.

Balanced: They understand the importance of intellectual, physical and emotional ballance to 

achieve personal well-being for themselves and others.

Reective: They give thoughtful consideration to their own learning and experience. They are 

able to assess and understand their strengths and limitations in order to support their learning 

and personal development.

The IB Learner Prole
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It is of vital importance to acknowledge and 

appropriately credit the owners of information when 

that information is used in your work. Aer all, owners 

of ideas (intellectual property) have property rights. 

To have an authentic piece of work, it must be based 

on your individual and original ideas with the work of 

others fully acknowledged. Therefore, all assignments, 

written or oral, completed for assessment must use your 

own language and expression. Where sources are used 

or referred to, whether in the form of direct quotation 

or paraphrase, such sources must be appropriately 

acknowledged.

How do I acknowledge the work of 

others?
The way that you acknowledge that you have used the 

ideas of other people is through the use of footnotes and 

bibliographies. 

Footnotes (placed at the bottom of a page) or endnotes 

(placed at the end of a document) are to be provided 

when you quote or paraphrase from another document 

or closely summarize the information provided in another 

document.  You do not need to provide a footnote for 

information that is part of a ‘body of knowledge’. That is, 

denitions do not need to be footnoted as they are part 

of the assumed knowledge.

Bibliographies should include a formal list of the 

resources that you used in your work.  ‘Formal’ means 

that you should use one of the several accepted forms 

of presentation. This usually involves separating the 

resources that you use into dierent categories (e.g. 

books, magazines, newspaper articles, internet-

based resources, and works of art) and providing 

full information as to how a reader or viewer of your 

work can nd the same information. A bibliography is 

compulsory in the Extended Essay. 

What constitutes malpractice?
Malpractice is behaviour that results in, or may result in, 

you or any student gaining an unfair advantage in one 

or more assessment component. Malpractice includes 

plagiarism and collusion.

Plagiarism is dened as the representation of the ideas or 

work of another person as your own. The following are 

some of the ways to avoid plagiarism:

● words and ideas of another person to support one’s 

arguments must be acknowledged 

● passages that are quoted verbatim must be enclosed 

within quotation marks and acknowledged

● email messages, websites on the internet and any 

other electronic media must be treated in the same 

way as books and journals

● the sources of all photographs, maps, illustrations, 

computer programs, data, graphs, audio-visual and 

similar material must be acknowledged if they are not 

your own work

● when referring to works of art, whether music, lm 

dance, theatre arts or visual arts  and where the 

creative use of a part of a work takes place, the 

original artist must be acknowledged.

Collusion is dened as supporting malpractice by 

another student. This includes:

● allowing your work to be copied or submitted for 

assessment by another student

● duplicating work for dierent assessment 

components and/or diploma requirements.

Other forms of malpractice include any action that 

gives you an unfair advantage or aects the results of 

another student. Examples include, taking unauthorized 

material into an examination room, misconduct during an 

examination and falsifying a CAS record.

A note on academic integrity
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You’re already using our print resources, but have you tried our digital course on 

Kerboodle?

Developed in cooperation with the IB and designed for the next generation of 

students and teachers, Oxford’s DP Science oer brings together the IB curriculum 

and future-facing functionality, enabling success in DP and beyond. Use both print 

and digital components for the best blended teaching and learning experience. 

Experience the future of education 
technology with Oxford’s digital  
oÏer for DP Science

Encourage motivation with a 
variety of engaging content including 
interactive activities, vocabulary 
exercises, animations, and videos

Learn anywhere with mobile-
optimized onscreen access to 
student resources and oΎine 

access to the digital Course Book 
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Recommend Oxford’s digital oΊer for DP Science to your school today! 

For more information and to sign up for free trial access, go to:

www.oxfordsecondary.com/ib/dpscience

Embrace independent learning and 
progression with adaptive technology that 
provides a personalized journey so students 
can self-assign auto-marked assessments, get 
real-time results and are oΊered next steps  

Deepen understanding with intervention 
and extension support, and spaced 
repetition, where students are asked follow-
up questions on completed topics at regular 
intervals to encourage knowledge retention 

Enhance reporting with rich 
data collected to support 
responsive teaching at an 
individual and class level
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7

Introduction

A ball is thrown into the air. The Earth revolves on its axis in 

its journey around the Sun. The Sun moves within the Milky 

Way. Galaxies separate. 

Understanding motion lies at the heart of physics. 

Descriptions of motion have formed the bases for scientific 

hypotheses since the science of the Ancient Greeks. 

Theme A links the concepts of particle, force and energy 

transfer. First, we consider motion in the context of a single 

particle with mass but without size or shape. On this basis 

we can take first steps to define the parameters of motion in 

Topic A.1: velocity, displacement, acceleration. These are 

linked by the important idea of rate of change for the first 

– but certainly not the last – time in this course. Force links 

to acceleration in Topic A.2, and an important conserved 

quantity known as momentum is introduced. Energy 

transfersthat arise from the changes of Topics A.1 and A.2 

are discussed in Topic A.3.

Scientists link subject areas together to help extend their 

insights. In Topic A.4 the collective motion of particles 

formed into a solid object is discussed in the contexts of 

momentum, force and energy. The theory underpinning this 

relies heavily on the first three topics. We see how scientists 

use concepts in linear motion to inform the description of 

rotational motion. 

Up until the beginning of the 20th century, physics 

decoupled space and time treating them as distinct 

properties. The work of Einstein and others shows that 

spaceand time are not separate concepts but are linked 

through the speed of electromagnetic radiation in a vacuum. 

This is one of the most profound paradigm shifts in physics 

there has ever been. Topic A.5 introduces special relativity 

and explains how it changes our views of Galilean space 

andtime.

Throughout the long development of scientific thought 

about motion and its effects, scientists have relied on the 

careful accumulation of evidence and observation. This is 

a crucial stage in the Inquiry Cycle and one that allows a 

reflection of the truth or otherwise of a scientific hypothesis. 

This theme is a foundation for your understanding of IB 

Diploma Programme physics. The important ideas and 

concepts of this theme allow us to predict the behaviour 

of the average particle in a gas. We will be able to analyse 

the behaviour of a wave and an oscillating system. Knowing 

how forces behave permits an understanding of electric 

and gravitational field theory. The study of Theme A leads 

to theories of the behaviour of the very largest and the very 

smallest objects in the universe.
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The word “kinematics” comes from the Greek word 

kinēsis, meaning “movement” or “motion”. So 

“kinematics” means the study of motion and the quantities 

used to describe it. To describe the motion of a particle, 

you need quantitative ways to describe its position in 

the world. You also need to describe the rate at which 

its position changes (its speed). Then you will need 

the rate at which the speed itself can also change (its 

acceleration). You need to know the precise meanings of 

these terms and be able to distinguish between the size 

(magnitude) of the quantities and theirdirection.

With a language to describe distance, speed and 

acceleration, you can formulate rules to predict future 

changes. These rules are based on both observation  

and deduction. 

However, to arrive at these rules, you will also need 

assumptions. As your understanding changes, you can 

change these assumptions and evolve more complex 

descriptions of motion. For example, you can change 

from describing one-dimensional motion (an object 

moving in a straight line) to two-dimensional motion  

(an object projected into the air close to Earth’s surface). 

You can understand two-dimensional motion more 

broadly by separating it into the horizontal and vertical 

motion. By removing the assumption of negligible friction, 

you can investigate realistic cases of air resistance acting 

on an object as it moves through theair.

How can the motion of a body be described quantitatively and qualitatively?

How can the position of a body in space and time be predicted? 

How can the analysis of motion in one and two dimensions be used to solve real-life problems?

8

A.1   Kinematics  

• describing and analysing motion through  

space and time, using position, velocity and 

acceleration vectors

• displacement and the difference between distance 

and displacement

• velocity and acceleration 

• instantaneous and average values of velocity, speed 

and acceleration, and how they are determined 

• the kinematic equations of motion for solving 

problems with uniform acceleration 

• motion with uniform and non-uniform acceleration

• the behaviour of projectiles when there is no 

fluidresistance

• resolving motion into vertical and horizontal 

components

• the effects of fluid resistance on projectiles.

In this topic, you will learn about: 
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A. Space, time and motion

9

Describing motion

Vectors and scalars

It is important to arrive at school or college on time for your class. To do this, 

you need to determine the distance and deduce a time for your journey using a 

reasonable estimate for the speed at which you travel.

Figure 2 shows the journey a student takes to travel from home (A) to school (B). 

Table 1 gives the time at various parts of the journey. 

▴ Figure 1 Many devices use GPS to help 

you navigate. By knowing the distance to 

your destination and assuming a speed, 

they calculate an estimated time to arrival.

The total distance for this route on foot and by bus is 3.4 km, including all the 

twists and turns. The distance is the same for the return journey too. Distance is a 

scalar quantity. It only has magnitude (size).

The direct line from the student’s home to school is also shown on Figure 2. This 

quantity is known as the displacement. It is the change in position of the student 

between the start and the end of their journey.

The direct line from school to home is the same length as the direct line from 

home to school, but it is in the reverse direction. The two displacements — to and 

from school — are not the same. This is because displacement is a vector quantity. 

Vectors have both a magnitude and a direction.

A scalar is a physical quantity that has size but no direction.

A vector is a physical quantity that has size and direction.

◂ Figure 2 A journey to school. The map 

shows the direct route (the displacement) 

and the actual journey (the distance).

Journey leg Time Distance for leg / m

leave home 08.10.00 0

arrives at bus stop 08.20.15 800

bus arrives at stop 08.24.30 0

bus arrives near school 08.31.10 2400

walk from bus to school 08.34.00 200
◂ Table 1 Distances and times for dierent 

stages of the journey from home to school.

home

school

bus stop

bus

stop

A

B

You can nd out about the 

properties of vectors and scalars 

in the Tools for physics section on 

page 339.
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Topic A.1      Kinematics

10

You need to know how to work 

with units as almost every 

quantity you deal with in IB 

physics has its own unit. You 

can nd out about the units in 

the course and how to use and 

manipulate them on page 334. 

The student’s journey in Figure 2 is from A to B, which can be written as AB. The 

direction line is 1.7 km long and is in a south-west direction. The displacement 

must be given as the magnitude together with the direction: 1.7 km on a bearing 

of about 225° from north. 

The displacement of the student’s journey home from school is the vector BA.

This vector is still 1.7 km long but is in the opposite direction at a bearing of about 

45° from north.

The distinction between vectors and scalars is important. 

Some physical quantities, such as force, electric eld 

strength and acceleration, have direction built into them; 

they are the vectors. Other quantities, such asmass and 

energy, only have magnitude with no direction assigned 

tothem; they are the scalars.

Sometimes a vector quantity might have a minus sign, 

which indicates its direction. For example, −2 m s 1 might 

mean a speed of 2 m s 1 in the reverse or backwards 

direction. It may be tempting to think that any quantity 

that has a minus sign must be a vector, but this is not the 

case. As an example, consider the amount of money in a 

bank account. A positive amount means that you are in 

credit, whereas a negative amount means that you are in 

debt and owe the bank money. Although the balance of 

the account can have a negative quantity, money itself is 

still a scalar quantity.

Charge and energy are another two examples of scalar 

quantities that can have negative values. Can you think of 

any others?

Displacement is described here in terms of a journey 

across the at, two-dimensional landscape of Figure 2. 

Do changes in height alter things? In fact, only one thing 

changes, and that is the number of pieces of information 

required to specify the nal position relative to the start. 

Three pieces are now required: 

• the magnitude plus its unit

• the heading (direction)

• the overall change in height during the journey.

Specifying motion in three dimensions thus requires three 

numbers or coordinates. You will already be familiar with 

the idea of coordinates from drawing and using graphs. 

There is exibility in how the three numbers can be 

chosen. You may have seen three-dimensional graphs 

with three axes each at 90° to the others. In this case, 

coordinate numbers give the distance along each axis. 

Another option is to use spherical coordinates (Figure3). 

Here, a distance r and two angles are required. One 

angle is the bearing ϕ from north, called the azimuth in 

astronomy. The other is the angle known as the altitude or 

elevation θ needed to look directly up or down from the 

horizontal to the object above (or below) you. 

In some circumstances, even the distance itself may not 

be required. Sailors use latitude and longitude when they 

are navigating. They stay on the surface of the sea and 

this is eectively a constant distance from the centre of 

Earth. Astronomers use just azimuth and elevation as the 

distance to the star is irrelevant for observation.

Measurements — Vectors and scalars

Measurements — Moving in three dimensions

▴ Figure 3 A Cartesian coordinate system with three 

distances and a spherical coordinate system with two angles 

and a distance. 

z
z1

x1

(x1, y1, z1)

y1

x

(r, θ, ϕ)

θ

r

y
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Practice questions

1. A boat travels due east for 2.5 km, then travels due 

north for a further 3.8 km. Calculate:

a. the distance travelled by the boat

b. the magnitude of the displacement of the boat

c.  the bearing from north of the displacement of  

the boat.

2. The minute hand of a wall clock is 15 cm long. 

Calculate, to the nearest cm, the distance travelled 

by the tip of the minute hand and the magnitude of 

its displacement:

a. from 12.00 to 12.15

b. from 12.00 to 12.30.

A. Space, time and motion

11

Throughout the world there are many units of length: 

metres, miles and kilometres are all common ways to 

specify distance. Dierent countries and professions 

use alternative units depending on what is traditional 

or convenient. For example, surveyors use chains and 

astronomers use light years (a unit of length, not time) 

and the astronomical unit which is the distance from Earth 

to the Sun. However, in your examination, lengths will be 

in multiples and sub-multiples of the metre or in a 

well-recognized scientic unit such as the light year. 

There is a list of some of the quantities used in astronomy 

in the data booklet.

Science as a shared endeavour—Units of distance

Worked example 1

A ball is dropped from rest from an initial height of 1.2 m and rebounds to 75% of the initial height.  

Calculate, for the instant when the ball is at its maximum height after the bounce:

a. the displacement of the ball

b. the distance moved by the ball.

Solutions

a.  The height after the bounce is 0.75 × 1.2 = 0.9 m. The displacement is the change in the ball’s position,  

0.9 − 1.2 =−0.3 m. The minus sign indicates that the displacement is directed downward.

b.  The distance is the length of the path moved by the ball in both phases of motion, 1.2 + 0.9 = 2.1 m. 

The distance is a scalar quantity and does not consider direction. 

Worked example 2

A cyclist rides 250 m up a slope that makes an angle of 8.0° to the horizontal. Calculate:

a. the change in height during the ride

b. the horizontal component of the cyclist’s displacement.

Solutions

vertical

displacement

horizontal displacement

8.0°

250 m

a.  The components of the displacement vector can be calculated using trigonometry. 

The change in height is equal to the vertical displacement, 250 × sin 8.0° = 35 m.

b.  Horizontal displacement = 250 × cos 8.0° = 248 m. Even on a relatively steep road, there  

is little difference between the horizontal distance and the distance along the slope!O
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Practice questions

3. Two cyclists, Ada and Matt, start from the same point 

and ride in opposite directions along a straight road, 

each at a constant speed. After one minute, they 

are 580 m apart. Ada rides at a speed of 20 km h 1. 

Determine the speed at which Matt rides.

4. The speed of light in a vacuum is 3.0 × 108 m. Sirius, 

the brightest star, is approximately 5.5 × 105 AU from 

Earth (1 AU = 1.50 × 1011 m). Calculate the distance 

to Sirius in light years (1 light year, (ly) is the distance 

travelled by light in one year).

Topic A.1      Kinematics

12

Distances and displacements 

can be represented using many 

dierent symbols. Sometimes a 

distance may be labelled as d. 

When it is a height, then h may 

be used. In three dimensions, 

Δx, Δy and Δz may denote the 

displacements in each direction. 

Why is s oen used to represent 

distance or displacement in 

physics? The Latin for distance is 

spatium. It was also useful not to 

use the letter d since it may be 

confusing when writing 

derivatives such as v =
ds

dt
Another Latin abbreviation is the 

use of c for speed, usually for 

the speed of light; c stands for 

celeritas — Latin for speed.

Speed and velocity 

There are scalar and vector measures of how quickly an object moves. 

The scalar quantity is speed, which is dened as:

speed =
distance travelled on a journey

time taken for the journey

or speed = change of distance per unit time.

You will already be familiar with units of speed such as metre per second (m s 1) 

and kilometres per hour (km h 1), but you can combine any distance unit with any 

time unit to give speed units. 

Velocity is the vector equivalent — it is the speed in a given direction. So 

to describe the velocity, you need the magnitude and the direction, as for 

displacement. For example, “4.2 m s 1 due north” or “55 km h 1 at N 22.5 E”.

The denition of velocity is change of displacement per unit time or the rate of 

change of an object’s position. 

An object moving at a constant speed covers equal distances in equal times. A 

passenger train that travels 2400 m in one minute has a speed of 40 m s 1. In one 

hour, the train will travel (3600 × 40 =) 144 000 m. So 40 m s 1
≡ 144 km h 1

Using symbols rather than numbers, the magnitude of the velocity of an object  

(its speed) v is the distance travelled s divided by the time taken t: 

v =
s

t
 and s = vt

Using symbols  

consistently

Worked example 4

The astronomical unit (AU) is approximately equal to 1.50 × 1011 m. Assuming that Earth moves around  

the Sun in a circular orbit of a radius 1 AU, estimate the orbital speed of Earth. Give the answer in km s 1

Solution

The circumference of Earth’s orbit is 2π × 1.50 × 1011 = 9.42 × 1011 m. Earth travels this distance in one year.

Orbital speed =
9.42 × 1011

365 × 24 × 60 × 60
= 2.99 × 104 m s 1 = 29.9 km s 1

Worked example 3

A train moving at a constant speed of 280 km h 1 takes 2.3 s to pass a signal pole.  

Calculate the length of the train.

Solution

The speed of the train needs to be converted to m s 1. Speed =
280 × 103

60 × 60
= 77.8 m s 1.  

Length of the train = 77.8 × 2.3 = 180 m.

 ATL
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A. Space, time and motion
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Graphing motion I — Distance–time

To calculate speeds and velocities, you need two variables: distance and time. 

Figure 2 showed a map of a student’s journey to school. The student does not 

travel at the same speed throughout the journey as part of it is on foot, part by bus. 

A distance–time graph is a good way to display such data visually. The distance 

travelled by the student is plotted on the y-axis of Figure 5, while the time since 

the beginning of the journey is plotted on the x-axis. 

The gradient of the graph changes for the dierent parts of the journey: small for 

the walking sections of the journey, horizontal (zero gradient) for stationary at the 

bus stop, and steep for the bus journey. What will the graph for the journey home 

from school look like, assuming that the time for each segment of the journey is 

the same as in the morning?

Information can easily be extracted from this graph. The gradient of the graph is 

the speed. Add the overall direction to this speed and you have the velocity too.

For the rst walk to the bus stop, the distance was 800 m and the time taken was 

615 s. The constant walking speed was therefore 
800

615
, which is 1.3 m s 1

• Tool 1: Understand how to accurately measure mass and time to an 

appropriate level of precision.

• Inquiry 1: Demonstrate independent thinking, initiative, or insight.

To measure speed, you need to know the distance travelled (using a “ruler”) 

and the time taken (using a “clock”). The trick is to choose the best “ruler” 

and the best “clock” for the speed being measured. 

A 30 cm ruler and a digital wristwatch are ne when a biologist measures 

the speed of an earthworm. But, to measure the speed of a 100 m sprinter, 

a measured distance on the ground, a stopwatch measuring to 0.1 s and a 

human observer are barely good enough. Even then, the observer (at the 

nish) must be careful to watch the smoke from the starting pistol (at the start) 

and not wait to hear the sound of the gun. 

To measure the speed of a soccer ball aer a penalty kick, the stopwatch-

plus-human method is no longer adequate. You need to use a video camera 

taking image frames at a known rate (the clock) and a scale, visible on the 

video, near the path of the ball (the ruler). When measuring the speed of a jet 

aircra, the equipment needs to change again. 

Choosing the best equipment and method for the task in hand is all part of 

designing the experiments for an internal assessment.

Measuring speed

Measurement and experiment 

are essential tests of scientic 

knowledge. Galileo was one of 

the rst to appreciate the use of 

a simple pendulum as a timing 

instrument. He conducted many 

early kinematic experiments. 

Before Galileo, the ability of 

physicists to study practical 

kinematics experiments was 

limited; they made deductions 

in other ways. Aristotle and other 

Greek thinkers used logical 

reasoning to construct persuasive 

arguments.

A group of scholars in the 

14th century started to use 

mathematical methods to make 

scientic progress. This approach 

caused them to be termed the 

Oxford Calculators. They were 

sometimes known as the Merton 

School due to their association 

with Merton College, Oxford. 

Their methods inuenced 

many scholars around Europe 

at that time, and mathematical 

approaches are still an important 

way for physicists to test theories.

▴ Figure 4 Scholars at Merton College, 

Oxford, were among the rst to apply 

mathematical methods to physics and 

philosophy.

What are the tests of truth or 

knowledge in other disciplines, 

such as literature, history or 

thelaw?

The Oxford Calculators

◂ Figure 5 The Figure 2 journey as a distance–time graph.  

The graph has the clock time for the journey translated into time  

(in seconds) since the start.

3500

3000

2500

2000

1500

1000

500

0
0 500 1000 1500

time elapsed / s

d
is

ta
n

ce
 tr

av
e

lle
d

/
m

walk to bus
stop

wait at
bus stop 

bus ride

walk to
schoolO

xf
or

d 
U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



Topic A.1      Kinematics

14

The gradient of the segment for the bus journey is 
2400

400
= 6.0 and so the speed 

is 6.0 m s 1. The way this is worked out is shown on Figure 6.
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▴ Figure 6 Using the distance–time graph 

to calculate average speed.

Throughout the IB Diploma 

Programme physics course, 

you use graphs to help you 

understand the significance of 

data or the relationship between 

two quantities. As well as its 

shape, the graph contains valuable 

information about other quantities.

The gradient of a graph gives 

information about the ratio of the 

change in the y-axis quantity to the 

change in the x-axis quantity. The 

area under a graph indicates the 

size of the product of the quantities 

on the axes. 

How does graphical 
analysis allow for the 
determination of physical 
quantities? (NOS)

The Tools for physics section 

contains more information about 

the area and gradient of a graph 

and how to determine them 

(pages 360–361). 

Practice questions

5. The graph shows how the distance travelled by an underground train varies 

with time. 
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The train departs station A at 0 s, arrives at station B at 80 s, departs from 

station B at 100 s and arrives at station C at 160 s. Calculate:

a. the speed, in km h−1, of the train between stations A and B

b. the distance between stations B and C

c. the speed, in km h−1, of the train between stations B and C.

6. Louise kicks a ball towards a wall that is 4.0 m away from her. The ball moves 

at a constant speed of 10 m s−1 when travelling towards the wall. The ball 

returns to Louise 0.90 s after it was kicked.

a. Calculate:

i. the time taken for the ball to reach the wall

ii. the speed of the ball after it bounces off the wall, assuming that it  

is constant.

b.  Sketch a graph to show how the distance travelled by the ball varies 

withtime.

Instantaneous and average speed

Representing the student’s journey by joining data points with straight lines is 

simplistic. Real journeys rarely have a completely constant speed. You need ways 

to handle varying speeds and velocities. For real journeys, the distance–time 

graph will be curved because the speed will be dierent at dierent times.

The speedometer in the bus tells the driver the speed. This measure is the 

instantaneous speed: the speed at the instant in time at which it is determined. 

The instantaneous speed is also the gradient of the distance–time graph at the 

instant concerned. You can calculate the instantaneous speed from a curved 

distance–time graph by drawing a tangent at that point and nding the gradient 

of that tangent.

Figure 7 shows a more realistic distance–time graph for the bus journey to 

school. The original red line for the bus has been replaced by a green line that 
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is more realistic for the motion of a real bus. The speed varies as the driver 

gradually speeds up and slows down or negotiates trac. Figure 7 shows the 

instantaneous speed calculated at time 1000 s:

Use as large a tangent line as possible. 

Gradient = change in values on y-axis ÷ change in values on x-axis

Change in distance = 2500 m  500 m = 2000 m

Change in time = 1300 s  900 s = 400 s

Gradient = 2000 ÷ 400 = 5.0 m s 1

From a mathematical point of view, the instantaneous speed is the rate of 

change of position with respect to time. 

A mathematician will write this as 
ds

dt
, where s is the distance travelled and t is 

the time. You may also have seen this written as Δs

Δt
 where the symbol Δ means 

“change in”. Δs

Δt
 is shorthand for 

change in distance

change in time
There is another useful measure of speed. This is the average speed and is the 

speed calculated over the whole the journey without regard to variations in 

speed. As an equation, this is:

average speed =
distance travelled over the whole journey

time taken for the whole journey

In terms of the distance–time graph, the average speed is equal to the gradient 

of the straight line that joins the beginning and the end of the time interval 

concerned (that is, the red line on Figure 7). For the part of the student’s journey 

up to the moment when the bus arrives at the stop near home, the distance 

travelled is 800 m and the time taken is 870 s (including the wait at the stop), so 

the average speed is 0.92 m s 1. 

Everything written here about average and instantaneous speeds can also refer 

to average and instantaneous velocities. Remember, of course, to include the 

directions when quoting these measurements.
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▴ Figure 7 A portion of the distance–time 

graph for the bus.

Worked example 5

The graph shows how the distance travelled by an  

object varies withtime.

a.  Calculate the instantaneous speed of the object at:

 i. 10 s

 ii. 30 s.

b.  Calculate the average speed for the whole 80 s  

of the motion.

c.  Outline why the information on the graph is 

insufficient to determine the average velocity of  

the object.

Solutions

a. i.  The speed of the object is constant from 0 to 20 s and the instantaneous  

speed at 10 s is equal to the gradient of the first straight section of the graph.  

Speed at 10 s =
1200

20
= 60 m s 1
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Practice questions

7. An ice hockey puck is hit and slides across ice. The 

distance–time graph for the puck is shown.
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a. Estimate the:

 i. initial speed of the puck

 ii. speed of the puck at 5.0 s.

b.  The puck stops after 12.5 s. Calculate the average 

speed of the puck during the motion.

8. Stephen runs half a lap on a circular track of radius 

25 m in 19 s. Calculate his:

a. average speed

b. average velocity.

Topic A.1      Kinematics
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 ii.  The speed of the object is constant again from 20 to 80 s and  

equal to the gradient of the second straight section of the graph. 

Speed at 30 s =
1600 − 1200

80 − 20
= 6.7 m s 1

b. The average speed is 
total distance

time taken
=

1600

80
= 20 m s 1

c.  The graph shows the distance along the path travelled by the object but not whether the object changes 

direction as it moves, and any change in the direction would affect the displacement and the average velocity.

Worked example 6

Emma runs along a straight track with a constant speed of 2.6 m s 1 for 30 s. She then stops for 5.0 s and  

runs in the opposite direction with a constant speed of 3.8 m s 1 for a further 15 s. Calculate:

a. the total distance run by Emma

b. her displacement at the end of the run

c. the average speed

d. the average velocity.

Solutions

a. Emma ran 2.6 × 30 = 78 m in the first part and 3.8 × 15 = 57 m in the second part.  

The total distance is therefore 135 m.

b.  The displacement is 78 − 57 = 21 m. The run ended 21 m from the startingpoint.

c. The total time is 50 s so the average speed is 
total distance

time taken
=

135

50
= 2.7 m s 1

d.  The average velocity is 
displacement

time taken
=

21

50
= 0.42 m s−1 and has the same direction  

as her original velocity in the first part of the run.
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Acceleration

In real journeys, instantaneous speeds and velocities change frequently. Again, 
you need a mathematical language that helps you to understand the rates 
ofchange.

The rate of change of velocity is called acceleration. Acceleration is a vector. 

It is derived from the vector quantity velocity. Sometimes you can write the 
“magnitude of the acceleration” meaning the size of the acceleration ignoring 

itsdirection.

The denition of acceleration is: 

acceleration =
change in velocity

time taken for the change

so the units of acceleration are 
m s 1

s
, which is written as m s 2. Sometimes you will 

see this written as m/s2. However, m s 2 is preferred in IB Diploma Programme 

physics, as using the solidus (/) can be ambiguous.

It is important to understand what acceleration means, not just to be able to use 
it in an equation. When an object has an acceleration of 5 m s 2, then, for every 
second it travels, its velocity increases in magnitude by 5 m s 1 in the direction of 

the acceleration vector.

For example, the Japanese N700 train has a quoted acceleration of 0.72 m s 2. 
Assume that this is a constant value (very unlikely). One second aer starting from 

rest, the speed of the train will be 0.72 m s 1. One second later (at 2 s from the 

start) the speed will be 0.72 + 0.72 = 1.44 m s 1. At 3 s it will be 2.16 m s 1 and so 
on. Each second the speed increases by 0.72 m s 1

In a similar way to nding average and instantaneous values for speed and 

velocity, you can nd average acceleration and instantaneous acceleration

average acceleration =
overall change in velocity

time taken for the overall change

whereas the instantaneous acceleration is the gradient of the tangent to a speed 

(or velocity)–time graph and is represented symbolically as 
dv

dt
 or 

Δv

Δt

Worked example 7

How many seconds will it take the N700 to reach its maximum speed of 300 km h 1 on the Sanyo Shinkansen route?

Solution

300 km h 1
≅ 83.3 m s 1

Time taken to reach the maximum speed: 
83.3
0.72

= 116 s, just under 2 minutes.

Spreadsheet models

• Tool 2: Use spreadsheets to manipulate data.

• Tool 2: Represent data in a graphical form.

• Tool 3: Determine the effect of changes to variables 

on other variables in a relationship.

• Inquiry 2: Interpret diagrams, graphs and charts.
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One powerful way to help you think about acceleration (and other quantities that change in a predictable way) is to 

model them using a spreadsheet. 
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This is a spreadsheet model for the N700 train. 

• The value of the acceleration is in cell B1. 

• Cells A4 to A18 give the time in increments 

(increases) of 5.0 s; the computed speed at each 

of these times is in cells B4 to B18. The speed is 

calculated by taking the change in time between 

the present cell and the one above it, and then 

multiplying by the acceleration. 

• The formula in cell B5 is “=B4+$B$1*(A5-A4)” and 

this is copied vertically down cell-by-cell so that cell 

B6 is “=B5+$B$1*(A6-A5)” and the last cell B18 

is “=B17+$B$1*(A18-A17)”. (The acceleration is 

written as $B$1 so that the spreadsheet uses this 

cell every time and does not change the cell every 

time the new speed is calculated. This is achieved by 

using the dollar sign $ in the cell reference.) 

• Finally, a graph is inserted into the spreadsheet 

to show speed against time and the equation of 

the straight line. The equation for the line can be 

computed by the program and added to the graph 

to confirm that the gradient of the line is 0.72 m s 2

• Construct this spreadsheet model yourself. Try 

changing the value of the acceleration in cell B1 and 

seeing the effect on the graph.
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▴ Figure 8 The velocity–time graph for the 

bicycle ride.

Graphing motion II — Velocity–time 

Distance–time graphs are convenient for displaying speed and velocity changes. 

Similarly, if you plot speed (or velocity) against time, this displays the changes in 

acceleration.

Figure 8 shows the journey of a bicycle that is travelling in a straight line. For 

the rst 10 s, the bicycle accelerates at a uniform rate to a velocity of +4 m s 1. A 

positive sign here means that the velocity (and later the acceleration) is directed 

to the right. From 10 s to 45 s the bicycle moves at a constant velocity of +4 m s 1. 

At 45 s the cyclist applies the brakes so that the bicycle stops in 5 s. The bicycle is 

then stationary for 10 s. 
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The velocity from 60 s onwards is negative, meaning that the bicycle is 

travelling in the opposite direction (to the le). The pattern is similar. The bicycle 

accelerates until the velocity is −3 m s 1, moves at constant velocity for a period 

and, nally, decelerates to a stop at 120 s. 

The magnitude of the gradient of a velocity–time graph gives the magnitude 

of the acceleration, and the sign of the gradient gives the direction in which the 

acceleration acts. 

From 45 s to 50 s the velocity goes from 4 m s 1 to 0, and so the acceleration is

nal speed − initial speed

time taken for speed change
=

0 − 4

5
=−0.80 m s 2

From 90 s to 120 s the magnitude of the acceleration is

speed change

time taken
=

3.0

30
= 0.10 m s 2

Care is needed with the sign of the acceleration. The gradient of the graph is 

positive, as is the acceleration, because the bicycle is moving in the negative 

direction and is slowing down. This simply means that a force acts to the right on 

the bicycle, in the positive direction, which is slowing the bicycle down. You will 

see how force leads to acceleration in Topic A.2. 

The area under a velocity–time graph provides more information. It tells 

you the total displacement of the moving object. Remember that the product 

of velocity × time is a displacement (and that the product of speed × time is 

a distance). The units tell you this too: when the units of speed and time are 

multiplied, the seconds cancel to leave only metres:

metre
× → metre

In the case of a graph with uniform accelerations, the areas, and hence the 

displacements (distances), are straightforward to calculate. Divide the graph 

into right-angled triangles and rectangles and then work out the areas for each 

individual part. This working is shown in Figure 9.

▴ Figure 9 The velocity–time graph of Figure 8 broken up into its areas.
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area 10 × 4 = 20 m1
2

area =    × 5 × 4 = 10 m1
2

area = 35 × 4 = 140 m

The individual areas and their calculations are shown on the diagram. Up to 60 s 

the area is (20 + 140 + 10 + 0) = 170 m. The area from 60 s until the end is  

(−15 − 60 − 45) =−120 m. As usual, the negative sign indicates motion in the 

opposite direction to the original. 
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The total distance travelled by the cyclist is 170 + 120 = 290 m (this is the total 

ground covered as usual for “distance”). The total displacement aer 120 s is 

170  120 = 50 m. The cyclist (who was travelling along a straight line) is 50 m 

from the starting point aer 120 s.

When a velocity–time graph is non-linear, you: 

• estimate the number of squares 

• determine the area (distance) for one square 

• multiply the number of squares by the area of one square. 

This will usually give you an estimate of the overall distance. 

Figure 10 gives an example of how this is done. 

There are approximately 85 squares between the time axis and the line. Each of 

the squares is 2 s along the time axis and 0.5 m s 1 along the speed axis. The area 

of one square is equivalent to (2 × 0.5) = 1.0 m of distance. The total distance 

travelled is 85 m (or, at least, somewhere between 80 and 90 m).

▴ Figure 10 When a graph line is curved, 

count the number of squares to estimate the 

area under the curve.
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Worked example 8

The velocity–time graph of an object moving 

in a straight line is shown. A positive velocity 

means that the object is moving to theright.

a.  Describe the motion of the object from 0 

to 50 s.

b. Calculate:

 i.  the total distance travelled to the 

right

 ii.  the acceleration from 20 s to 70 s

 iii. the displacement at 100 s.

c.  Determine at what time the object passes 

the starting position.

Solutions

a.  The object starts at rest and accelerates uniformly to the right for the first 20 s, then decelerates uniformly for the next 

30 s, still moving to the right. At 50 s the object is instantaneously at rest.

b. i.  The object is moving to the right whenever its velocity is positive, so the total distance travelled inthisdirection 

is equal to the area under the velocity–time graph from 0 to 50 s. Distance =
1

2
× 50 × 15 = 375 m.

ii.  The acceleration is constant from 20 to 70 s and equals the slope of this section of the graph.

  Acceleration =
nal velocity − initial velocity

time taken
=

( −10) − ( +15)

70 − 20
=−0.50 m s 2

  The negative sign indicates that the velocity is becoming more negative, but note that the object first 

decelerates (while moving to the right) from 20 s to 50 s and then accelerates (to the left) from 50 s to 70 s.
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Practice questions

9. The graph shows how the speed of a bicycle varies 

with time.

5432
0

0 1
time / s 

sp
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e
d

/
m

 s
1

2

4

6

8

What is the best estimate of the distance travelled by 

the bicycle during the first 5 s?

A. 15 m B. 20 m

C. 30 m D. 40 m

10. For the bicycle in question 9, what is the best estimate 

of the instantaneous acceleration at 2.0 s?

A. 1.0 m s 2 B. 2.0 m s 2

C. 3.0 m s 2 D. 6.0 m s 2

11. The speed–time graph of a sprint runner is shown.

5432
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0 1
time / s 

sp
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d

5432
0
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time / s 

sp
e

e
d

What are the instantaneous speed and instantaneous 

acceleration of the runner at a time of4.0 s?

Instantaneous 

speed at 4 s

Instantaneous 

acceleration at 4 s

A. greater than the 

average speed

zero

B. equal to the average 

speed

non-zero

C. greater than the 

average speed

non-zero

D. equal to the average 

speed

zero

12. The graph shows the variation with time of the velocity 

of a cart moving along a straight track. The cart starts 

from rest.

time

ve
lo
c
it
y

0

How many times does the cart change its direction of 

motion?

A. 1   B. 2   C. 3   D. 4
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iii.  From 50 to 100 s the object is moving to the left and you need to subtract the distance moved in this direction 

from the result of part (i).

  The distance is equal to the area between the graph and the time axis from 50 s to 100 s: 
1

2
× 20 × 10 + 30 × 10 = 400 m.

The final displacement = 375  400 = –25 m. The negative sign indicates that the object is to the left from the 

starting position.

c.  At 100 s the object is moving away from the starting position at a constant speed. It takes 2.5 s to travel 25 m at a 

speed of 10 m s 1, so the object must have passed the starting position at 97.5 s.
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▴ Figure 11 Motion down a slope of 

constant gradient means you can use the 

kinematic equations. When the slope 

changes, they should not be used.

13. The graph shows how the velocity of a cart moving on 

an inclined straight track varies with time.
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a.  Describe the motion of the cart during the  

first 2.5 s.

b. Calculate:

 i. the acceleration of the cart

 ii.  the maximum distance of the cart from its 

starting position

 iii.  the displacement of the cart at 2.5 s.

c.  Sketch a graph to show the variation of the 

displacement of the cart with time.
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• Tool 3: Select and manipulate 

equations.

• Tool 3: Identify and use 

symbols stated in the guide 

and the data booklet.

The kinematic equations use a 

consistent set of symbols for the 

quantities. The table gives the list.

Symbol Quantity

s displacement/distance

u initial (starting) 

velocity/speed

v nal velocity/speed

a acceleration

t time taken to travel 

distance s

The list of symbols in the table 

spell out suvat. The equations are 

sometimes also known by this name.

suvat equations
The kinematic (suvat) equations of motion 

The graphs of distance–time and speed–time give a set of kinematic equations of 

motion that predict the values of the parameters in motion. These also help you to 

understand the connection between the various quantities introduced sofar. 

The kinematic equations only apply when the acceleration is constant, when the 

graph of speed against time for the motion is straight. 

It is easy to forget the strict rule of constant acceleration for the use of suvat

equations. Figure 11 shows two examples that look similar but need to be treated 

in completely dierent ways. You can use the suvat equations in the le-hand 

diagram because the skier’s acceleration is constant.

Deriving the kinematic equations

The derivation begins from a simple graph of speed against time for a constant 

acceleration from an initial velocity u to a nal velocity v during a time t (Figure 12).

▴ Figure 12 Deriving the rst two kinematic equations.
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In the left-hand diagram a skier is about to ski down a slope of constant 

gradient. As you will see in Topic A.2, this means that the force is constant 

and that the kinematic equations can be used because the acceleration  

is constant. In the right-hand diagram the slope varies throughout the  

ski-run. It is poor physics to try to use suvat here because the acceleration  

is not constant. You must, strictly speaking, use the energy transfers and  

the concept of energy conservation (which you will meet in Topic A.3).

When can problems on projectile motion be solved by 

applying conservation of energy instead of kinematic 

equations?

Modern scientists are careful to 

reference their sources. However, 

this has not always beenso.

The fourth equation of motion 

is oen called the mean-speed 

theorem. It is attributed to 

Galileo (1564–1642), but it has 

its origins many centuries before. 

It was proved by Nicole Oresme 

(c.1320–1382) and was known 

by the Oxford Calculators (see 

page 13). The work of these early 

scholars spread around Europe and 

inuenced many other thinkers, but 

it was not oen attributed to them.

The theorem’s origins may lie 

centuries before that. A translation 

of a Babylonian tablet suggests that 

the ancient Babylonians were using 

a version of this rule to calculate the 

position of Jupiter. Whether they were 

the rst to use this rule is unknown.

Research skills  ATL

The gradient of the graph gives the acceleration: a =
change in speed

time taken for speed change. 

The change in speed is v u, the time taken is t, so a = v − u
t

. This can be  

rearranged to:

v = u + at rst equation of motion

The area under the speed–time graph gives the distance. The graph from 0 tot

is made up of two parts: the lower rectangle, area□ and the upper right-angled 

triangle, area△

area△ =
1

2
× base × height =

1

2
× t × (v − u) =

1

2
× t × at

area□ =
1

2
× base × height = ut

distance s = total area = area□ + area△ = ut +
1

2
× (at) × t

leading to

s= ut +
1

2
at2 second equation of motion

The rst equation of motion does not contain the distance s. The second equation 

has no nal velocity v. There are three more possible equations, one with a missing 

t and one with a missing a. The third has a missing u but is not oen used.

To eliminate t from the rst and second equations, rearrange the rst equation in 

terms of t:

t = v − u
a

This can then be substituted into the second equation:

s = u (v − u
a ) + 1

2
a (v − u

a )
2

so that

as = u (v − u) +
1

2
 (v − u)2

= uv +
1

2
v2
+

1

2
u2
−

1

2
× 2uv

and therefore

2as = v2
− u2

or

v2
= u2

+ 2as third equation of motion

▴ Figure 13 A Babylonian tablet 

showing calculations of the position 

of Jupiter.
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Worked example 10

A cyclist slows uniformly from a speed of 7.5 m s 1 to a speed of 2.5 m s 1 in a 

time of 5.0 s. Calculate:

a. the acceleration

b. the distance moved in the 5.0 s.

Solutions

a. s = ?; u = 7.5 m s 1; v = 2.5 m s 1; a = ?; t = 5.0 s

Use v = u + at and therefore 2.5 = 7.5 + a × 5.0

So, a =−
5.0

5.0
=−1.0 m s 2

The negative sign shows this is a deceleration.

b. s = ut +
1

2
at

2
= 7.5 × 5.0 −

1

2
× 1.0× 5.02

= 37.5 − 12.5 = 25 m

Worked example 9

A driver of a car travelling at 25 m s 1 along a road applied the brakes. The 

car comes to a stop in 150 m with a uniform deceleration. Calculate:

a. the time the car takes to stop

b. the deceleration of the car.

Solutions

a. Start by writing down which values in the suvat equations you do and 

don’t know from the question.

s = 150 m, u = 25 m s 1, v = 0, a = ?, t = ?

To work out t, you need the fourth equation: s = (v + u

2 ) t
which rearranges to t = ( 2

v + u
) s

Substituting the values in the question gives t = ( 2

25 ) 150 = 2 × 6 = 12 s

b. To find a the equation v2
= u

2
+ 2as is best.

Substituting: 0 = 252
+ 2 × a × 150

a =−
25 × 25

300
=−

25

12
=−2.1 m s 2

The minus sign shows that the car is decelerating rather than accelerating.

The derivation of the nal equation is le to you as an exercise:

s = (v + u

2 )t fourth equation of motion

There are two ways to approach this fourth proof. One way is to think about the 

meaning of the speed that corresponds to v + u

2
 (it is the average speed over the 

time t) which applies over the whole of the motion. The second way is to take the 

third equation and amalgamate it with the rst. 

You will not be expected to remember these proofs or the equations themselves 

(which appear in the data booklet). They illustrate how useful graphs and 

equations are for solving kinematic problems.
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Practice questions

14. A cart is launched up a frictionless ramp with an initial 

speed of 3.0 m s 1. The cart moves with a constant 

acceleration of 1.8 m s 2 directed down the ramp. 

Calculate:

a.  the time the cart takes to return to the starting point

b. the maximum distance from the starting point.

15. An aircraft starts its takeoff roll from rest and 

accelerates uniformly to a speed of 100 km h 1 in a 

time of 16 s.

a. Calculate, in m s 2, the acceleration of the aircraft.

To take off, the aircraft must achieve a speed of 

250 km h 1

b.  Calculate the minimum length of the runway 

required for takeoff, giving the answer to the 

nearest 100 m. Assume that the acceleration is 

constant during the entire takeoff.

16. A car needs a distance of 25 m to slow down to a 

speed of 12 m s 1 witha constant deceleration of 

4.3 m s 2. Calculate the initial speed ofthe car.

17. An underground train can accelerate and slow down at 

a constant rate of 1.3 m s 2. The distance between two 

underground stations is 720 m. Determine:

a.  the maximum speed the train can achieve between 

the stations

b.  the minimum time of travel between the stations.

18. The graph shows how the displacement of a uniformly 

accelerated bicycle varies with time.

a.  What is the acceleration of the bicycle and its 

instantaneous speed at 2.0 s?

12

0
0 4.0

time / s 

d
is

p
la

ce
m

e
n

t/
m

Acceleration Speed at 2.0 s

A. 0.75 m s 2 1.5 m s 1

B. 0.75 m s 2 3.0 m s 1

C. 1.5 m s 2 1.5 m s 1

D. 1.5 m s 2 3.0 m s 1

b. Sketch the velocity–time graph for the bicycle.
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In Topic A.2, you will meet the laws of motion constructed 

by Isaac Newton. These laws can be applied whenever 

the speed of the objects is much less than the speed of 

light (as explained in TopicA.5). The kinematic equations 

only apply when acceleration is uniform. Newton’s second 

law of motion suggests that the kinematic equations will 

therefore only be applicable when the force is constant or 

the mass of the object does not change.

These two conditions are surprisingly rare in practice. 

The mass of moving objects changes (an automobile 

consumes fuel as it moves). The forces acting on an object 

change for all sorts of reasons: variations in mass, friction 

or air resistance, and so on. Modelling real motion is more 

difficult than the kinematic equations suggest.

How effectively do the equations of motion model Newton’s laws of dynamics?

How are the equations for rotational motion related to those for linear motion?

In Topic A.4, you will meet the equations that apply to 

rotational motion — when objects are rotating about an 

axis. The definitions that set up rotational motion are 

deliberately chosen to mirror those of linear motion.  

The concepts are similar and the use of these definitions 

leads to a parallel set of equations. This makes them easier 

to learn and use.
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Topic D.1 looks in greater detail 

at gravitational elds, but for the 

moment you can assume that there 

is a constant acceleration that acts 

on all bodies close to the surface 

of Earth.

Projectile motion

Watch a dog catching a ball thrown high into the air. It is a remarkable feat of 

coordination by the animal. What is the physics of the motion? The ball is moving 

in two dimensions, and it is subject to the vertical acceleration of gravity and the 

deceleration of air resistance. How do physicists treat this complex situation? The 

trick they use is to split it up into horizontal and vertical components.

Acceleration due to gravity

When an object is released close to Earth’s surface, it accelerates downwards. 

The force of gravity acts on the object, pulling it towards the centre of Earth. 

Equally, the object pulls with the same force on Earth in the opposite direction. 

Not surprisingly, with small objects, the eect of the force on Earth is so small that 

you do not notice it.

The acceleration due to gravity at Earth’s surface is given the symbol g. The 

accepted value varies from place to place on the surface. For example, in Kuala 

Lumpur g is 9.776 m s 2 whereas in Stockholm it is 9.818 m s 2. This is because 

Earth is not a perfect sphere (it is slightly attened at the poles) and the densities 

of the rocks in dierent locations vary. The dierent tangential speeds of Earth 

at dierent latitudes also have an eect. It is better to buy gold by weight at the 

equator and sell it at the North Pole rather than the other way round — of course, 

buying by mass makes no dierence!

In 2012, the Red Bull Stratos project set the record for the 

highest altitude parachute jump when Felix Baumgartner 

jumped from an altitude of almost 39 km. This record was 

subsequently broken by Alan Eustace in 2014.

h / m v / m s 1

38 965 6.7

38 960 11.4

38 955 14.4

38 949 18.3

38 945 20.3

38 940 21.7

38 936 23.6

The table shows Baumgartner’s speed v at dierent 

altitudes h above Earth’s surface.

• Plot a graph of v2 against h

• Find the gradient of the graph.

• Deduce what the gradient represents. 

(Hint: use v2
= u2

+ 2as.) 

• The absolute uncertainty in the given speeds is 

±1 m s 1. Calculate the uncertainties in the values 

of v2 and add error bars to your graph. 

• By considering the maximum and minimum 

gradients of your graph, deduce whether the data 

are consistent with an acceleration due to gravity 

of 9.8 m s 2

• When you have studied Topic D.1 you will be able 

to calculate the acceleration due to gravity g at an 

altitude of 39 km. Show that it is only about1% lower 

than g at the surface of Earth.

Data-based questions
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Scientists use models to represent natural phenomena. The kinematic 

equations make up a particularly simple model. The requirement of uniform 

acceleration is already clear, but are thereothers?

The answer is yes. The equations implicitly ignore the shape of the object. 

For now, the objects are treated as moving points. The point in question 

can be the centre of mass. You will meet this idea later in TopicA.4, where 

you will re-examine the linear kinematic equations and draw parallels with a 

similar set of equations for rotational motion. 

Once forces are acting on an object and the acceleration is changing, then 

you cannot use suvat anymore. The kinematic model has broken down and it 

needs to be improved. This is where Newton’s second law of motion (Topic 

A.2) comes in because it allows you to link an acting force to an acceleration 

and, later, to the changing momentum of an object.

Models — The object’s shape You can nd out about using error 

bars in the Tools for physics section 

on page 358.

Measuring g

There are several ways to measure g. The rst method uses 

a data logger to collect data. One of the problems with 

measuring g “by hand” is that the experiment happens quickly 

on Earth. Manual collection of the data is dicult. 

ultrasound

sensor

Method 1

• An ultrasound sensor should be mounted to sense objects 

below it. 

• The logging system must measure the speed of the 

object over a time of about 1 s. The time interval between 

measurements will need to be set. An interval of between 

0.1 s and 0.01 s is best. The object, large enough to be 

detected by the sensor, is dropped vertically.

• The data logger should be set to output a speed–time 

graph. This is likely to be a straight line. The logger’s 

software may be able to calculate the gradient for you.

• You could extend this experiment by testing objects of 

different mass but similar size and shape to confirm a 

suggestion by Galileo that such differences do not affect 

the drop.

▴ Figure 14 Measuring g using an 

ultrasound sensor.

• Tool 2: Use sensors.

• Tool 3: Interpret features of graphs including 

gradient and intercepts.

• Inquiry 2: Collect and record sufficient relevant 

quantitative data.

• Inquiry 3: Compare the outcomes of an 

investigation to the accepted scientific context.
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Method 2 

Another option does not involve a sensor and data 

logger.

▴ Figure 15 When the current to the 

electromagnet is switched o, the steel ball falls 

andopens the trapdoor.

electromagnet

to switch 

and timer

ruler

trap-door

height of fall = h

• A magnetic field is used to hold a small steel sphere 

(such as a ball bearing) between two metal contacts. 

The magnetic field is produced by a coil of wire 

with an electric current in it. When the current is 

switched off, the field disappears, and the sphere 

falls vertically. 

• As the sphere leaves the metal contacts, an 

electronic circuit starts a clock. The clock stops when 

the sphere opens a small trapdoor and breaks the 

connection between the terminals of a timing clock 

or computer. (The exact details of these connections 

will depend on your equipment.) 

• This system measures the sphere’s time of flight t

between the contacts and the trapdoor. 

• The distance h from the bottom of the sphere to the 

top of the trapdoor is needed. (You should think about 

why these are the appropriate measurement points.)

• One possible analysis for the data is to measure t for 

one value of h — with repeat readings for the same h. 

Then, to calculate g, use h =
1

2
at2 as u =0. However, 

this is a one-off measurement that is prone to error. 

Think of some reasons why. 

• A way to reduce the errors is to change the vertical 

distance h between the sphere and trapdoor and to 

plot a graph of h against t2. The gradient of the graph 

is 
g

2
. What do you think an intercept on the h-axis 

represents? 

Method 3

A further method to estimate g could include making a 

video of a falling object against a xed calibrated scale. 

The image should include a clock. There is an example of 

such an image later in this topic.

Projectile motion in two-dimensions

So far, you have assumed that things are moving in one dimension — along a 

straight line and with no air resistance. While this is oen the case, there are 

also important examples of objects that move in a circle (see Topic A.2) or that 

are projected into the air. The rest of this topic looks at objects moving in two 

dimensions, with and without air resistance.

A baseball is thrown vertically upwards with an initial speed U. Gravity acts on the 

baseball from the moment of its release, slowing it down until it stops for an instant 

at the top of its motion. Gravity continues to act and the baseball now accelerates 

downwards to reach the ground with the same speed at which it was released. 

Without air resistance, the displacement–time graph would look like Figure 16. 

The ball goes vertically up and then down to land in the same spot from which it 

was projected. The path in the air is called the trajectory and is a vertical line up 

and down for this case.

A distance–time graph would look dierent (Figure 17). It gives similar information 

but without the direction part of the displacement and velocity vectors. Make 

sure that you understand the dierence between these graphs. 

The suvat equations introduced earlier can be used to analyse this motion. The 

initial vertical speed is U, the time to reach the highest point is T, the maximum 

height is H and the acceleration of the ball is –g; g has a negative sign because 

upwards is the positive direction. As the acceleration due to gravity is downwards, 

time

d
is
p
la
c
e
m
e
n
t

▴ Figure 16 A displacement–time graph 

for a baseball thrown vertically upwards 

in the air. Remember that this is a graph of 

vertical displacement against time, not the 

shape of the path the ball makes in the air.
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▴ Figure 17 The distance–time graph for 

the motion of Figure 16.

time

d
is
ta
n
c
e

0
0

maximum

height

Worked example 11

A student drops a stone from rest at the top of a well. She hears the stone splash into the water  

at the bottom of thewell 2.3 s after releasing the stone. Ignore the time taken for the sound to  

reach the student from the bottomofthe well. The acceleration due to gravity g is 9.8 m s 2

a. Calculate the depth of the well.

b. Calculate the speed at which the stone hits the water surface.

c.  Explain why the time taken for the sound to reach the student can be ignored.

Solutions

a. u = 0; t = 2.3 s

s = ut +
1

2
at2

s = 0 +
1

2
× 9.8 ×2.32

= 26 m

b. v = u + at = 0 + 9.8 × 2.3 = 23 m s 1

c.  The speed of sound is about 300 m s 1 and so the time to travel about 25 m is about 0.08 s.  

This is only about 4% of the time taken for the stone to fall.

Worked example 12

A hot-air balloon is rising vertically at a constant speed of 5.0 m s 1. A small object is released  

from rest relative to the balloon when the balloon is 30 m above the ground. Calculate:

a. the maximum height of the object above the ground

b. the time taken to reach the maximum height

c. the total time taken for the object to reach the ground.

g must have the opposite, that is, negative, sign. The kinematic equations are 

printed again but with dierences to reect the vertical motion to the highest point:

 0 = U gT   which comes from v = u + at

H = UT −
1

2
gT2  which comes from s = ut +

1

2
at2

 0 = U2  2gH   which comes from v2
= u2

+ 2as

The time for the entire motion (that is, up to the highest point and then back to 

Earth again) is simply 2T

Figure 18(a) shows the speed–time graph for the baseball, while Figure 18(b) 

shows the velocity–time graph.

time
0

(a) (b)

0sp
e
e
d

time
0

0ve
lo
ci
ty

◂ Figure 18 (a) The speed-time and (b) the 

velocity-time graphs for an object thrown 

vertically upwards.
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Solutions

a. The object is moving upwards at +5.0 m s 1 when it is released. The 

acceleration due to gravity is 9.8 m s 2. 

When the object is released, it will continue to travel upwards, but this 

upwards speed will decrease under the influence of gravity. When it 

reaches its maximum height, it will stop moving and then begin to fall.

v2
= u2

+ 2as, so s =
v2 u2

2a
=

0  52

2 × ( 9.8)
=+1.3 m

 This shows that the object rises a further 1.3 m above its release point, and 

is therefore 31.3 m above ground at the maximum height.

b. v = u + at so t =
v u

a
=

0  5

9.8
=+0.51 s (The plus sign shows that this is 

0.51 s afterrelease.)

c.  After reaching the maximum height (at which point the speed is zero) the 

object falls with the acceleration due to gravity.

s = –31.3 m, u = 0, v = ?, a = –9.8 m s 1, t = ?

 Notice that s is negative because it is in the opposite direction to the 

upwards + direction.

 Using s = ut +
1

2
at2 gives a value for t of ± 2.53 s. The positive value is the 

one to use. Think about what the negative value stands for.

 So the total time is the 0.51 s to get to the maximum height together with 

the 2.53 s to fall back to Earth.

This gives a total of 3.04 s, which rounds to 3.0 s. 

 Notice that, in this example, if you carry the signs through consistently, 

they give you information about the motion of the object.

Topic D.1 goes into more details of 

what happens if Earth’s surface is 

not considered to beat.

Calculating horizontal and vertical motion

You can assume that:

• The surface of Earth is large enough for its surface to be considered locally at.

• There is no friction or air resistance. 

Gravity acts vertically and does not aect motion in the horizontal direction. 

This will be important when you combine horizontal and vertical motions later. 

Because the horizontal acceleration is zero, the suvat equations are simple. 

For horizontal motion: 

• The horizontal velocity does not change.

• The horizontal distance travelled is horizontal speed × time for the motion. 

A student throws a ball horizontally. Figure 19 shows multiple stroboscopic 

images of the ball every 0.10 s as it moves through the air. The gure also shows, 

for comparison, the image of a similar ball dropped vertically at the same 

moment as the ball is thrown. 

It is obvious which ball was thrown horizontally. Careful examination of the images of 

this ball should convince you that the horizontal distance between them is constant. 

When the time interval between images and the distance scale on the picture are 

known, then you can work out the initial (and unchanging) horizontal speed. 

▴ Figure 19 These are multiple images of a 

ball’s motion taken every tenth of a second. 

A stroboscope is used in a dark room to 

illuminate the ball at regular time intervals. 

projected to the rightdropped 

The signs of the quantities in the 

kinematic equations are important. 

For vertical motion, treat upwards 

as positive and downwards as 

negative. Something else that is 

easy to forget is that, at the top of 

the motion, the vertical speed of 

the object is zero.

Signs
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The images tell you about the vertical speeds too. Concentrate on the ball that was 

dropped vertically. The distance between vertical images (strictly, between the same 

point on the ball in each image) is increasing. The distance s travelled varies with 

time t from release varies as s ∝ t2. This means that when t doubles, then s increases 

by factor of four. Does it look as though this is what happens? Careful measurements 

from Figure 21 followed by a plot of s against t2 could help you to conrm this.

Horizontal motion and vertical motion are completely independent of eachother.

The horizontal speed continues unchanged (remember that you are assuming 

no air resistance) while the vertical speed changes as gravity accelerates the ball. 

This independence allows a straightforward analysis of the motion. The horizontal 

and the vertical parts of the motion can be split up and treated separately. Then 

they are re-combined to determine the velocity and the displacement for the 

whole of the motion. 

The position is summed up in Figure 20 which is a simplied version of Figure 19. 

At two positions along the trajectory, the separate components of velocity are 

shown in solid green for the ball projected to the right. From these the resultant 

vectors (the velocity including direction) are drawn as dashed arrows. 

To achieve the best range (best overall horizontal distance travelled), a ball should be 

projected upwards into the air at an angle to the horizontal. The general principles 

above still allow you to analyse the situation using the kinematic equations.

Analysis of the motion requires the 

resolution and addition of vectors. 

Details of how to do this are shown 

on page 340 of the Tools for 

physics section.

projected to the rightdropped

▴ Figure 20 The motion of the ball in 

Figure 19 with velocity vectors added to 

scale to two images.

vertical speed = 0

at maximum height 

initial velocity u at θ to horizontal

initial horizontal component = u cos θ

initial vertical component = u sin θ

horizontal speed is

constant if air

resistance negligible 

maximum height:

range:

R = 2Tucos θ

T is the time to reach the

highest point:

ve
rt

ic
a

l

time for whole

motion is twice time

to maximum height

horizontal

g only acts on

vertical speed

h

θ

vertical

acceleration

is g

h =

u

u2 sin2 θ

2g

T =

u sin θ

g

◂ Figure 21 An analysis of 

projectile motion.

Figure 21 shows the trajectory of an object (vertical distance against horizontal 

distance) that has an initial speed u at an angle of θ to the ground. As usual, you 

assume no air resistance. The rst step in the analysis of this motion is to resolve 

the initial velocity into two components, horizontal and vertical. 

The horizontal speed is u cos θ. The initial vertical speed is u sin θ.

Horizontal motion

The horizontal speed is constant throughout and remains at its initial value of 

ucos θ. When the time that the object takes to reach the highest point is T, then 

the horizontal distance travelled R (known as the range) is 2Tu cos θ.
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Vertical motion

This is more complicated because gravity acts on the object throughout the 

motion. The kinematic equations must be used to calculate the vertical position 

of the object for any time t

• The vertical speed v
vert

 at t is (u sin θ gt) [from v = u + at].

• The vertical position s
vert

 at t is ut cos θ 
gt2

2
• At the highest point of the trajectory, v

vert
= 0 so u sin θ = gt, which leads to 

T =
u sin θ

g

• The highest point occurs halfway through the motion which is reached at time 

T so that 2T (the time taken for the object to return to the ground) is given by 

2T =
2u sin θ

g

• The highest point h is given by h =
u2 sin2 θ

2g
 from solving the third kinematic 

equation v2
vert

= 0 = (u sin θ)2  2gh

The trajectory is a parabola because the vertical position of the object varies 

with t2 whereas the horizontal position varies with t. 

Study Figure 21 carefully and apply the ideas in it to any projectile problems you 

need to solve.

Worked example 13

An arrow is fired horizontally from the top of a tower 35 m above the ground.  

The initial horizontal speed is 30 m s 1. Assume that air resistance is negligible.  

Calculate:

a. the time for which the arrow is in the air

b.  the distance from the foot of the tower at which the arrow strikes the ground

c. the velocity at which the arrow strikes the ground.

Solutions

a.  The time taken to reach the ground depends on the vertical motion of the arrow.  

At the instant when the arrow is fired, the vertical speed is zero. The time to reach  

the ground can be found using 

s = ut +
1

2
at2

t2
=

2 × 35

9.8
, so t = 2.67 s or 2.7 s to 2 s.f.

b.  The distance from the foot of the tower depends only on the horizontal speed.  

s = ut = 30 × 2.67 = 80.1 m ≈ 80 m.

c.  To calculate the velocity, the horizontal and vertical components are required.  

The horizontal component remains at 30 m s 1. The vertical speed is calculated  

using v = u + at = 0 + 9.8 × 2.67 = 26.2 m s 1

 The speed in the direction of travel can be found using Pythagoras’ theorem  

because the vertical and horizontal components are at 90° to each other: 

302
+ 26.22———————— = 39.8 m s 1

≈ 40 m s 1

The angle at which the arrow strikes the ground is tan 1 (26.2

30 )= 41°.

In Topic A.3, you will see how 

problems of this type can be 

solved by considering energy 

transfers instead of kinematic 

equations. The energy-transfer 

approach is essential when the 

acceleration is not constant.
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Worked example 14

An object is thrown horizontally from a ship and strikes the sea 1.6 s later  

at a distance of 37 m from the ship. Calculate:

a. the initial horizontal speed of the object

b. the height of the object above the sea when it was thrown.

Solutions

a. The object travelled 37 m in 1.6 s and the horizontal speed was 
37

1.6
= 23 m s 1

b. Distance above sea, s= ut+
1

2
at

2
= 0 + 0.5 × 9.8 × 1.62

= 12.5 m. 

Worked example 15

A stone is thrown towards a wall with an 

initial speed of 13 m s 1 at an angle of 35° 

to the horizontal. The stone is initially 

2.0 m above the ground and its horizontal 

distance to the wall is 12 m. The wall is 

4.5 m high.

a.  Calculate the time taken for the stone 

to travel the horizontal distance to 

thewall.

b. Show that the stone will hit the wall.

c.  Deduce whether the stone reaches its maximum height before or after hitting the wall.

d. Calculate the speed with which the stone hits the wall.

Solutions

a. The horizontal speed of the stone is 13 cos 35° = 10.6 m s–1 and remains constant  

during the motion, so the time totravel to the wall is 
12

13 cos 35°
= 1.1 s.

b. Find the height of the stone above the ground at the time 1.1 s and compare it to the 

height of the wall. The initialvertical speed of the stone is 13 sin 35° = 7.5 m s 1 and 

the vertical motion is uniformly accelerated, with theacceleration −9.8 m s 2. At the wall, 

the vertical displacement (relative to the initial position) is given by 

13 sin 35° × 1.1269 
1

2
× 9.8 × (1.1269)2

= 2.2 m, so the height above the ground is 

2.2 + 2.0 = 4.2 m. This is just below the top of the wall.

Note that the time value used in the calculation has a higher precision than the answer in  

part a. This avoids the accumulation of a rounding error.

c. The vertical velocity of the stone when it hits the wall is 13 sin 35°  9.8 × 1.1269 = –3.6 m s 1.  

It is negative, which means that the stone is in the downward phase of motion and therefore  

it must have reached the maximum height before hitting the wall.

d. The speed is the magnitude of the velocity vector and can be calculated from its horizontal 

and vertical components. Speed = 10.62
+ 3.62—————— = 11 m s 1. This is less than the initial speed  

because the stone is now at a greater height.

2.0m

12m

4.5m

wall

stone

35°
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Practice questions

19. The diagram shows trajectories of two projectiles 

launched from the same point. The projectiles reach 

the same maximum height.

Which quantity has the same value for both 

projectiles?

A. initial speed

B. time of flight

C. horizontal component of initial velocity

D. speed at maximum height

20. An arrow is fired horizontally from height h and travels 

a horizontal distance s before striking the ground. 

Another arrow is fired with the same velocity and 

travels a horizontal distance 2s

What is the height from which the second arrow 

isfired?

A. 2 h B. 2h

C. 22 h D. 4h

21. A stone is thrown vertically downwards from the top 

of a tower with an initial speed of 4.0 m s 1. The stone 

hits the ground 1.9 s later. What is the height of the 

tower?

A. 7.6 m B. 10 m

C. 18 m D. 25 m

22. A steel ball rolls off a table of height h with a horizontal 

initial velocityv. What is the horizontal distance 

moved by the ball, from the edge of the table to the 

point where the ball hits the floor?

A. √√ h
2g × v B. √√ h

g × v

C. √√2h
g × v D. √√ h

g × 2v

23. A football player kicks a ball into the air. The ball 

reaches its maximum height 0.90 s after the kick, and its 

horizontal displacement at that instant is16 m.

16m

Calculate, for the ball:

a. its vertical component of the initial velocity

b. its initial speed

c.  the angle to the horizontal at which it leaves the 

ground

d. its maximum height.

24. A tennis player serves a tennis ball towards the net. 

The ball leaves the racquet horizontally at a height of 

2.70 m above the ground. The net is 0.900 m high 

and a distance of 12.0 m from the player. Determine 

the minimum initial speed of the ball so that it passes 

above the net.

25. Olaf throws a dart with a speed of 9.0 m s 1 at an angle 

of 4.0° above the horizontal. The dart hits the bullseye 

on a dart board, at a height 0.25 m below the initial 

height of the dart.

a.  Show that the time of flight of the dart is 

approximately 0.3 s.

b. Calculate the:

  i. distance between Olaf and the dart board

 ii. speed of the dart when it hits the bullseye.

c.  Sketch graphs to show the variation with time of 

the dart’s:

  i. horizontal velocity

 ii. vertical velocity.
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How does the motion of a mass in a gravitational field compare to the motion of a charged 

particle in an electric field?

In Topic D.3 you will study the motion of charged objects moving in an electric field.  

When the electric field is uniform, then the force acting on the charged object is constant.  

You already know what will happen! The force and therefore the acceleration will be constant,  

so the motion will be parabolic; the displacement will vary with time2. One branch of physics helps another!

How does the motion of an object change within a gravitational field?

The parabola is a member of the family of curves known as the conic 

sections. This is because each member of the family can be cut from part 

of a cone (Figure 22).

It is no accident that each of these shapes has an important role in motion. 

The parabola, ellipse and hyperbola all have a part in the orbits and 

escape trajectories of satellites and rockets. There is more detail about 

orbits and motion in a gravitational field in Topic D.1.

The parabolic shape arises from the nature of the gravitational field  

near to Earth’s surface. This is because the (approximately) 

constantgravitational force leads to a uniform acceleration and the vertical 

displacement must be proportional to the (time of flight)2. The  

horizontal displacement is proportional to time of flight, so  

(vertical displacement) ∝ (horizontal displacement)2

The other conic sections can be seen in other types of motion in a gravitational field and are explored in TopicD.1.

This result helps you to predict the trajectory for other types of field where the force is constant.  

An example is a charged particle that is moving perpendicular to a uniform electric field. The  

mathematics of the trajectory is similar and the particle also moves in a parabola. This is treated in Topic D.3.

How does a gravitational force allow for orbital motion?

The gravitational attraction between a satellite and Earth is always towards the centre of mass of the objects.  

The satellite is subjected to a force directed to Earth’s centre. This is precisely the condition for the satellite  

to orbit Earth in a circular or an elliptical orbit. The nature of the force (called a centripetal force) is explored  

inTopic A.2.

▴ Figure 22 The various shapes that can 

be made from a cone. These can all be 

possible trajectories for an object moving in 

a gravitational eld.

hyperbola

ellipse

circle

parabola

Moving through fluids
The assumption that air resistance is negligible is usually unrealistic — ask any cyclist. 

An object that travels through a uid “stirs” the uid up. Both gases and liquids are 

called uids. The object moving in the uid is subject to a viscous drag force. The 

stirring process is complex so that, even aer introducing some simple assumptions 

about the resistance of a uid, it is dicult to give a complete analysis. 

In energy terms, air resistance comes from the transfer of some of the kinetic 

energy of the moving body into the uid through which it is moving. Some uids 

absorb this energy better than others: swimming through water is much more 

tiring than running through the air. 

The eects of the viscous drag 

forces themselves are explored in 

more detail in Topic A.2.
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Air resistance in one dimension

Before tackling the more dicult case of projectile motion, it is worth looking at 

the eects of air resistance on the motion of an object falling vertically aer being 

released from rest.

The eects of air resistance increase with the speed of an object. Eventually, at 

a high enough speed, the force resisting the movement of the object becomes 

equal to the gravitational pull downwards. The object cannot accelerate to a 

greater speed and so has reached a speed maximum. This value is known as the 

terminal speed. 

Figure 23 shows graphs of the vertical motion for an object without air resistance 

(Figure 23(a)) and with air resistance (Figure 23(b)). 

Figure 23(a) shows:

• a horizontal line for the acceleration because it is constant at −9.8 m s 2

• a gradient for the speed graph that is constant; the speed is proportional to 

the time elapsed

• a curved parabolic line for the distance fallen as the displacement is 

proportional to (time elapsed)2

All of these are expected from earlier parts of this topic.

Figure 23(b) shows very dierent behaviour:

• The acceleration is −9.8 m s 2 when time t = 0 but it then falls to zero as the 

drag force increases (with speed).

• The initial gradient of the speed graph is the same as that for the case without 

drag but then decreases. The speed becomes constant as the acceleration 

reaches zero. This constant speed is the terminal speed.

• The distance fallen graph is no longer parabolic and becomes straighter as the 

time increases. Note that the distance travelled in Figure 23(b) is much less at 

any given time when drag acts.

The result of all these changes is that:

• The time to fall a particular distance (the time of ight) increases.

• The acceleration varies, falling from g to zero as the speed increases.

• There is a terminal speed that depends on the dimensions of the object (this is 

explored in Topic A.2).

▴ Figure 23 Graphs of distance, speed 

and acceleration against time for an 

objectfalling vertically from rest with  

(a) no air resistance and (b) air resistance 

that varies ∝ v2. The graphs are drawn to the 

same scale.

time

distance
(a)

speed

acceleration

(b)

distance

speed
acceleration

time
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Worked example 16

The graph shows how the speed of a raindrop falling vertically to the ground 

varies with time.

a.  Outline which feature of the graph indicates that the raindrop falls with 

a decreasing acceleration.

b.  State the terminal speed of the raindrop.

c.  Estimate the distance fallen by the raindrop during the first 2.0 s.

d.  Calculate the distance fallen during the first 2.0 s by an object dropped 

from rest in the absence of air resistance. Compare this with your 

answer to part c.

e.  The raindrop is formed in a cloud 240 m above the ground. Calculate 

the time the raindrop takes to fall to the ground.

43.532.521.51
0

0 0.5
time / s 

sp
e

e
d

/
m

 s
1

2

4

6

8

10

Solutions

a.  Acceleration is equal to the gradient of the speed–time graph. The graph 

has a decreasing gradient, which means that the acceleration of the 

raindrop quickly decreases from the initial value of 9.8 m s 2 to zero.

b.  The terminal speed is 8 m s 1, as indicated by the straight section of the 

graph after approximately 2 s.

c. The distance can be estimated by counting grid squares between the 

graph and the time axis. There are approximately 11.5 squares from  

0 to 2 s, and each square is equivalent to 2  m s 1
× 0.5 s = 1 m. 

Estimated distance = 11.5 m.

d.  Calculate the distance fallen in the absence of air resistance using 

kinematic (suvat) equations. Distance =
1

2
× 9.8 × 22

= 19.6 m. For the 

raindrop, air resistance decreases this distance by more than 8 m.

e. Assume that after 2 s the raindrop falls with a constant speed of 8 m s 1. 

The distance left is 240 − 11.5 = 228.5 m and the time to reach the 

ground is therefore2 + 228.5

8
= 31 s.
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• Tool 3: Calculate mean and range.

• Tool 3: Construct and interpret tables and graphs for 

raw and processed data including scatter graphs and 

line and curve graphs.

• Inquiry 1: Justify the range and quantity of 

measurements.

• Inquiry 2: Interpret diagrams, graphs and charts.

This experiment compares the distance–time graphs 

for two objects that experience dierent amounts of air 

resistance. You need two objects to drop:

• One object should be small and dense such as a ball 

bearing. This object should experience negligible 

air resistance when dropped through small heights. 

• The other object should be larger and lighter: a 

balloon with a mass of 2 or 3 g attached to it 

works well.

You are going to drop both objects from a range of 

heights. First, decide on this range. The maximum height 

will depend on the room you have available. Amaximum 

height of 2 m will be sucient, although 3 or 4 m would 

be better. You need at least eight dierent height 

measurements. Divide your maximum height by 8 to give 

suitable height increments which should ideally be larger 

than 20 cm.

• Drop the ball bearing from each height and measure 

the time taken to hit the floor. You should use a 

suitable method for the time measurement. 

• Repeat each measurement three times and record 

your results.

• Repeat the experiment with the balloon.

• Take averages of your results.

• Plot a distance–time graph for the two objects on the 

same axes. (Note that time should be on the horizontal 

axis even though it is the dependent variable.)

Compare the distance–time graphs for the two objects. 

How do they dier? Is there evidence that the balloon 

reached a terminal speed?

You can also calculate the average speed over each 

interval and plot a speed–time graph. To do this, assume 

that the average speed for each interval occurs at the 

mid-point of each time interval. An example is shown in 

the table. The mid-point time for the ball falling between 

0 and 0.2 m is 0.23 s (the average of 0 and 0.45 s). The 

average speed at this time is 0.44 m s 1 since the ball 

travelled 0.2 m in the 0.45 s time interval.

Height /

 m

Average 

time / s

0 0

0.2 0.45

0.4 0.61

0.6 0.71

Mid-point 

time / s

Average 

speed over 

interval / m s 1

0.23 0.44

0.53 1.25

0.66 2.00

Observing the eects of air resistance

Air resistance in two dimensions

The results are similar in two dimensions, as shown for the two cases in Figure 24. 

Here, the trajectory is shown for an object projected at 45° to the horizontal in a 

vacuum and with a drag force.

Comparisons of the two trajectories (Figure 24) and the two distance–time 

graphs (Figure 23) show that when air resistance is taken into account:

• The range is decreased.

• The trajectory is no longer parabolic.

• The maximum height is reduced.

• The vertical acceleration is no longer constant.

• There is now a horizontal deceleration.

• Speeds are reduced.

• The determination of the time of ight becomes complex and depends on the 
initial conditions of the motion.

▴ Figure 24 Eect of drag on an object 

projected at 45° to the horizontal.

0
0 horizontal position
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The graphs of an object subject 

to air resistance in Figure 23 

were produced using modelling 

soware. This is one way to 

investigate a system that is 

complicated or where the 

situation would involve complex 

mathematics. You may want to 

use modelling in your scientic 

investigation for the internal 

assessment.

Methods for solving problems 

such as this are shown in the Tools 

for physics section of this book 

(on page 364). This can be done 

using a spreadsheet such as Excel 

or modelling soware such as 

Modellus X, Desmos or Geogebra. 

Modelling techniques are used 

frequently in scientic research. 

The powerful computers that 

enable multi-factor simulations 

are very much part of the modern 

nature of science.

Using simulations  

and models

Worked example 17

A football is kicked with a speed of 25 m s 1 at an angle of 16° to the 

horizontal.

a.  Assuming that air resistance is negligible, calculate for the football:

   i. the maximum height reached

 ii. the range.

b. State the effect of air resistance on your answers to part a.

c.  Discuss the effect of air resistance on the vertical acceleration of the ball.

d.  Sketch a possible graph to show how the horizontal speed of the ball 

varies with time, including the effects due to air resistance.

Solutions

a. Use equations derived on page 31. 

  i. Maximum height =
252 sin2 16°

2 × 9.8
= 2.4 m.

ii. Time taken to return to the ground =
2 × 25 × sin 16°

9.8
= 1.4 s.

 Range = 25 × 1.4 × cos 16° = 34 m.

b. Both the maximum height and the range will be reduced.

c.  Air resistance always acts against the motion of the ball, but its effect 

on the acceleration depends on the phase of motion. When the ball 

moves up, the vertical component of air resistance acts downwards and 

increases the vertical acceleration (or rather deceleration — the upward 

speed of the ball decreases faster than under the force of gravity alone). 

When the ball goes down, the opposite happens: the vertical component 

of air resistance acts upwards and decreases the vertical acceleration of 

the ball.

d.  The horizontal speed is initially 25 × cos 16° = 24 m s 1 and decreases 

gradually towards zero due to air resistance. How quickly and by how 

much depends on factors such as the mass and the diameter of the ball, 

but a possible graph may look like the one below. Note that the time  

of flight will be reduced, too, but the graph only shows the first 1.2 s of  

the motion.

0
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For the motion of an object to change, a force must 

act on it. This is the first and most basic of Newton’s 

laws of motion. At first glance, this law seems obvious. 

Nevertheless, many questions arise: What does force 

mean? What is the connection between the force acting 

on, and the change in movement of, an object?

Scientists need a language to describe forces. They are 

vector quantities, so they require both magnitude and 

direction in their description. You can visualize them using 

scale drawing which works well in situations where more 

than one force acts on an object. 

Sometimes multiple forces combine to give no resultant 

change in an object’s motion. What does our visual 

approach tell us about this situation? You can extend your 

understanding beyond purely visual descriptions, to use 

the mathematics of vectors.

This area of physics is known as classical mechanics. It was 

the product of the amazing insightofIsaac Newton and 

others in the 17thcentury. He formulated a mathematical 

framework that lasted for200 years and that is still 

reliable for many applications today. This framework links 

force tokinematics for both linear and (as you will see in 

TopicA.4) rotational motion. 

As well as size and direction, the time period over which 

a force acts on an object is significant. This leads to a 

new and fundamental concept in physics: momentum. 

Changes in momentum help you tounderstand the 

collisions between objects andparticles.

How can forces acting on a system be represented both visually and algebraically?

How can Newton’s laws be modelled mathematically?

How can knowledge of forces and momentum be used to predict the behaviour of 

interactingbodies?

• Newton’s laws of motion

• forces as interactions between bodies

• free-body diagrams and how they are used to find the 

resultant force on a system

• the nature of these contact forces:

 º normal force 

 º surface frictional force 

 º elastic restoring force 

 º viscous drag force 

 º buoyancy force

• the nature of these field forces:

 º gravitational force 

 º electric force 

 º magnetic force 

• linear momentum and the conservation of linear 

momentum

• impulse and change in momentum

• the elastic and inelastic collisions of two bodies and 

explosions

• angular velocity

• centripetal force and centripetal acceleration.

40

A.2  Forces and momentum

In this topic, you will learn about: 
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Describing forces

Introduction 

We depend on forces and their eects in all aspects of our life. Forces are sometimes 

thought of as “pushes or pulls”, but the concept of a force goes well beyond this 

simple description. Forces change the motion of an object and deform the shapes 

of objects. Forces can act at a distance when there is nocontact between a system 

that produces a force and the object on which it is acting. 

▴ Figure 1 Swimmers experience many 

forces during a race. They exert a force 

backwards on the water which, by Newton’s 

third law, exerts a forwards force on the 

swimmer. The swimmer also experiences 

viscous drag and buoyancy. 

This paves the way for your 

understanding of the nature of a 

gas in Theme B and provides a 

key to many of the interactions of 

nuclear particles in Theme E.

Discussion about the meaning of 

“force”goes back to the times of 

earliestscientic thought. 

Aristotle, a Greek philosopher who lived 

about 2300 years ago, had an overarching 

view of the world (called the Aristotelian 

cosmology) and he is regarded as 

important in the development of science. 

The German philosopher Heidegger wrote 

that there would have been no Galileo 

without Aristotle before him. However, 

despite Aristotle’s importance to us, he 

would not be regarded as a scientist in 

our modern sense. He is, for example, not 

known to have performed any experiments 

to verify his ideas. 

Aristotle believed in the “nature” of all 

objects, including living things. He thought 

that all objects have a natural state which is to be motionless on the surface 

of Earth and that all objects, when le alone, try to attain this state. Then he 

distinguished between “natural motion” in which objects fall downwards 

and “unnatural” or “forced” motion in which objects need to have a force 

continually applied if they are to remain anywhere other than their natural 

state. Unfortunately for those learning physics, this is a very persuasive idea 

because you know intuitively that, when you hold something in your hand, 

your muscles have to keep “working” in order to do this. 

There are many other examples of Aristotelian thought that needed to be 

overturned before later scientists could move our thinking forward. But it is 

important to remember the contribution that Aristotle made to science, even 

if some of his ideas are now disregarded. What do you think students in a 

century’s time or a millennium from now will make of our physics?

Aristotle and the concept of force

▴ Figure 2 A statue of the Greek 

philosopher Aristotle.

Newton’s laws of motion 

Scientists in the time of Galileo had begun to realize that things were not as 

simple as the Greek philosophers thought. They were coming to the view that 

moving objects have inertia, meaning a resistance to stopping and that, once in 

motion, objects continue to move. 
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Sometimes in the history of 

science, scientists have made 

progress by using experiments 

to prove or disprove a theory. 

However, there are also times 

when they have made progress by 

pursuing “thought experiments”.

A thought experiment is when you 

take a known situation in which it 

is easy to imagine the outcome. 

You then extend the scope of 

that situation to imagine how the 

outcome might change. The result 

may lead to a new theory which 

can itself be tested using practical 

experiments.

Galileo himself was reputed to 

have dropped two cannon balls 

from the Leaning Tower of Pisa 

to demonstrate that the ancient 

Greeks’ ideas about falling 

objects was wrong. There is no 

contemporary evidence that he 

did this. It is more likely that it was 

an idea that he used to explain 

his ideas of forces. This would 

encourage others to pursue further 

thought experiments. There is 

evidence that a similar experiment 

was performed in Del in the 

Netherlands, possibly earlier 

than Galileo’s version. Galileo 

demonstrated the link between 

weight and Newton’s second 

law by persuading people that 

objects in free-fall accelerate at the 

samerate.

Einstein is also famous for a 

thought experiment in which he 

imagined riding along the crest 

of a light wave. By pursuing this 

idea, he conceived his theory of 

special relativity which is explored 

in TopicA.5.

Thought experiments ATL

Theories — Overthrowing Aristotle

Galileo carried out an experiment with inclined planes and spheres. In fact, this 

may have been a thought experiment — this was oen the way forward in those 

days — but in any event it is easy to see what Galileo was trying to suggest.

(a) (b) (c)

▴ Figure 3 Galileo’s thought experiment. 

Figure 3 shows a sphere rolled down the le-hand arm of a double inclined 

plane. In the rst experiment (Figure 3(a)), both arms of the inclined plane are at 

the same angle and the sphere rolls the same distance up the slope as it rolled 

down (assuming no losses). In the second experiment (Figure 3(b)), the second 

arm is at a lower angle than before. The sphere rolls up the right-hand plane to 

the same height as that from which it was released. Galileo suggested that, when 

the right-hand plane is horizontal (Figure 3(c)), the sphere will continue to roll for 

ever because it will never be able to climb to the original release height. 

Newton’s rst law

Newton included Galileo’s idea in his rst law of motion, which says: 

An object remains stationary or moves at a constant velocity unless an 

external force acts on it.

Galileo suggested that the sphere on the horizontal plane never stopped. However, 

Newton realized that there is more to say than this. Unless something from outside 

applies a force to change it, the velocity of an object (both its speed and its direction) 

must remain the same. This directly opposed Aristotle’s view that a force had to keep 

pushing constantly at a moving object for the speed to remain thesame. 

Aristotle’s methods were based on making observations rather than scientic 

experiments and creating logical explanations. It is a measure of his success 

that his ideas dominated science for over a thousand years.

Some of the rst scientists to question Aristotle’s ideas lived in the Islamic 

Golden Age. While Europe was in the Dark Ages, Islamic scholarship 

ourished between the 8th and 14thcenturies.

Aristotle’s ideas of motion suggested that a moving object would stop once 

it had found its natural place. The Persian polymath Ibn Sīna ( ) who 

lived from c. 980 to 1037 considered the motion of projectiles and 

concluded that motion without air resistance would continue indenitely — a 

precursor to Newton’s rst law.

Later, the Islamic physicist Abu’l-Barakāt Hibat Allah ibn Malkā al-Baghdādī 

(      ), who lived c. 1080 — c. 1165, proposed a 

relationship between force and acceleration — a precursor to Newton’s 

second law.
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Al-Baghdādī, building on Ibn Sīna’s work, had started to formulate the 

idea of experimental methods involving repeated observations as a method 

of investigation. This was an early version of what is now known as the 

scientic method.

▴ Figure 4 Ibn Sīna as depicted on a banknote from Tajikistan.

Newton’s second law 

The next step is to ask: when a force acts on an object, in what way does the 

velocity of the object change? 

Newton proposed a fundamental equation that connected force and rate of 

change of velocity (acceleration). This is contained in his second law. The law can 

be written in two ways (see later in this topic for the alternative form of the law).

Newton’s second law, in its simpler form, says that:

force = mass × acceleration 

In symbols, this is written F = m × a, where a is the acceleration of an object of 

mass m when force F is acting on it. 

The appropriate SI units are force in newtons (N), mass in kilograms (kg) and 

acceleration in metres per second squared (m s 2). The newton is a derived unit 

inSI. In terms of fundamental units, it is kg m s 2

Two things arise from Newton’s equation: 

• Mass is a scalar quantity, so multiplying a by m will not change the direction 

of the acceleration. The direction of the force and the direction of the 

acceleration will be the same. Conversely, applying a force to a mass will 

change the velocity in the same direction as that of the force. 

• One way to think about the mass in this equation is as the force required per 

unit of acceleration for a given object. This provides a way to standardize 

force units. When an object of mass 1 kg is observed to accelerate with an 

acceleration of 1 m s 2, then one unit of force (1 N) must have acted on it. 

Denition of a newton
Newton’s second law of motion leads directly to the denition of the unit of 

force — the newton (N):

1 N is the applied force needed to accelerate 1 kg of mass at the rate of 

1 m s 2 in the direction of the applied force.

In English, proper nouns such 

as a person’s name are given an 

initial capital letter, Isaac Newton 

for example. However, under the 

international system of units which 

is adopted by scientists — the 

Système Internationale d’Unites or 

SI units — units should be written in 

full without a capital letter (unless at 

the start of a sentence) even when 

the abbreviated unit is capitalized.

As a result, units named aer 

scientists such as the newton, 

joule, hertz, and coulomb, are all 

written in lower case, while their 

abbreviations (N, J, Hz, C) are 

upper case.

Which other units are named 

aerscientists?

Communication skills ATL
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What exactly is mass? The mass used 

in Newton’s second law of motion is 

inertial mass (F =m × a). This is the 

property through which an object 

resists the eects of a force that is 

trying to change its motion. It also 

appears later in this topic in the 

denition of momentum 

(p = m × v).

However, the quantity called 

mass when considering weight 

(W= m
g
× g) is dierent. This is the 

response of matter to the eects of 

gravity and is called gravitational 

mass

Galileo is said to have dropped 

two cannonballs of dierent mass 

from the Leaning Tower of Pisa. He 

observed that they accelerated at 

the same rate, and thus showed 

that inertial mass and gravitational 

mass were the same. This is 

shown through the application of 

Newton’s second law which gives:

m a = m
g
g

When inertial mass and 

gravitational mass are equal, then 

this becomes:

a = g

Objects in free-fall (in the 

absence of other forces such as 

air resistance) will experience an 

acceleration of g

Even though these two quantities 

seem to be the same, is there 

any reason why they should be 

equivalent?

The equivalence of inertial and 

gravitational mass has been 

experimentally veried to better 

than 1 part in 1015

Does this mean that what you 

understand by mass varies with 

the context? Can you imagine 

what would happen if inertial and 

gravitational masses were not equal?

Inertial and 

gravitational mass 
• Tool 2: Use sensors.

• Tool 3: Select and manipulate equations.

• Tool 3: Construct and interpret tables and graphs for raw and processed 

data including scatter graphs and line and curve graphs.

• Inquiry 2: Collect and record sufficient relevant quantitative data

This series of experiments can help in your understanding of Newton’s 

second law.

cart

card

light gates

runway

▴ Figure 5 A cart is subject to a constant force provided by an elastic string. The light 

gates time the cart over a known distance.

Experiment 1

The acceleration of a cart of constant mass is measured when it is pulled by 

dierent numbers of identical elastic threads, each one extended by the 

same amount. 

• The motion can be timed using light gates and an electronic timer 

as shown in Figure 5. Alternatively, the timing can be done using a 

datalogger connected to an ultrasound (or other) sensor. You could 

even use your mobile phone with a suitable app.

• Accelerate the cart with one elastic thread attached to the rear of the cart. 

The thread must be extended by the same amount for each run. Devise a 

way to do this: your hand needs to move at the same speed as the cart so 

that the thread is the same length throughout the run for the acceleration 

to be constant. 

The card on the cart is of a known length. The time taken by the card to break 

the light beam can be used to calculate, rst, the average speed at each gate 

and then (using the distance apart of the gates), the acceleration of the cart. 

The kinematic equations are used for this — so it is essential that the force and 

acceleration are constant. 

• Alternatively, a data logger will give you a direct output of speed against time.

• Repeat the experiment with two, three and possibly four elastic threads, 

all identical, all extended by the same amount. This means that you will 

be using one unit of force (with one thread), two units of force (with two 

threads), and so on. 

• Plot a graph of calculated acceleration against number of force units. Is 

your graph straight? Does it go through the origin? Remember that this 

experiment has several possible uncertainties when you judge your line of 

best fit. 

Force, mass and acceleration
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Experiment 2

The setup is essentially the same as for Experiment1. However, this time, you 

use a constant force (possibly two elastic threads). 

Measure the acceleration with a constant force and dierent masses of carts. 

This time, Newton’s second law predicts that mass ∝
1

acceleration
. Plota 

graph of acceleration against 
1

mass
. Is it a straight line?

Experiments are important in determining the validity 

of hypotheses. But the experiments must be carefully 

designed so that the results measure what is intended. 

An experiment that is a good measure of a physical 

situation is said to be “valid”, whereas an experiment that 

gives misleading results is “invalid”.

An experiment may be invalid when a control variable 

is not properly controlled. Allowing such a variable to 

change aects the collected data and may lead to a false 

conclusion.

As an example, consider this experiment. A student 

wants to test Newton’s second law and attaches a 

trolley to a string. The string passes over a pulley and 

its other end is attached to some weights on a hanger. 

Theweights produce a tension in the string and 

accelerate the trolley. The trolley is released from rest 

and accelerates over a distanced. The acceleration 

can be calculated when the travel time isknown. The 

student intends to vary the weight on the hanger and 

measure the eect on the acceleration of the trolley. 

The independent variable is the weight; the dependent 

variable is the acceleration a. The control variables are 

the distance d and the mass of the trolley m

While this may seem a reasonable experiment, there is 

a reason why it will not give the results that you might 

expect. The trolley, the string and the weights are all 

accelerating. As a result, the mass of this system is 

changed when dierent weights are added and the 

control variable is not constant. To make the experiment 

valid, the mass of the trolley and the mass of the weights 

must both be included (assuming the mass of the string is 

negligible). A typical way of doing this is by transferring 

weights from the trolley to the hanger.

Experiments — Valid or invalid

trolley of

 mass m
pulley

weights

d

▴ Figure 6 To what extent will this experiment be valid?

The diagram shows an 

experiment where an 

object of mass 0.20 kg 

is connected via a 

string and a pulley to 

another object of mass 

m. In the experiment, 

m was varied and the 

amount of time t that 

the object took to 

fall a distance h was 

measured.

A table of the results is given.

m / kg
t / s

1st trial 2nd trial 3rd trial

0.30 0.99 1.14 1.25

0.40 1.00 0.78 0.86

0.50 0.80 0.88 0.66

0.60 0.74 0.62 0.80

0.70 0.60 0.78 0.66

0.80 0.78 0.66 0.54

0.90 0.56 0.74 0.62

1.00 0.64 0.69 0.52

Data-based questions

pulley

0.20kg

h
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Practice questions

1. An object is projected vertically upwards. Which is 

correct about the net force acting on the object, at the 

instant when the object reaches its maximum height? 

The net force:

A. is zero B. is a maximum

C. changes direction D.  is directed downwards

2. An air rie pellet of mass 2 g is red at an initial speed 

of 200 m s−1 into a stationary block of clay. The pellet 

penetrates the block for a distance of 10 cm before 

coming to rest. What is the average force acting on 

the pellet from the block of clay?

A. 4 × 100 N

C. 4 × 102 N

B. 4 × 101 N

D. 4 × 103 N
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Worked example 1

A car with a mass of 1500 kg accelerates uniformly from rest to a speed of 28 m s–1 (about 100 km h−1) in a time of 11 s. 

Calculate the average force that acts on the car to produce this acceleration.

Solution

Acceleration = a =
v − u

t
=

28

11
= 2.55 m s–2

Force = ma = 1500 × 2.55 = 3.8 kN.

Worked example 2

An aircraft of mass 3.3 × 105 kg takes off from rest in a distance of 1.7 km. The maximum thrust of the engines is 

830 kN.

a. Calculate the take-off speed.

b. Discuss the assumptions you have made in part a.

Solutions

a. Acceleration =
8.3 × 105

3.3 × 105
= 2.5151... m s–2

v 2
= u 2

+ 2as so v 2 
= 0 + 2 × 2.5151... × 1700 = 8552. Therefore, v = 8552 = 92.5 m s−1

b. The student has to assume that the thrust of the engines is constant and no other forces act on the aircraft in the 

direction of its motion. They have to ignore effects of air resistance and assume that the runway is horizontal.

• Copy the table and add a column to find the average 

time.

• Plot a graph of t (y-axis) against m (x-axis). Include 

error bars for t

It can be shown that: t2
=

2h

m ( m + 0.20

m − 0.20 )
Prove this relationship. 

• Plot a graph of t2 against 
m + 0.2

m − 0.2
• Add error bars to your new graph. Remember 

that the percentage uncertainty in t2 is double the 

percentage uncertainty in t

• Find the gradient of the graph. Using maximum 

and minimum gradients, find the uncertainty in 

yourgraph.

• Use the equation for t2, to deduce h for this 

experiment. Quote the uncertainty in h as part of

your value.

You can find explanations for error bars and 

uncertainties in the Tools for physics section on 

page 358.
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3. A stationary tennis ball of mass 58 g is hit by a racket. 

The ball is in contact with the racket for a time of 10 ms 

and leaves the racket with a speed of 15 m s−1. Calculate 

the average force exerted by the racket on the ball.

4. A car of mass 1200 kg decelerates from a speed of 

80 km h−1 to a speed of 45 km h−1 over a distance of 

18 m. Calculate:

a.  the average force acting on the car during 

deceleration

b. the time taken to decelerate.

5. A constant force of 4.0 × 102 N acts on an initially 

stationary railway carriage of mass 1.1 × 104 kg for 

8.0 s. Calculate, for a time of 8.0 s:

a. the velocity of the carriage

b. the distance travelled.

6. An electron moving horizontally at an initial speed of 

8.0 × 106 m s−1 enters a region where a constant vertical 

force of 6.4 × 10−17 N acts onit.

a.  Outline why the horizontal component of the 

velocity of the electron remains constant.

b.  The electron travels a horizontal distance of 25 cm 

before leaving the region of the force. The mass of 

the electron is 9.11 × 10−31 kg.

Determine:

 i.  the vertical displacement of the electron as it 

leaves the region of the force

 ii.  the angle that the electron’s velocity makes 

with the horizontal.
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▴ Figure 7 The forces acting on a ball on 

a table. The forces should all lie on the same 

vertical line that goes through the centre of 

the ball.

Newton’s third law 

Newton’s third law of motion can be expressed in several equivalent ways. 

One common way to write Newton’s third law of motion is:

Every action has an equal and opposite reaction. 

The rst point in this formulation of the law is that the words “action” and 

“reaction” mean “action force” and “reaction force”. The law refers directly to 

theeects of forces. 

A second point is that the action–reaction pair must be matching types. 

A gravitational action force must correspond to a gravitational reaction. A 

gravitational action cannot link to an electrostatic force. 

The third law suggests that forces must appear in pairs, but it is important 

to identify all the possible force pairs in a situation and then to pair them up 

correctly. Take, as an example, a rubber ball resting on a table (Figure 7). 

The obvious action force here is the weight of the ball, that is, Earth’s gravitational 

pull acting on it. This force acts downwards and — if the table were not there — the 

ball would accelerate downwards towards the oor according to Newton’s 

second law. What is the reaction force? Given that action force and reaction 

force must pair up like for like, the reaction is the gravitational force that the ball 

exerts on Earth. This is the same size as the pull of Earth on the ball, but is in the 

opposite direction. This gravitational force pair is shown as red vectors in  

Figure 7(a).

What prevents the ball accelerating downwards? There must be a force exerted 

by the table on the ball. Because the ball is not accelerated, this upwards force is 

equal and opposite to the downwards gravitational pull of Earth on the ball. 

However, the upwards table force is not the reaction force to the ball’s 

weight — that reaction force is the gravitation pull on Earth. The origin of the table 

force lies in the electrostatic forces between atoms. As the ball rests on the table, 

it deforms the horizontal surface very slightly. Imagine pushing downwards on 

the middle of a metre ruler suspended by supports at its end. The ruler bends in 

ball

upwards gravitational

force on Earth due to ball

(a)

downwards gravitational

force on ball due to Earth

table

ball

upwards force from table

downwards force from

deformation of ball

table

(b)
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a spring-like way to provide a response to the force acting downwards. The dent 

in the table surface is the response of the atoms in the table to the weight lying 

on it. Remove the ball and the table will become at again. This upwards force, 

trying to return the table surface to the horizontal, is pushing upwards on the ball. 

There is a corresponding downwards force from the deformed ball (the ball will 

become slightly attened as a response to the gravitational pull). So here is the 

second action–reaction pair (the black vectors in Figure 7(b)) between two forces 

that are electrostatic in origin. 

To get a feeling for this (literally), take a one-metre laboratory ruler and suspend 

it between two lab stools. Press down gently with your nger in the centre of 

the ruler so that it becomes curved. The ruler will bend; you will be able to feel it 

resisting your eorts to deform it. Remove your nger and the ruler returns to its 

original shape. 

Can Newton’s laws of motion 

be proved? The answer is that 

they cannot. Strictly speaking 

they are assertions, as Newton 

himself recognized. In his famous 

Principia (written in Latin as was 

the custom in the 17thcentury) he 

writes Axiomata sive leges motus

[meaning: the axioms or laws 

ofmotion].

In physics, a law diers from 

a theory in that a law makes 

no attempt to explain itself. It 

is only based on the results of 

observation. A theory, on the 

other hand, justies itself with 

anexplanation.

However, Newton’s laws of 

motion allow us to predict most 

types of motion. They remained 

unchallenged for about 200 years 

until Einstein formulated two 

theories of relativity at the turn of 

the 20th century. Einstein showed 

that the rules Newton proposed 

were only approximate. However, 

for human speeds, the laws are 

reliable to a high degree and are 

good enough most of the time. 

But are these laws 

atall?

In explaining Newton’s third law for a particular example, you must 

remember to emphasize the nature, the size and the direction of the force 

you are describing. A common example is that of a rocket in space. Students 

sometimes write that “...by Newton’s third law, the rocket pushes on the 

atmosphere to accelerate” but this shows a weak understanding of how the 

propulsion works. 

First, of course, the rocket does not “push” on anything. This is proved by the 

fact that a rocket can accelerate in space where there is no atmosphere.

thrust
oxygen fed

into chamber

fuel mixed with

oxygen at end of

chamber

fuel fed into

cavity around

chamber

fuel and oxygen

ignite

▴ Figure 8 The combustion chamber of a rocket.

Inside the rocket, chemicals react in a combustion chamber to produce a 

gas with a high temperature and large pressure (Figure 8). The chamber has 

exhaust nozzles through which this gas escapes. At one end of the chamber, 

the gas molecules rebound o the end wall and exert a force on it. As a result, 

they reverse their direction. In principle, the rebounding molecules could 

then travel down the rocket and leave through the nozzles. There is an action–

reaction pair here: the force forwards that the gas molecules exert on the 

chamber (and therefore the rocket) and the force that the chamber exerts on 

the gas molecules. It is the rst of these two forces that accelerates the rocket. 

If the chamber were completely sealed and the gas could exert an equal and 

opposite force at the back of the rocket, then the forward force would be 

exactly countered by the backwards force and no acceleration would occur. 

Thinking skills — The language of force ATL
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Later you will interpret this acceleration in a dierent way. But this explanation 

will still apply at a microscopic level.

Think about the following situations and discuss them with fellow students. You 

may wish to return to these when you have a further perspective on mechanics, 

at the end of Topic A.3.

• A fire fighter must exert considerable force on a fire hose to keep it 

pointing in the direction that sends water to the correct place. 

• There is a suggestion to power space travel to deep space by ejecting 

ions from a spaceship. 

• A sailing dinghy moves forward when the wind blows into the sails. 

Worked example 3

Describe action–reaction force pairs according to Newton’s  

third law for the following situations:

a. a helicopter hovering above the ground

b. a dog pulling on its leash (consider forces on the dog).

Solutions

a. The helicopter’s weight and the gravitational force exerted by the helicopteronEarth are one such pair. Another 

pair describes the interactionof the helicopter blades with the surrounding air: the blades exert a downward force 

on the air and consequently, the air exerts an equal but opposite force on the blades. This is the upward lift force 

that prevents the helicopter from falling!

b. There are at least three action–reaction pairs that involve forces acting on thedog:

• The dog’s weight and the gravitational force from the dog on Earth.

• The tension in the leash acts on the dog in the direction parallel to the leash; the dog exerts an equal but 

opposite force on the leash.

• The reaction force from the ground acts on the dog. This force has a forward and upward component and forms 

a force pair with the force exerted by the dog on the ground.

Worked example 4

A brick of mass 4.0 kg lies on a floor. A force of 20 N is applied downwards to the brick. Calculate the magnitude of 

the force exerted by the brick on the floor.

Solution

The total downward force acting on the brick is the sum of the brick’s weight and the externally applied force,  

4.0× 9.8 + 20 = 59 N. For the brick to remain at rest, thisforce must be balanced by an upward reaction force of 59 N 

exertedbythe floor. By Newton’s third law, the brick exerts an equal but opposite force on the floor, 59 Ndownwards.
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Free-body force diagrams 

Force is a vector quantity and can be represented by an arrow. The scaled length 

of the arrow gives the magnitude of the force, and the arrow direction gives the 

force direction. In simple cases where there are only a few forces acting, this 

works well. As the situations become more complex, diagrams showing all the 

forces can become complicated. You can avoid this problem by drawing a  

free-body force diagram. 

The rules for a free-body diagram for a body are as follows:

• The diagram is used for one body only. The force vectors are represented 

byarrows.

• Only the forces acting on the body are drawn.

• The force (vector) arrows are drawn to scale originating at a point that 

represents the centre of mass of the body

• All forces must be clearly labelled.

There is an introduction to the use 

of vector diagrams on page340.

ball

pull of Earth

on ball

Earth

pull of ball

on Earth

situation diagram

ball

pull of Earth

on ball

free-body diagram for the ball 

(a)

(b)

▴ Figure 9 (a) The situation diagram and 

(b) the free-body diagram for a ball falling 

freely under gravity.

Examples of free-body diagrams
1. A ball falling freely under gravity with no air resistance

 There are two gravitational forces acting: Earth pulling on the ball and the 

ball pulling on Earth. For the free-body diagram of the ball (Figure 9), we are 

only interested in the rst of these. The free-body diagram is a particularly 

simple one, showing the object and one force. Notice that the ball is not 

represented as a real object, but as a point that marks the centre of mass of 

the object.

• Tool 3: Draw and interpret free-body diagrams showing forces at point of 

application or centre of mass as required.

• Tool 3: Add and subtract vectors in the same plane (limited to three 

vectors).

• Inquiry 2: Interpret diagrams, graphs and charts.

Begin by sketching the general situation with all thebodies that interact in 

the situation.

Select the body of interest and draw it again removed from thesituation. The 

body may be simply represented as a point (at its centre of mass) or a box or 

circle.

Draw all the forces acting onthis body to scale and label them. 

Add the force vectors together (either by drawing or calculation) to give 

the net force acting on the body.This sum can be used later to draw other 

conclusions about the motion of the object. 

Drawing a free-body diagram 
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2. The same ball resting on the ground

 As we saw earlier for the case of the ball on the table, four forces act: 

• the weight of the ball downwards 

• the reaction of Earth to this weight 

• the upwards force from the ground because the ground has beendeformed

• the reaction of the ball to this “spring-like” force. 

 The normal force (oen labelled F
N

) is the component of the contact force

that acts perpendicular to the surface. In this situation this normal force is the 

force on the ball from the ground.

 A free-body diagram (Figure 10) helps here because, by restricting the 

diagram to the forces acting only on the ball, the four forces reduce to two: 

the weight of the ball and the upwards force on it due to the deformation 

of the ground. These two forces are equal and opposite. The net resultant 

(vector sum) of the forces is zero and there is therefore no acceleration.

3. An object accelerating upwards in a li

general situation 

object

li

li cable

acceleration

of object

free-body diagram

for the li force exerted

by cable on li

force exerted

by earth on li

(weight of li)

force exerted

by object on li

free-body diagram for

the mass

force exerted 

by li on 

object

force exerted 

by Earth on 

object

object

▴ Figure 11 The free-body diagram for an object in a li. 

 The weight of the object acts downwards (Figure 11). The magnitude of 

this force is the same as when the object is on Earth’s surface. However, 

the upwards force of the oor of the li on the object is now larger than the 

weight and the resultant force of the two has a net upwards component. The 

object is accelerated upwards. 

 For the li, there is an upward force in the li cable and a downwards weight 

of the li together with the weight of the object. The resultant force is upwards 

and is equal to the force in the cable less the weight forces of the li and object.

acceleration = 0 ball

ground

situation diagram

force on ball

from ground

force of Earth

on ball

free-body diagram

for the ball

ball

(b)

(a)

▴ Figure 10 The free-body diagram for a 

ball at rest on the surface of a table.

Worked example 5

A person stands on a weighing scale placed on the floor of a lift. Theweighing scale reads the force innewtons.

a.  Explain, by reference to the forces acting on the person, whythe reading of the weighing scale depends on the 

verticalacceleration of the lift. 

b. The mass of the person is 75 kg and the lift is moving with a downward acceleration of 1.5 m s−2

 i. Draw a free-body diagram for the person.

 ii. Calculate the reading of the weighing scale.
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There is also rotational equilibrium

where something is rotating at 

a constant angular speed; this is 

discussed in TopicA.4.

Translational equilibrium 

When an object is in translational equilibrium, it is either at rest or moving at a 

constant velocity (not just constant speed in this case). “Translational” here means 

moving in a straight line. 

Newton’s rst and second laws remind us that when there is no change of 

velocity then there must be zero force acting on the object. This zero force can 

oen be the resultant (addition) of more than one force. In this section, we will 

examine what equilibrium implies when there is more than one force. 

The simplest case is that of two forces. When they are equal in size and opposite 

in direction, they will cancel out and be in equilibrium (Figure 12(a)). 

When the forces are equal in size, but not acting in the same direction, then 

equilibrium is not possible. In Figure 12(b), the two horizontal components of the 

force vectors are equal and opposite, and there is no resultant force component 

in this direction. Vertically, the two vector components point in the same 

direction. Overall, there will be an unbalanced vertical force. The object will 

accelerate upwards in response to this unbalanced force. 

This gives a clue as to how we should proceed when there are three or 

moreforces.

Practice questions

7. For the person in the worked example above, draw 

a free-body diagram and calculate the reading of the 

weighing scale when the li is:

a. moving with a constant vertical speed

b. accelerating upwards at 2.0 m s−2

▴ Figure 12 (a) Force 1 and force 2 are 

equal in size and opposite in direction; the 

next force is zero. (b) The two forces are no 

longer in the same line of action and cancel 

horizontally but not vertically.

force 2force 1
(a)

force components

add vertically

(b)

force components cancel horizontally

Solutions

a. By Newton’s third law, the reading of the weighing scale is equal to the magnitude of the normal force F
N

 exerted by the 

scale on the person. The only other force acting on the person is the person’s weight mg, so the net force on the person 

is F
N
−mg (taking forces and accelerations directed upwards aspositive, and those directed downwards as negative). 

The net force is relatedto the acceleration a of the lift (and the person), ma = F
N
−mg. Hence, F

N
=m(g+ a). This 

shows that the reading of the weighing scale depends onthe acceleration of the lift. Upward acceleration (a > 0) gives 

the reading greater than the person’s weight; downward acceleration (a < 0) gives the reading 

less than the person’s weight.

b. i.  The net force is downwards, so the normal force has a smaller magnitude than the 

weight.

ii. Downward acceleration has a negative sign in the formula derived in parta.

  The reading of the scale is 75(9.8 − 1.5) = 620 N.

   Note that ‘downward acceleration’ means that the lift is either moving upwards with a 

decreasing velocity or moving downwards with an increasingvelocity.

normal force, FN

weight, mg

person
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mg

situation diagram free-body diagram

mg

T1

T2 sinθ

θ

string

(a)

(b)

ring

weight

vertically

θ

T2

T1 T2 cosθ

horizontally

▴ Figure 13 The (a) situation diagram and (b) free-body diagram for the forces acting on a 

small ring.

Figure 13 shows a small ring on which three forces act. The forces are provided 

by a weight, a spring balance, and the tension in a string. For equilibrium to 

occur, the three components must add up to zero in any direction in which they 

are resolved. This is an example of the resolution of vectors. The principles 

behind this are stated on page 342.

Figure 13(b) shows that horizontal and vertical are two good directions for this 

resolution of vectors, because two forces are aligned with these directions and 

one disappears in each direction chosen: 

• The vertical force mg has no component in the horizontal direction.

• The horizontal force T
1
 has no vertical component. 

Whichever direction is chosen, all the  

forces must cancel for there to be no 

resultant force. 

There is one more consequence of this 

idea. Figure 14 shows the forces drawn, as 

usual, to scale and in the correct direction 

(in red). The forces can be moved, as 

shown by the green arrows, into a new 

arrangement (shown in black). What is 

special in the rearrangement is that the 

three forces form a closed triangle where all 

the arrows meet. This is called the triangle 

of forces. Whenever you can draw the 

vectors for a system in this way, then the 

system must be in translational equilibrium.

mg

T1

T2

Move the mg vector vertically upwards to

the start of T1

Move T2 sideways to the end of T1

The three vectors now form a closed triangle.

The three forces are in translational equilibrium.

θ

▴ Figure 14 Moving the force vectors so that they act as a triangle of forces.
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Practice questions

8. An object of mass 2.0 kg is suspended in equilibrium 

by two threads of equal length attached to the ceiling. 

150°

a. Calculate the tension in each thread.

b.  Explain why the threads are more likely to break 

when the angle between them is increased.

9. The diagram shows an arrangement of two objects 

suspended by threads of  negligible mass.

 The mass of object A is M and the 

mass of object B is 2M

a.  Draw a free-body diagram for  

object A.

b.  Calculate, in terms of M, the  

tension in eachthread.

10. A ball of weight 0.50 N is suspended by a thread of 

negligible mass. Ahorizontal force F acts on the ball. 

In equilibrium, the thread makes an angle of 40° to 

the vertical.

40°

0.50N

F

a. Determine the magnitude of:

i. the force F

 ii. the tension in the thread.

b.  The thread breaks and the horizontal force remains 

unchanged. Describe the initial motion of the ball.

object A

object B
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Worked example 6

A cart of mass 0.80 kg is placed on a ramp that makes an angle of 20° 

to the horizontal. The cart is held in equilibrium by a thread.

a. Draw a free-body diagram for the cart.

b. Calculate the magnitude of:

i. the normal force from the ramp on the cart

ii. the tension in the thread.

c. The thread breaks. Calculate the acceleration of the cart.

Solutions

a. The forces acting on the cart are the cart’s weight, the tension  

in the thread and the normal force from the ramp.

b. It is convenient to resolve the weight of the cart into components parallel and 

perpendicular to the ramp. In equilibrium, the tension is equal and opposite to the 

parallel component of the weight, and the normal reaction is equal and opposite to 

the perpendicular component of the weight.

i. F
N
= 0.80 × 9.8 cos 20° = 7.4 N

ii. T= 0.80 × 9.8 sin 20° = 2.7 N

c. When the thread breaks, the net force on the cart is 

equal to the parallel component of the weight.  

Acceleration =
mg sin 20°

m
= g sin 20° = 3.4 m s 2

thread

cart

20°

normal force, FN

tension, T

weight, mg

cart

FN

T

mg

parallel component

of weight, mg sin 20°

perpendicular component

of weight, mg cos 20°
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• Tool 1: Understand how to accurately measure angles 

an appropriate level of precision.

• Tool 3: Construct and interpret tables and graphs for 

raw and processed data including scatter graphs and 

line and curve graphs.

• Inquiry 2: Interpret diagrams, graphs and charts.

For this experiment you need weights, string and a pulley. 

Assemble them as shown in the diagram. The pulley 

should be mounted on a retort stand. It may be easier if 

the horizontal string, attached to the wall, is also attached 

to another retort stand so that you can adjust that as well.

pulley

m2

m1

θ

▴ Figure 15 Investigating the triangle of forces.

• Place a known mass m
2
 as shown. This mass will 

remain constant throughout the experiment.

• Place a mass m
1
 as shown (m

1
 should be less thanm

2
). 

Adjust the position of the pulley so that the string 

attached to the wall is horizontal.

• Measure the angle marked θ

• Change m
1
, repeat the adjustment of the pulley and 

measure θ

• Take repeats for each mass.

• Construct a table of your results. 

• Add a column for the average angle and for cos θ

• Plot a graph of cos θ against m
1
. 

• What does the gradient of your graph represent?

Investigating a triangle of forces

The study of forces and their effects 

is not just about spheres bouncing 

and strings pulling. All forces have 

a direct impact. 

Charged particles from the Sun 

enter the upper atmosphere 

and come under the influence 

of Earth’s magnetic field. They 

interact with the magnetic field 

and their motions change. The 

result is the Aurora Borealis or the 

Aurora Australis — depending on the 

hemisphere in which you live. Topics 

D.2 and D.3 will put some of the 

work from this topic to use in linking 

the electrical and magnetic forces to 

the motion of these particles.

How can knowledge of 

electrical and magnetic 

forces allow the prediction 

of changes to the motion 

of charged particles?

Types of forces
There are many types of force:

• Non-contact forces occur when there are forces acting between objects 

that do not touch. For example, magnetic, electrostatic (electromagnetic) 

and gravitational forces.

• Contact forces are forces that we observe when two objects are touching in 

some way. We can usually imagine how the forces arise.  

The three contact forces that you study in IB Diploma Programme physics are:

• elastic restoring forces

• buoyancy forces

• friction between solids (solid friction) and friction between solids and uid 

(viscous drag forces).O
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▴ Figure 16 The elastic restoring  

force–extension graph for a spring that 

obeys Hooke’s law.

FH

0
0 x

Elastic restoring forces

The shape of a solid can be changed by applying a force to it. Dierent materials 

respond to a given force in dierent ways. 

A stretched spring exerts an elastic restoring force F
H

 on the objects attached to 

each end of the extended spring (Figure 16). F
H

 is equal and opposite to the force 

that extended the spring initially. The extension is the change in length from the 

spring’s initial unextended length; it usually has the symbol x. 

Figure 16 shows the variation in the tension produced by the spring against 

theextension of the spring. When the graph is a straight line through the origin, 

then F
H
∝ x and the tension is directly proportional to the extension. This is 

known as Hooke’s law because Robert Hooke is thought to be the rst person 

toformulateit.

Robert Hooke (1625–1703) was an English scientist, architect and polymath. He was 

an assistant to Robert Boyle and constructed the air pump that allowed the discovery of 

Boyle’s law (see page 256). 

Hooke argued with Isaac Newton over which of them should take credit for various 

discoveries, including Newton’s theory of gravitation. 

He published his discovery of Hooke’s law as an anagram, revealing the solution two 

years later. Scientists would do this to prove that they were the discoverer without 

disclosing to their rivals what their discoveries were.

Nowadays, scientists work more collaboratively. They publish their works promptly 

so that other scientists might conrm and improve their ndings. Scientists 

are careful to reference work carried out by other scientists. A system of peer 

review — where other scientists check articles before publication — ensures that full 

credit is given to other scientists’ work.

Science as a shared endeavour

▸ Figure 17 Hooke’s De Potentia Restitutiva

in which he published the solution to his 

anagram and described Hooke’s law.

The law can be written as: F
H
=−k × x, where k is the constant of proportionality 

known as the spring constant. 

The units of k are N m 1; in fundamental SI units, this is kg s 2

The stier the spring, the larger the value of k. The spring constant k is known also 

as the elastic constant and the force constant

The negative sign in F
H
=−kx reminds you that the force that the spring exerts 

is in the opposite direction to the extension. Figure 18 shows this for a spring 

that can be longer or shorter than its unstretched length. When the spring is 

lengthened and the extension is to the right (the middle diagram), the spring is 

exerting a force to the le to try to return to its unextended (equilibrium) length. 

When the spring is compressed and shorter so that the compression is to the le, 

the spring exerts a force to the right. 

▴ Figure 18 Extending and compressing a spring of unextended length L

FH

FH

unextended length L

x

You will see more about the forcesin 

springs and how this links to elastic 

potential energy in Topic A.3.

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



A. Space, time and motion 

57

This emphasis on the direction in which a force acts as predicted by its sign is important. In simple harmonic motion 

(discussed in Topic C.1), you will see how a force directed to the centre of a motion leads to the prediction of an 

oscillation. 

The spring in Figure 18 is an obvious example of this. Imagine a mass attached to the right-hand end of the spring. The 

spring is always trying to return the mass to its equilibrium position. The mass accelerates and overshoots the equilibrium 

position and now the force on it due to the spring acts in the opposite direction. In the absence of frictional losses, the 

oscillation — compression and extension of the spring — will continue forever without stopping. 

How does a restoring force acting on a particle result in simple harmonic motion? 

Worked example 7

An object of mass 1.5 kg is suspended by a spring attached to the ceiling. The spring extends by 3.0 cm from the 

unstretched length. Themass of the spring is negligible.  

Calculate the elastic constant of the spring.

Solution

The object is in equilibrium so the elastic force from the spring and the weight of the object have equal magnitudes,  

kΔL=mg. From here, k=
1.5 × 9.8

3.0 × 10−2
= 490 N m−1

Worked example 8

A student investigates how the spring force F varies  

with extension ΔL of a spring. The graph shows the  

experimental results and the line ofbest fit.

a. Estimate the elastic constant of the spring.

b. The student wants to use the graph to predict  

the extension of the spring when stretched by a force  

of 50 N. Comment on the assumptions needed.

Solutions

a. The elastic constant is equal to the gradient of the line of best fit. We use the coordinates of two extreme points on 

the best fit line to calculate the gradient. Elastic constant =
5.8 − 0

(10.0 − 0) × 10−2
= 58 N m 1

b. The linear relationship needs to be extrapolated beyond the range of the experimental data. For a given spring, 

Hooke’s law is only valid in a certain range of extensions (this is called the elastic region of the spring), and the 

student has to assume that the extension corresponding to the force of 50 N is within this range, which may not be 

justified for this particular spring!

0
0 1 2 3 4 5 6 7 8 9 10

∆L/ cm 

F
/

N

1

2

3

4

5

6

• Tool 3: Construct and interpret tables and graphs for raw and processed data including scatter graphs and line and 

curve graphs.

• Inquiry 1: Demonstrate independent thinking, initiative, or insight.

Investigating Hooke’s law 
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• Inquiry 2: Collect and record sufficient relevant quantitative data.

• Arrange a spring of known unstretched length with a weight 

hanging on the end of the spring. 

• Devise a way to measure the extension of the string for several 

weights of increasing size that hang on the end of the spring. 

• Repeat the measurements as you remove the weights to check. 

• Plot a graph of force (weight) acting on the spring (y-axis) against 

the extension (x-axis). Thisis not the obvious way to draw the 

graph, but it is the way often used. Normally, we would plot the 

dependent variable (the extension in this case) on the y-axis. 

Combining springs

In series
Two identical springs P and Q, both of spring constant k, are connected in series, 

and a weight mg is hung on the bottom of Q (Figure 20). 

Each spring has the same tension (mg) and therefore each extends by x =
mg

k
. 

The total extension for the pair of springs is 
2mg

k
. Hooke’s law for the springs is 

writtenas:

mg = k’
2mg

k

where k’ is the new spring constant for both springs acting together. This leads to 

k’ =
k

2
, where the new paired spring constant is half of the spring constant for one 

spring alone. 

When springs P and Q have dierent spring constants k
P
 and k

Q
 then the new 

spring constant k’ is given by:

1

k’
=

1

k
P

+
1

k
Q

In parallel
This time the identical springs are connected in parallel (Figure 21). 

The weight is “shared” between them. To see this, remember that the force 

downwards is mg and, when the springs are in equilibrium, then the total force 

upwards is mg. Each spring will only contribute one-half of this force, so that is 
mg

2
 for each spring. With a full load of mg, each spring extends by x. With a load 

of half of this, each spring extends by 
x

2
 and the eective spring constant is 2k, as 

the arrangement appears to be twice as sti.

With dierent spring constants:

k’ = k
P
+ k

Q

▴ Figure 20 Two identical springs in 

series give double the extension of one 

spring for the same force.

x

spring P

spring Q

x

0
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10

15

20
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pointer

weight

table

scale

spring

pan

support

▴ Figure 19 Investigating Hooke’s law.

In Topic B.5, you will see two 

quantities combined using 

a reciprocal relationship in a 

similarway.

weight, mg

extension
original length

new length

▴ Figure 21 Two identical springs in parallel give  

half the extension of one spring for the same force.
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Practice questions

11. When a load is applied to a spring of negligible mass, 

the spring extends by a distance L. The spring is now 

cut into two halves of equal length and the halves of 

the spring are arranged in parallel.

What is the extension of the parallel system under 

unchanged load?

A. 
L

4

B. 
L

2
C. L

D. 2L

12. Spring 1 has the elastic constant k and spring 2 has 

the elastic constant2k. The springs are connected in 

series and extended by a combined distance L. 

What is the eective spring constant of the serial 

system and what is the extension of spring 1?

Eective spring constant Extension of spring 1

A.
k

3

L

3

B.
k

3

2L

3

C.
2k

3

L

3

D.
2k

3

2L

3

two halves of

the original spring

load

Buoyancy forces

How does oating — or buoyancy as it is properly called — work? Buoyancy is 

related to the density of an object. Many people think that objects oat because 

their weight is small, and that heavy objects sink because they are heavy. Objects 

that are denser than the uid sink, objects less dense than the uid oat. The 

question is: why?

A. Space, time and motion 
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▴ Figure 22 Some examples of  

oating objects.

• Tool 3: Select and manipulate equations.

• Tool 3: Identify and use symbols stated in the guide and the data booklet.

• Tool 3: Express derived units in terms of SI units.

The ideas of pressure and density are important for the work on gas 

properties inThemeB.

Density is dened as the mass for each unit volume of an object. When the 

mass ismand the volume is V, then the density ρ is given by ρ =
m

V

The unit of density is kg m 3. The density of water is 1000 kg m 3. The density 

of steel is about 8000 kg m 3

Pressure is the normal (perpendicular) force that acts on a surface for each 

unit area of the surface (Figure 23). When a normal force F acts onan area A, 

the pressure P is given by p =
F

A

The SI unit of pressure is N m 2 which is usually written as Pa (where Pa stands 

for pascal). Thus 1 N m 2
≡ 1 Pa. The pressure ofthe atmosphere acting at the 

surface of Earth is about 100 000 N m 2 (105 Pa).

Density and pressure
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Pressure is a scalar quantity. In a uid it acts in all directions. When dened for 

a solid, pressure acts in the same direction astheweight. 

force F

p =

area A

F
A

The buoyancy force (also called the upthrust), F
b
, is equal to ρVg where ρ is the 

density of the liquid, V is the volume of displaced uid and g is the acceleration 

due to gravity. The buoyancy force arises from the pressure dierence between 

the top and bottom of the oating object. 

The height of an object oating above the surface of a uid depends on the 

relative densities of the uid and the object.

• When the densities are equal, the object has neutral buoyancy. The object 

remains where it is in the uid.

• When the object density is greater than the uid density, the net force on the 

object is downwards and the object sinks.

• When the object density is less than the uid density, the net force is upwards 

and the cube oats at the surface. The volume of the object below the 

surface has displaced its volume of uid (displaced means “moved out of 

the way”). The displaced uid has a weight equal to the total weight of the 

object (Figure 24). 

This leads to Archimedes’ principle: The upward buoyancy force on an object, 

completely or partially submerged in a uid, is equal to the weight of uid 

displaced by the object.

Objects oat, so the fraction of their volume that is below the water must be 

equal to 
density of object

density of uid

weight of the

whole object
=

weight of this

volume of fluid

▴ Figure 24 An object oats on the 

surface so that its weight is equal to the 

weight of uid it displaces.

The density of seawater is not constant around the world. 

The salt concentration varies from around 30 g in every litre 

of seawater to about 40 g l 1. The density also varies with 

temperature. This has implications for ocean-going ships.

The outside of the ship’s hull is marked to show 

the position where thewater level ought to be in 

variousoceans with dierent salinities and temperatures 

(Figure 25). This ensures that the ships are not loaded 

excessively. The ship’s master must ensure that the vessel 

does not have the relevant line under the water surface 

before leavingharbour.

Global impact of science — The Plimsoll line

TF

F T

S

W

A B

TF   tropical freshwater loadline F   freshwater loadline

T     tropical loadline S   summer loadline

W   winter loadline

▴ Figure 25 The Plimsoll line on the hull of a ship.

◂ Figure 23 A force F is acting 

normal to a surface of area A. 
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Practice questions

13. Two objects oat in water. 25% of the volume of 

object 1 and 50% of the volume of object 2 remain 

above the surface of the water.

 What is 
density of object 1

density of object 2
?

A. 1.5 B. 2.0

C. 2.5 D. 3.0

14. A container, open at the top, in the shape of a cuboid 

of dimensions25 cm × 25 cm × 10 cm oats in water 

so that 2.0 cm of the height is submerged below the 

water line. The density of water is 1.0 × 103 kg m−3

10cm

25cm

2.0cm

a.  Calculate the mass of the container.

b.  An iron bar of mass 4.0 kg is placed in the 

container. Predict whether the container will sink.

A. Space, time and motion 
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Submariners and divers need to be aware of the implications of buoyancy: 

• A submarine has buoyancy tanks that are lled with air when the ship is on 

the surface. To submerge, water is allowed to ood the buoyancy tanks 

to replace the air. This increases the weight of the submarine, and it goes 

belowthe surface. To travel back to the surface, compressed air stored 

inside the submarine pushes the water out of the tanks, so the weight of the 

submarine decreases.

• Scuba divers need to be able to adjust their position relative to the water 

surface. They usually wear weights to achieve neutral buoyancy in the water. 

Otherwise, the diver will have to use too much energy swimming to remain 

at a particular depth. The weight required to keep an individual diver neutral 

will, of course, depend on the salinity and temperature of the water. 

Worked example 9

A buoy of a uniform cross-sectional area of 0.20 m2floats in fresh water, with0.75 m ofthe 

height submerged below the water line. Thedensity of fresh water is 1000 kg m−3

a. Calculate the mass of the buoy.

b. The buoy is now placed in seawater of greater density than fresh water. Explain the 

change, if any, in the submerged height of the buoy.

Solutions

a. Newton’s first law says that, since the buoy floats without sinking, the buoyancy force must be equal to the weight 

of the buoy. From Archimedes’ principle, this force is equal to the weight of the water displaced by the buoy. By 

combining the two laws, we can deduce that the mass of the buoy is the same as the mass of the displaced water.

m= ρ
water

V= 1000 × 0.75 × 0.20 = 150 kg

b. A smaller volume is needed to displace the mass of seawater equal to the mass of the buoy. Hence, a smaller height 

of the buoy will be submerged in seawater.

0.75 m

fresh water

buoy

Hot-air balloons rise because their total weight is 

less than the weight of the air they are displacing. 

The physics of gas pressures and temperatures is 

examined in Topic B.3.
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Practice questions

Assume that atmospheric air has a density of 1.2 kg m 3

15. A spherical balloon of radius 0.15 m and mass 0.014 kg 

is lled with a gas. The balloon oats in air in the state 

of neutral buoyancy.

Determine the density of the gas in the balloon.

16. A foam ball of radius 3.0 cm and mass 1.8 g is 

suspended by a thread of negligible mass.

a.  Calculate the magnitude of the buoyancy force 

acting on the ball.

b.  Determine the percentage change in the tension 

force in the thread when the system is placed in a 

vacuum chamber.

Topic A.2      Forces and momentum

62

Worked example 10

A balloon can be modelled as a sphere of radius 8.5 m. The balloon is filled with hot air of average density 0.92 kg m−3

and anchored to the ground with a mooring line. The density of the surrounding air is 1.2 kg m−3

a.  Calculate the maximum combined mass of the balloon and the load that the balloon can lift.

b. The actual mass of the balloon and its load is 650 kg. The mooring line is released. Determine the initial vertical 

acceleration of theballoon.

Solutions

a. The mass of the displaced cold air is 1.2 ×
4
3

π × 8.53
= 3090 kg. The mass of the hot air inside of the balloon is  

0.92 ×
4
3

π × 8.53
= 2370 kg. The combined mass of the balloon and the load that can be lifted is the difference, 

3090 − 2370 = 720 kg.

b. The upward force on the system is the difference between the force of buoyancy due to the displaced cold air and 

the combined weight of the hot air and the balloon with its load, (3090 − 2370 − 650) × 9.8 = 690 N. The mass 

that is being accelerated by this force includes the hot air inside the balloon in addition to the balloon itself.

 Acceleration =
force
mass

=
690

2370 + 650
= 0.23 m s 2

Solid friction 

Friction is the force that occurs between two surfaces in contact. If you happen 

to live in a part of the world where there is snow and ice, then you will know that 

when the friction between your shoes and the ice disappears it can be a good 

thing (for skiing), or a bad thing (for falling over).

Figure 26(a) shows an experiment to illustrate the physics of solid friction.

▴ Figure 26 As the winch handle is turned, static friction occurs between the weight and the platform. 

Eventually this is replaced by dynamic friction and the reading on the spring balance decreases.

force

static friction

dynamic friction

distance moved

by block

(b)

spring

balance

platform

rollers

winch system

weight

(a)
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A metal object rests on a block of wood. One end of the metal is connected to 

a spring balance (newton-meter). The other end is connected to a winch. Both 

connections are made using strings that do not stretch. The wood sits on a series 

of rollers.

When both connecting strings are slack, the spring balance reads zero. The 

winch is then turned, and the string attached to the wood is wound in. The wood 

starts to move towards the winch, and initially there is no relative movement 

between metal and wood. 

At rst, the spring balance reading (the tension in the strings) increases. The metal 

and the wood do not move relative to each other as the tension is not enough to 

overcome the friction between the metal and wood. Eventually, however, thepull 

is suciently great that the wood and the metal begin to slide relative to each 

other. At this point, the reading on the spring balance decreases, showing that 

there is now less force required to keep the metal moving relative to the wood.

Figure 26(b) shows how the force registered by the spring balance varies with 

distance moved by the wooden block. The tension in the string at the instant 

when the metal begins to slip is greater than the tension when the metal has 

begun to move.

In summary: 

• As the force on the spring balance increases from zero, the platform does not 

begin to move relative to the weights immediately.

• The platform suddenly begins to move at a particular value of force. At this 

instant, the force, as shown by the spring balance, drops to a lower value.

• This new value is then maintained as the platform moves steadily. 

• “Stick–slip” behaviour occurs where the platform alternately sticks and then 

jumps to a new sticking position. This behaviour is associated with two values 

of friction, but this may be too dicult to observe.

• The friction forces depend on the magnitude of the weights on the platform.

The observations lead to a description of frictional forces as: 

• static friction (in the rst part of the experiment, when there is no relative 

movement between the surfaces), or 

• dynamic friction (once the metal and wood are moving relative to each other).

These two friction values are observed for most surface pairs.

Any mathematical description of friction needs to take account of this change in 

behaviour. Such a theory will be empirical. 

A surface frictional force F
f
 acts in a direction that is parallel to the plane of 

contact between a body and the surface on which it rests (Figure 27). The force 

acts at the plane surface and is given empirically by F
f
≤ µF

N
,where F

f
 is the 

frictional force exerted by the surface on the block. F
N

is the normal reaction 

ofthe surface on the block. This is the weight of the block when there is no 

vertical acceleration. 

The symbol µ changes its subscript and its value depending on whether the 

friction is static or dynamic. It is known as the coecient of friction. It has no units 

because it is the ratio of two forces.

Empirical means that the 

hypothesis arises purely from 

experimental results. Theoretical

means that a physical model 

(which may or may not be 

mathematical) has been 

constructed to explain results. 

The two equations for static and 

dynamic friction do not arise from 

a study of the interatomic forces 

between the surfaces; they are 

derived purely from experiments 

with bulk materials. You will see 

this approach again in Theme B 

where the gas laws are empirical, 

but the kinetic model of gases is a 

theory.

Are there fundamental dierences 

in these two approaches in 

science? Is one form a “better” 

type of knowledge than the other? 

Was Greek science empirical or 

theoretical?

Empirical or theoretical?
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Static friction

The force expression has the form F
f
≤ µ

s
F

N
; µs is the coecient of static friction. 

The “less than or equal to” sign (≤) is meant to show that the static friction force 

can vary from zero up to a maximum value. Between these limits F
f
 is equal to the 

pull on the block. Once the pull on the block is equal to F
f
, then the block is just 

about to move.

pull on

block

friction force

exerted by

surface on

block

reaction force

of surface

on block

pull of Earth

on block

FN

Ff

▴ Figure 27 Forces acting on a block subject to friction at its bottom surface.

Dynamic friction 

Once the pull exceeds µ
s
F

N
, then the block begins to slide. For forces > F

f
, 

dynamic friction is at work. The force expression becomes F
f
= µ

d
F

N
, where µ

d
 is 

the coecient of dynamic friction. 

Dynamic friction only applies when the surfaces move relative to each other. 

The friction drops from its maximum static value and remains at a constant value. 

This xed value depends on the total reaction force acting on the surface but 

(according to simple theory) is not thought to depend on the relative speed 

between the two surfaces. 

The values of µ
s
 and µ

d
 vary greatly depending on the pair of surfaces being 

used and the condition of the surfaces (for example, whether they are lubricated 

or not). A few typical values are given in Table 1. If you want to investigate a 

wider range of surfaces, there are many sources of the coecient values on the 

Internet — search for “Coecients of friction”. 

Each friction coecient is a ratio ( Ff

F
N

)  and so has no units. 

It is possible for the coecients to be greater than 1 for some surface pairs. This 

reects the fact that for these surfaces the friction is very strong and greater than 

the weight of the block. Remember that the surfaces are being pulled sideways 

by a horizontal force, whereas the reaction force is vertical, so we are not really 

comparing like with like in these empirical rules for friction.

Surface 1 Surface 2 µ
s

µ
d

glass metal 0.7 0.6

rubber concrete 1.0 0.8

rubber wet tarmac 0.6 0.4

rubber ice 0.3 0.2

metal metal 

(lubricated)

0.15 0.06

▴ Table 1 Typical values of the coecients 

of static and dynamic friction for dierent 

surfaces.O
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• Tool 1: Understand how to accurately measure angles 

to an appropriate level of precision.

• Tool 3: Carry out calculations involving fractions and 

trigonometric ratios.

• Tool 3: Draw and interpret free-body diagrams 

showing forces at point of application or centre of 

mass as required.

• Tool 3: Resolve vectors (limited to two perpendicular 

components).

One way to measure the static coecient of friction 

between two surfaces in a school laboratory is to use the 

two surfaces as part of a ramp system. Figure 28 shows 

the arrangement and a free-body diagram for the block.

The upper surface of the ramp is one of the two materials 

under test. The bottom of the block is the other surface.

Resolving at 90° to the plane, F
N
= mg cos θ; resolving 

along the plane, F
f
= mg sin θ. 

Combining these gives tan θ =

F
f

F
N

= µ
s

• Begin with the ramp in a horizontal position.

• Gradually raise one end of the ramp until the block just 

starts to slip. 

• The angle between the ramp and the horizontal is 

measured and the tangent of this angle is equal to 

the coefficient of static friction.

Friction between a block and a ramp

The picture shows an experiment to investigate dynamic 

friction. A block of wood rests on a sanding belt which 

is moving towards the right. The wood is attached to 

a newton-meter. Weights are added on top of the 

wooden block and the frictional force is measured on 

the newton-meter and recorded. Atable of data is given.

• Plot a graph of the data and add error bars.

• How could the graph be used to find:

 º the coefficient of friction, µ
d

 º the mass of the block?

Weight placed on 

wooden block / N

Frictional force 

(±0.2)  / N

0.0 1.0

1.0 1.4

2.0 2.0

3.0 2.6

4.0 3.2

5.0 3.8

6.0 4.4

7.0 5.2

8.0 6.0

• The uncertainty in the reading on the newton-meter 

was ± 0.2 N. Use this to find the uncertainty in your 

measurement of the coefficient of friction.

Data-based questions

You can find explanations for error bars and 

uncertainties in the Tools for physics section on 

page 358.

▴ Figure 28 Measuring µ
s
 using a block on a ramp.

m

θ

a block on a ramp

free-body diagram of 

just the block

Ff FN

FN

Ff
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Worked example 12

A box is pushed across a levelfloor at a constant speed with a force of 280 N at 45° to the floor. The mass of the boxis 

50 kg. Calculate:

a. the vertical component of the force

b. the weight of the box

c. the horizontal component of the force

d. the coefficient of dynamic friction between the box and thefloor.

Solutions

a. The vertical component =280 sin 45° = 198 N.

b. The weight of the box =mg= 50 × 9.8 = 490 N.

c. The horizontal component = 280 cos 45°= 198 N.

d. The vertical component of the force exerted by the floor in the box = 490 + 198 =688 N.

The friction force = the horizontal component (the box is travelling at a steady speed), so µ
d
=

198
688

= 0.29.

Worked example 11

Sophie investigates the frictional force 

between a metal block and a wooden table. 

She pulls the block with an inextensible 

horizontal string connected to a force sensor 

and records the tension force in the string. 

The block is initially at rest. Sophie gradually 

increases the force until the block starts 

moving. The graph shows the data collected. 

Theblock starts moving at about 4.6 s. The 

mass of the block is 3.5 kg.

a. Estimate the coefficient of static friction 

between the block and thetable.

b. After 7.0 s the block is moving at a constant 

speed. Estimate the coefficient of dynamic 

friction between the block and the table.

Solutions

a. The maximum static frictional force recorded just before the block startsmoving is about 8.0 N. The coefficient of 

static friction is therefore µ
s
=

8.0
3.5 × 9.8

= 0.23

b. When the block is moving at a constant speed, the dynamic frictional force is equaland opposite to the tension in 

the string. The magnitude of this force is about7.0 N, so µ
d
=

7.0
3.5 × 9.8

= 0.20

45°

F

0

0 1 2 3 4 5 6 7 8 9 10

time/s
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Practice questions

17. A box is placed on the horizontal oor of a truck 

moving at an initial speed of 50 km h 1. The coecient 

of static friction between the box and the oor is 0.45. 

The truck decelerates uniformly and comes to rest in a 

distance of 25 m.

a.  Calculate the magnitude of the acceleration of  

the truck.

b.  Deduce whether the box will start sliding against 

the floor.

18. A hockey puck is sent across an ice rink with an initial 

speed of 8.0 m s−1 towards a goal that is 16 m away. 

The coecient of dynamic friction between the puck 

and the ice is 0.10. Determine the speed of the puck 

as it reaches the goal.

19. A box of mass 2.0 kg is pulled up a ramp that makes an 

angle of 15° to the horizontal with a constant force of 

8.0 N. The box starts from rest and travels a distance of 

0.50 m in 3.8 s.

15°

2.0k
g

8.0N

 Calculate:

a. the acceleration of the box

b.  the component of the weight of the box parallel to 

the ramp

c. the magnitude of the frictional force on the box

d. the coefficient of dynamic friction.

20. A book of weight 12 N is 

pushed against a vertical wall 

with a horizontal force F

 The coecient of static friction 

between the book and the wall 

is 0.75 and the coecient of 

dynamic friction is 0.60.

a.  The book is initially at rest. 

Calculate the minimum 

magnitude of F so that the 

book does not slide down 

the wall.

b.  For the value of F you have calculated in part a, 

draw a scaled free-body diagram for the book.

c.  The force F is now reduced to 10 N and the 

bookstarts sliding. Determine the acceleration of 

the book.

book

F
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Worked example 13

A skier places a pair of skis on a snowslope that is at an angle of 1.7° to the horizontal. The coefficient ofstatic friction 

between the skis andthesnow is 0.025. Determine whether the skis will slide away bythemselves.

friction force

The diagram not to scale

reaction force

of surface on ski 

weight of ski

weight component

down slope 
1.7°

Solution

Call the weight of the skis W. The component of weight down the slope =W sin 1.7° and the reaction force  

of the surface of the ski =W cos 1.7°.

Therefore, the maximum friction force up the slope = µ
s
W cos 1.7°. The skis will slide if µ

s
W cos 1.7° < W sin 1.7°.

In other words, if µ
s
< tan 1.7°.

The value of tan 1.7° is 0.0297 and this is greater than the value of µ
s
 which is 0.025, so the skies will slide away.
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Air resistance and drag force

Topic A.1 described the eects that air resistance has on the motion of an 

objectfalling vertically or being projected at an angle to the horizontal. It will 

now be clear that the eects are due to a drag force that acts on objects when 

they move.

In 2014, the skydiver Alan Eustace jumped safely from a record-breaking height 

of 41.4 km above New Mexico, USA to reach a top speed of about 1300 km h 1, 

which is faster than the speed of sound. A skydive from more usual heights does 

not take place at such high speeds. These are usually less than 200 km h 1. The 

dierence between Eustace’s speed and the lower value is because air resistance 

varies with height above Earth.

Friction originates at the interface between the two 

materials. The actual causes of friction are still being 

investigated today and the explanation here is simplied. 

Leonardo da Vinci mentions frictionin his notebooks and 

some of the next scientic writings aboutfriction appear 

in works by Guillaume Amontons from around 1700 

(Figure 29).

Surfaces that seem very smooth to us are not smooth 

at all under a microscope. At the atomic level, surfaces 

consist of peaks and troughs of atoms (Figure 30(a)). 

When two surfaces are at rest relative to each other, 

then the atomic peaks rest in the troughs, and it needs 

a certain level of force to deform or break the peaks 

suciently for sliding to begin. This accounts for 

staticfriction. 

Once relative motion has started and dynamic friction 

occurs, then the top surface rises above the deformed 

peaks. The frictional force is less. The irregularities on the 

surface are small and of atomic size, which means that 

even the small forces applied in our lab experiments can 

cause large stresses to act on the peaks. The peaks then 

deform like a so plastic whether the material is hard 

steel or so rubber. 

Moving surfaces are oen coated with a lubricant 

to reduce wear due to friction (Figure 30(b)). The 

lubricant lls the space between the two surfaces and 

either prevents the peaks and troughs of atoms from 

touching or reduces the amount of contact. In either 

event, the atoms from the surfaces do not interact as 

much as before and the friction force and the coecient 

arereduced. 

These friction forces originate in the complex electronic properties of the atoms at the surface. However, this simple 

theory should give you some understanding of how friction arises. The properties of bulk materialsthat we perceive 

on the macroscopic scale arise from microscopic properties that operate at theatomic level.

Theories

▴ Figure 29 Leonardo da Vinci mentions friction in hisnotebooks.

liquid lubricant layer

(a)

(b)

moving to right

moving to le

▴ Figure 30 Irregularities at the surfaces of two materials cause 

thefriction.
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Figure 31 shows two of the forces that act on a skydiver. The weight of the diver 

acts vertically downwards and is eectively constant (because there is little 

change in the Earth’s gravitational eld strength at the height of the dive, even 

when 41 km above the surface). The drag force acts in the opposite direction to 

the motion of the diver and, for a diver falling vertically, this drag will be vertically 

upwards. (Other forces acting on the diver include the upwards buoyancy caused 

by the displacement of air by the diver.)

When the skydiver initially jumps from the aircra, the vertical speed is almost 

zero and there is almost no air resistance in this direction. Air resistance 

increases as the speed increases so that, as the diver goes faster and faster, the 

resistance force becomes larger and larger. The net force therefore decreases 

and, consequently, the acceleration of the diver downwards also decreases. 

Eventually the weight force downwards and the resistance force upwards 

are equal in magnitude and opposite in direction. At this point there is zero 

acceleration, and the diver has reached terminal speed. 

A typical graph of vertical speed against time for the skydiver is shown in Figure32.

time

ve
rt

ic
al

 s
p

e
e

d

accelerates

to terminal

speed

parachute

opens

lands

greater drag

force so

terminal

speed smaller

(not to scale)

▴ Figure 32 Vertical speed–time graph for a skydiver.

Eventually the skydiver opens the parachute. The parachute envelope has a large 

surface area. The upwards resistive force is much larger than before and is now 

greater than the weight. As a result, the directions of the net force and acceleration 

are also upwards, so the vertical velocity decreases in magnitude. Once again, a 

balance will be reached where the upward and downward forces are equal and 

opposite — but at a much lower speed than before (about 12 m s 1 for a safe landing).

Stokes’ law

We can estimate the terminal speed using Stokes’ law. In 1851, the Irish scientist 

George Stokes derived the theory for the drag force (called more properly the 

viscous force) acting on a small sphere that is moving through a viscous uid. 

So Stokes’ law can apply to both gases and liquids. A viscous uid with a high 

viscosity (such as a concentrated sugar solution or an engine oil) has a high 

resistance to deformation — it will pour slowly. A low-viscosity liquid (such as 

water) has a low resistance to deformation and pours quickly with little drag.

Stokes had to make some assumptions to derive his theory. These are:

• That the ow is laminar so that layers in the uid ow smoothly past each 

other without mixing. (The alternative is turbulent ow where the layers mix 

and the whole of the uid swirls about in a random manner.)

• That the moving particles are spheres with smooth surfaces.

• That the uid is homogeneous (it is uniform in composition).

• The particles do not interact. 

▴ Figure 33 A model of an aircra wing 

in a wind tunnel. The wing is at an angle 

such that the air ow around it becomes 

turbulent.

mg

mg

drag force

body released

from rest

forces on body

during acceleration

forces on body

at terminal speed

drag force

mg

▴ Figure 31 Forces acting on a skydiver.
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Stokes suggested that the drag force F
d
 is given by F

d
= 6πηrv, where r is the 

radius of the sphere and v is its speed. The constant η is the dynamic viscosity of 

the uid through which the sphere is moving; it has the units Pa s. For example, 

the dynamic viscosity of water is 1 × 10 3 Pa s, whereas the dynamic viscosity 

of honey is up to 20 Pa s. Viscosity is also temperature dependent. For water, η

varies from about 1.8 mPa s to 0.3 mPa s as the temperature rises from 0 to 100°C.

In real life, air resistance is dominated by turbulent, rather than laminar, ow as 

turbulence becomes established at very small speed gradients. The mathematics 

of turbulence indicates that the turbulent drag force is proportional to (speed)2

rather than the (speed) of the Stokes equation.

Moving through uids

Both viscous drag and buoyancy eects need to be considered when an object 

moves through a uid. A sphere dropping under its own weight through a uid is 

subject to three forces as, shown on Figure 34:

• weight W downwards = mg, where m is the mass of the sphere

• buoyancy force B upwards = ρ
f 
gV where ρ

f
 is the density of the uid and V is 

the volume of the sphere

• drag force D upwards = 6πηrv, where r is the radius of the sphere and v is its 

speed downwards.

Summing the forces gives a net force downwards on the sphere of W − B − D or 

mg − ρ
f
gV − 6πηrv

The mass m can be replaced by the sphere’s density ρ
s
 and volume V so that the 

net force is also ρ
s
Vg − ρ

f 
gV − 6πηrv or (ρ

s
− ρ

f
) gV − 6πηrv

As the sphere falls, the total upward force increases because Stokes’ law means 

that the drag force is proportional to the speed. Eventually the sum of the 

buoyancy and drag will equal the weight downwards. This is the condition for 

terminal speed v
t
 (see Topic A.1).

Setting the net force to zero and rearranging gives v
t
=

(ρ
s
− ρ

f
) gV

6πηr

◂ Figure 34 A sphere dropping 

through a viscous liquid has its 

weight W, a buoyancy force B, and a 

drag force D acting on it.

D

B

w

• Tool 3: Understand the significance of uncertainties 

in raw and processed data.

• Tool 3: Use basic arithmetic and algebraic 

calculations to solve problems.

• Inquiry 1: Demonstrate independent thinking, 

initiative, or insight.

• Inquiry 2: Collect and record sufficient relevant 

quantitative data.

Stokes’ equation can be used to determine η for a liquid 

with the apparatus shown in Figure 35.

• Five or six balls are needed. They should be made 

from the same material but with different radii. 

Some trials will be required to match the ball radius 

to the fluid. It is important to have a small fractional 

uncertainty in the time measurement — why?

Measuring the coecient of viscosity of a uid

0
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70

80

90

100

seconds

timer
oil

metal ball

light gate

light gate

metre ruler

▸ Figure 35

A small sphere drops 

through a viscous 

liquid at its terminal 

speed. Thetimer 

measures the time 

to drop between 

two light gates to 

determine the speed 

ofthe sphere.
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• Measure the density of the liquid and of the material from which the balls are made. Then pour the liquid into a tall, 

wide, transparent container — for example a large measuring cylinder. 

• Devise a way to measure the time for each ball to travel a known vertical distance in the liquid. Each ball needs to 

be travelling at its terminal speed before it reaches the start of the measurement distance. The measurement can 

be using a stopwatch or a light-gate arrangement (as shown in the diagram).

• Use the equation v
t
=

(ρ
s
− ρ

f
) gV

6πηr
 to calculate η

• How could this be developed into an internal assessment?

Worked example 14

A ball of radius 8.0 mm and mass 1.3 g is released from rest 

from the bottom of a long vertical tube filled withoil. The ball 

rises towards the surface of the oil. The diagram shows how 

the vertical speed of the ball varies with time.

a. Estimate the initial acceleration of the ball.

b. Hence, calculate the magnitude of the buoyancy 

force on the ball.

c. Draw a free-body diagram for the ball at a time of 1.5 s.

d. Determine the coefficient of viscosity of the oil.

Solutions

a. The initial acceleration is the gradient of the tangent to the 

speed-time graph att = 0.

 Acceleration =
1.5

0.35
= 4.3 m s 2

b. Initially, the only forces acting on the ball are the 

buoyancy force F
b
 and the ball’sweight. Thenet force 

is the difference between the two and is related to 

theacceleration by Newton’s second law.  

F
b
− mg = ma, so  

F
b
= 1.3 × 10 3 (9.8 + 4.3) = 1.8 × 10 2 N.

c. At t = 1.5 s the ball is moving upwards with a constant 

terminal speed and the viscous drag force acts downwards 

so that the net force on the ball is zero.

d. At terminal speed, the drag force is F
d
= F

b
−mg = 1.3 × 10 3

× 4.3 = 5.6 × 10 3 N. 

Thedrag force F
d
= 6πηrv, where the terminal speed v is approximately 1.1 m s 1.  

Combining equations gives 

η=
5.6 × 10−3

6π × 8.0 × 10−3
× 1.1

= 3.4 × 10 2 Pa s.

0
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Practice questions

21. A skydiver is falling vertically towards the ground and 

opens the parachute a short time aer jumping. The 

graph shows how the speed of theskydiver varies 

withtime. 

sp
e

e
d

0

parachute opens

timet1 t2

 Which of the following correctly compares the 

directions of the velocity and of the acceleration of the 

skydiver at times t
1
 and t

2
?

Directions of 

velocity at t
1
 and t

2

Directions of 

acceleration at t
1
 and t

2

A. same same

B. same dierent

C. dierent same

D. dierent dierent

22. Two balls of radius R and 2R, made from the same type 

of steel, fall through a liquid that exerts a viscous drag 

force on the balls. The smaller ball reaches the terminal 

speed v. What is the terminal speed ofthe larger ball?

A. v B. 2v C. 4v D. 8v

23. A ball of weight 1.2 N falls through a liquid at a 

constant speed. Thedensity of the ball is 1.5 times 

greater than the density of the liquid. What is the 

magnitude of the drag force acting on the ball?

A. 0.4 N B. 0.6 N C. 0.8 N D. 1.2 N

24. A steel ball falls in a long vertical tube lled with 

vegetable oil.

a. Explain how the ball reaches a terminal speed.

The following data are given.

density of the vegetable oil = 920 kg m−3

viscosity of the vegetable oil = 8.4 × 10−2 Pa s

density of steel = 8000 kg m−3

radius of the ball = 2.0 mm

b. Calculate:

 i. the weight of the ball

 ii.  the buoyancy force acting on the ball in theoil.

c.  Determine the terminal speed of the ball in the  

oil, assuming that the ball is affected by a viscous 

drag force.

Force and momentum

Introduction 

Many sports involve throwing and catching a ball. Compare catching a 

table-tennis (ping-pong) ball with catching a baseball travelling at the same 

speed. One of these is a more painful experience than the other! The velocity 

may be the same in both cases, but the combination of velocity and mass makes 

a substantial dierence. Equally, comparing the experience of catching a baseball 

when gently tossed from one person to another with that of catching a rm hit 

from a strong player tells you that changes in velocity make a dierence too.

Topic A.2      Forces and momentum
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Worked example 15

Calculate the upwards force acting on a skydiver of mass 80 kg who is falling at a constant speed.

Solution

The weight of the skydiver is 80 × 9.8 = 784 N. Because the skydiver is falling at a constant speed (that is, terminal 

speed) the upwards drag force is equal to the downwards weight. Therefore, the upwards force is 780 N to 2 sf.
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Momentum 

The product of the mass m of an object and its instantaneous velocity v is called 

the momentum p of the object (p = m × v). This quantity has far-reaching 

consequences in physics. 

• Momentum is mass × velocity never mass × speed. 

• Momentum has direction (Figure 36). Mass is a scalar quantity, but velocity 

is a vector. When mass and velocity are multiplied together, the momentum 

is also a vector with the same direction as the velocity. Think of the mass as 

“scaling” the velocity — in other words, just making it bigger or smaller by a 

factor equal to the mass of the object. 

• The unit of momentum is the product of the units of mass and velocity: 

kg m s 1. You will see a alternative unit later.

• When velocity or mass is changing, then the momentum must also be changing. 

• When a net resultant force acts on an object, the object accelerates, and the 

velocity must change. This means a change in momentum too. A net force 

leads to a change in momentum. 

Worked example 16

A ball of mass 0.25 kg is moving to the right at a speed of 7.4 m s–1. It strikes a wall at 90° and rebounds from the wall, 

leaving it with a speed of 5.8 m s–1 moving to the left. Calculate:

a. the momentum of the ball before it strikes the wall

b. the change in momentum after the ball strikes the wall.

Solutions

a. Initial momentum, p = mv = 0.25 × 7.4 = 1.85 kg m s–1

b. Final momentum, p = 0.25 × 5.8 = 1.45 kg m s–1 to the left. So taking the directionto the right as being positive, the 

change in momentum =− 1.45 − (+ 1.85) =− 3.3 kg m s–1 to the right (or, alternatively, + 3.3 kg m s–1 to the left).

Collisions and changing momentum 

You may have seen a “Newton’s cradle”. Newton did not invent this device (it 

was developed in the 20th century as an executive toy), but it helps us to visualize 

some important rules relating to his laws of motion.

One of the balls (the right-hand one in Figure 37) is moved up away from the 

remaining four. When released, the ball falls back and hits the second ball. The 

right-hand ball stops moving, and the le-most ball moves o to the le. It is as 

though the motion of the original ball transfers through the middle three — which 

remain stationary — and appears at the le-hand end. 

This is a transfer of momentum. Think about a simpler case where only two 

spheres are in contact (in the toy, three balls can be lied out of the way). 

Theright-hand sphere gains momentum as it falls from the top of its swing. When 

it collides with the other sphere, the momentum appears to be transferredto the 

second sphere. The rst sphere now has zero momentum (it is stationary) and the 

second has gained momentum. What rules govern this transfer of momentum? 

velocity vmass

m

momentum =mv

▴ Figure 36 The momentum of a moving 

object is the product of its mass and its 

velocity.

▴ Figure 37 A Newton’s cradle.
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These interactions between the balls in the Newton’s cradle are called collisions. 

This is the term given to any interaction where momentum is transferred or shared 

between moving objects. Examples of collisions include:

• ring a gun

• hitting a ball with a bat in sport

• two toy cars running into each other

• a pile driver sinking vertical cylinders into the ground on a construction site. 

Impulse and momentum

The change in velocity of the spheres in the Newton’s cradle can be interpreted 

either as a change in momentum or as the eect of a force that acts between two 

colliding spheres for a given time. It is possible to link momentum and forceusing 

Newton’s second law of motion. This involves a new quantity knownas impulse.

Earlier in this topic, Newton’s second law of motion was written as F = ma,

wherethe symbols have their usual meaning. This equation can be rearranged 

using one of the kinematic equations: a =
v − u

t
. Eliminating a from Newton’s 

second law gives F = ma =
m (v − u)

t
 which, in words, means that

force =
change in momentum

time taken for change
We use the convention that “Δ” means “change in”. In symbols, the equation 

now becomes:

F ×Δt =Δp or F =
Δp

Δt
, where p is the symbol for momentum and t (as usual) 

means time. 

This equation gives the relationship between force and momentum and 

provides a further clue to the real meaning of the concept of momentum. The 

equation shows that we can change the momentum of an object (in other words, 

accelerate it) by exerting a large force for a short time or by exerting a small force 

for a long time. A small number of people can get a heavy vehicle moving at a 

reasonable speed, but they must push for a much longer time than the vehicle 

itself would take if powered by its own engine (which produces a larger force). 

The product of force and time is called impulse and is given the symbol J. 

Impulse is the product of the average resultant force acting on an object F and 

the contact time Δt over which the force acts. In symbols this is:

J = FΔt

The units of impulse are newton seconds (N s). Impulse is equivalent to change in 

momentum, and N s gives us an alternative to kg m s 1 as a unit for momentum.

Often in mechanics it is possible 

to explain an observation in more 

than one way. The motion of the 

balls in a Newton’s cradle can be 

explained using energy ideas from 

TopicA.3. 

▴ Figure 38 In 2021, a team of eight 

strong men pulled the world’s heaviest 

plane 4.3 m in 73 s. The plane has an 

unloaded mass of 285 000 kg. If we 

assumethat the plane accelerated uniformly 

from rest, we can calculate the unbalanced 

force on the aircra. Frictional forces 

meanthat a much larger force would have 

been needed.

In most cases where an impulse 

acts, the force F varies throughout 

the contact time Δt

Where the force varies, then F

isthe average resultant force that 

is acting throughout the time of 

contact.

Resultant force

Worked example 17

An impulse of 85 N s acts on a body of mass 5.0 kg that is initially at rest. Calculate the distance moved by the body in 

2.0 s after the impulse has been delivered.

Solution

The change in momentum is 85 kg m s–1 so that the final speed is 
85

5
= 17 m s–1. In 2.0 s the distance travelled is 34 m.
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Practice questions

25. A ball of mass 0.40 kg moves in a direction at right angles to a wall. Theball 

hits the wall at a speed of 9.0 m s 1 and rebounds at a speed of 6.0 m s 1. 

The contact time between the ball and the wall is 50 ms.

Calculate the average values of:

a.  the acceleration of the ball during the collision with the wall

b. the force between the wall and the ball.

26. An air rie pellet of mass 2.0 g is red at an initial speed of 180 m s−1 into a 

stationary block of clay and becomes embedded in the block. The average 

force acting on the pellet from the block is 750 N.

a. Calculate:

 i. the change in the momentum of the pellet

 ii.  the stopping time of the pellet in the clay block.

b. Estimate the distance that the pellet penetrated.

c. Outline why the answer in part b. is an estimate.

A. Space, time and motion 
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▴ Figure 39 Force–time graphs.

Worked example 18

Jonathan strikes a tennis ball moving with a horizontal initial velocity of 

45 m s−1. The ball leaves the racket in the opposite direction at a speed of 

65 m s−1. The mass of the ball is 58 g.

a. Calculate the impulse that the racket delivered to the ball.

The ball is in contact with the racket for 20 ms.

b. Calculate the average force that the racket exerted on the ball.

Solutions

a. The initial and final velocities of the ball have opposite directions, so the 

change in velocity is Δv= 65 − (−45) = 110 m s 1. The impulse is the 

change in the ball’s momentum, J=mΔv= 0.058 × 110 = 6.4 N s.

b. Force =
impulse

time taken
=

6.4
0.020

= 320 N

Force–time graphs 

So far we have assumed that forces are constant and do not change with 

time. This is rarely the case in real life. We need a way to cope with changes in 

momentum when the force is not constant. The equation F=
Δp

Δt
 helps here. 

Itsuggests that a force–time graph can be useful. 

When a constant force acts on a mass, then the graph of force against time will 

look like Figure 39(a). The change in momentum is F × T. This is the hatched area.

The area under a force–time graph is equal to the change in momentum.

Another straightforward case that may more plausible than a constant force is the 

one in Figure 39(b), where the force rises to a maximum F
max

 and then decreases 

to zero in a total time T. The area under the graph this time is 
1

2
F × T and this is 

the change in momentum in this case. 
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Worked example 19

The sketch graph shows how the force acting on an object varies with time.

fo
rc

e
/

N

time/s
0 5 20 25

0

15 

The mass of the object is 50 kg and its initial speed is zero. Calculate the 

final speed of the object.

Solution

The total area under the force–time graph is 

2 × (
1

2
× 15 × 5) + (15 × 15) = 75 + 225 = 300 N s.

This is the change in momentum, so the final speed is 
300

50
= 6.0 m s–1

Worked example 20

The graph shows how the momentum of an object of  

mass 40 kg moving along a straight line varies with time.

a. Explain why the acceleration of the object 

remainsconstant.

b. Calculate the acceleration of the object.

Solutions

a. The gradient of the graph is 
Δp

Δt
 and this is equal to the 

net force acting on the object. The gradient is constant. Hence, the net force is constant.  

Since the mass of the object does not change, the acceleration is also constant.

b. The net force is 
Δp

Δt
=

200

10
= 20 N. The acceleration is therefore a =

F

m
=

20

40
= 0.50 m s 2

0 1 2 3 4 5 6 7 8 9 10
0
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40
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80
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p
/

kg
 m

 s
–1

t/s

The nal case (Figure 39(c)) is one where there is no obvious mathematical 

relationship between F and t, but nevertheless there is a graph of the variation of 

force with time. You will need to estimate the number of squares under the graph 

and use the area of one square to evaluate the total change in momentum.
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Practice questions

27. An ice hockey puck of mass 150 g moves at a constant 

initial speed of 8.0 m s 1 across a horizontal ice 

surface. A hockey stick hits the puckand it bounces 

o in the opposite direction. The graph shows how 

the horizontal force on the puck varies with time.

0
0 1 2 3 4 5 6 7 8 9 10

time/10 3s

fo
rc
e
/
N

300

600

900

1200

1500

 What is the speed of the puck immediately aer 

thehit?

A. 8.0 m s−1

B. 12 m s−1

C. 20 m s−1

D. 28 m s−1

28. A ball rolling on a oor rebounds at right angles from 

a vertical wall. The graph shows how the contact force 

between the ball and the wall varies with time.

0
0 10 20 30 40 50 60 70 80 90 100

time/10 3s

Fmax

fo
rc
e

F
max

 is the maximum force acting on the ball. The 

change in the momentum of the ball is 10 N s.

 What is the best estimate of F
max

?

A. 20 N

B. 50 N

C. 200 N

D. 500 N

29. A ball is dropped vertically onto a oor and rebounds. 

The graph shows how the momentum ofthe ball 

varies with time. The direction upwards is positive. 

0.80.70
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0.75

1

0.5

0.25

0
0.9 1

1

 The ball falls freely between 0 and 0.5 s. Air resistance 

is negligible.

a. Calculate:

 i. the weight of the ball

 ii. the speed of the ball just before impact.

b.  The ball is in contact with the floor for a time 

of0.10 s. 

Determine the magnitude of the average contact 

force between the floor and the ball.

Rockets and impulse

Earlier in this topic we discussed the acceleration of a rocket and looked at the 

situation from the perspective of Newton’s second and third laws. A similar 

analysis is possible in terms of impulse. 

A. Space, time and motion 
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Rockets operate eectively in the absence of an atmosphere. All rockets release 

a liquid or gas that leaves the rocket at high speed (Figure 40). The uid can 

be an extremely hot gas generated in the combustion of a solid chemical (as in 

a domestic rework rocket) or from the chemical reaction when two gases are 

mixed and react. It can also be a uid stored under pressure inside the rocket. 

In each case, uid escapes from the combustion or storage chamber through 

nozzles at the base of the rocket. 

As a result, the rocket accelerates in the opposite direction to the direction of 

uid ejection. The impulse on the rocket is equal and opposite to the impulse on 

the fuel as they form a closed system. Therefore, the rate of loss of momentum 

from the rocket in the form of high-speed uid must be equal to the rate of gain in 

momentum of the rocket. 

▴ Figure 40 The launch of the Soyuz 

TMA-10 mission taking astronauts to the 

International Space Station. The rocket has 

a mass of 309 000 kg on the launch pad, 

but burns about 158 000 kg of fuel in the 

rst 2minutes of its ight. Theexhaust gases 

leave the rocket at 2.6 km s−1. What is the 

initial acceleration of the rocket? Why will 

the acceleration increase?

Worked example 21

A small firework rocket has a mass of 65 g. The initial rate at which hot gas is 

lost from the firework after it has been lit is 3.5 g s–1 and the speed of release 

of this gas from the rear of the rocket is 130 m s–1

Calculate the initial acceleration of the rocket.

• Tool 3: Determine rates of change.

• Tool 3: Derive relationships algebraically.

• Tool 3: Identify and use symbols stated in the guide and the data booklet.

Earlier, we used F = ma to show that F also equals 
Δp

Δt
. Using the full expression for momentum p gives F =

Δ(m × v)

Δt

This can be written as (using the product rule): F = m 
Δv

Δt
+ v 

Δm

Δt
You may have to take this algebra on trust, but you can understand the physics that it represents by thinking through 

what the two terms stand for: 

• The rst term on the le-hand side is just:

mass ×
change in velocity

time taken for change

 which you will recognize as mass × acceleration — our original form of Newton’s second law of motion. 

• The second term on the right-hand side is something new. It is:

instantaneous velocity ×
change in mass

time taken for change

Our rst version of Newton’s second law was a simpler form of the law than this new version. The extra term takes 

account of what happens when the mass of the accelerating object is also changing.

Our later form of Newton’s second law helps with a rocket because the rocket is always losing mass (as the propellant 

escapes), so m in the equation is not constant.

The second term in the equation contains the ejection speed of the fuel relative to the rocket v, and the rate at which 

mass is lost from the system 
Δm

Δt
. The acceleration of the rocket is therefore:

a =
Δv

Δt
=−

vΔm

mΔt
=−

v
m
×
Δm

Δt

The negative sign reminds us that the rocket is losing mass while gaining speed.

Revisiting Newton’s second law
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Practice question

30. A spacecra is initially at rest in outer space. The spacecra is propelled by 

a rocket engine that ejects exhaust products at a constant rate of 2.8 kg s 1

with a speed of 3.6 × 103 m s 1 relative to the spacecra. The initial mass of 

the spacecra and its fuel is 4.0 × 104 kg.

a. Calculate:

 i. the thrust force of the rocket engine

 ii. the initial acceleration of the spacecraft.

 The rocket engine is fired for 25 minutes. The spacecraft accelerates along a 

straight line.

b.  Explain how the acceleration of the spacecraft varies with time.

c. Calculate the final speed of the spacecraft.

d.  The thrust force of the engine must be briefly increased to 65 kN 

without changing the relative speed of the exhaust products. Calculate 

the mass that will have to be ejected from the engine persecond.

Momentum and Newton’s third law

A consequence of Newton’s third law of motion is that when two objects A and 

B interact with object A producing an impulse on object B, then object B must 

produce an impulse on A. The two impulses will be equal and opposite. Imagine 

two toy cars colliding in a straight line and then rebounding. 

The forces F that the cars exert on each other are equal and opposite and the 

cars are in contact for identical times Δt. This means that the magnitude of the 

product F ×Δt is the same on both cars, but because the two forces are in 

opposite directions the signs of F ×Δt are dierent. This product of average 

resultant external force and the contact time is the change in momentum of each 

car. It follows that the change of momentum of car A is equal in magnitude and 

opposite in direction to the change of momentum of car B. When we think of 

the system as consisting of both cars together, then there has been no change in 

momentum of the system combined during the collision. 

We say that the momentum has been conserved

Experiments to compare the momentum before a collision with the momentum 

aer a collision show, within the experimental uncertainty of the measurements, 

that the total momentum in a system does not change when no resultant external 

forces act on it.

A. Space, time and motion 
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Solution

a=
Δv

Δt
= –

vΔm

mΔt
, where v is the release speed of the gas, 

Δm

Δt
 is the rate of 

loss of gasandm is the mass of the rocket.  

a=
130 × 3.5

65
= 7.0 m s 2

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



Topic A.2      Forces and momentum

80

• Inquiry 1: Appreciate when and how to 

reduce friction.

• Inquiry 1: Demonstrate creativity in 

the designing, implementation or 

presentation of the investigation

• Inquiry 3: Compare the outcomes of an 

investigation to the accepted scientific 

context.

• Inquiry 3: Identify and discuss sources 

and impacts of random and systematic 

errors.

The exact details of this experiment will depend on the 

apparatus you have in your school (Figure 41). You may 

have alternatives to carts on runways, such as air pucks 

oating on an air table.

• The experiment consists of measuring the speed of 

a cart of known mass which hits another cart, also of 

known mass, that is initially stationary. You are likely 

to have carts of almost identical mass, as this is a 

particularly easy case to begin with. 

• You need a way to measure the velocity of the carts 

just before and just after the collision. This could be 

done in various ways: 

 º using a data logger with motion sensors

 º using a paper-tape system where a tape attached 

to the cart is pulled through a device that makes 

dots at regular time intervals on the tape 

 º using a video camera and computer software 

 º using a stopwatch to measure the time taken to 

cover a short, known distance before and after 

the collision. 

• If your carts roll on a track or runway, you can allow for 

the friction at the cart axles and air resistance. Raise 

the end of the track so that, when pushed, a cart 

runs at a constant speed. The friction at the bearings 

and the air resistance will be exactly compensated 

by thecomponent of the weight of the cart down 

thetrack. 

• For the first part of the experiment, arrange the two 

carts so that they will stick together after colliding. 

This can be done using modelling clay, by attaching 

a pin to one cart that enters a cork on the other cart, 

or by attaching an attracting magnet to each cart. 

• Make the first (moving) cart collide with, and stick to, 

the second (stationary) cart. 

• Measure the speed of the first cart before the 

collision and the combined speed of the carts after 

the collision. 

• Repeat the experiment several times and think 

carefully about the likely errors in the results. 

• The initial momentum is:

 (mass of first cart) × (velocity of first cart). 

• The final momentum is:

 (mass of first cart + mass of second cart) × (combined 

velocity of both carts). 

• What can you say about the total momentum ofthe 

system before the collision compared with the total 

momentum after the collision? Youshould consider 

the experimental errors inthe experiment before 

making yourjudgement. 

• If you have done the experiment carefully, you 

should find that the momentum before and after the 

collision are approximately equal. 

• Now extend your experiment to different cases: 

 º where the carts do not stick together 

 º  where they are both moving before thecollision

 º where the masses are not the same

 º and so on. 

• You may need to alter how you measure the velocity 

to cope with the different cases. 

Is momentum conserved in a laboratory experiment? 

moving cart

light gate

raised to 

compensate

for friction

timing card

stationary 

cart

▴ Figure 41 One cart moves down the track at constant speed and collides 

with another stationary cart. In the collision, the momentum of the system can 

be shown to be conserved within experimental error.

An important point here is that there must be no external force from outside 

the system that acts on the colliding objects that make up the system. External 

forces produce accelerations, and these will change the velocity and hence the 

momentum of the whole system. 
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In the colliding-carts experiment, gravitational force is acting on the carts. 

However, because the gravitational force is not being allowed to do any work 

when the track is horizontal, the force does not contribute to the interaction 

because the carts are not moving vertically. 

Momentum is always constant when no resultant external  

force acts on the system.

This is known as the principle of conservation of linear momentum, the word 

“linear” is here because the objects concerned move in a straight line. This rule is 

always conrmed in experiments and is one of the important conservation rules 

that are true throughout the universe (as far as we know). The history of nuclear 

physics shows that scientists have needed to propose the existence of new 

particles in experiments where momentum was apparently not conserved. The 

proposed particles were subsequently found to exist. 

Momentum conservation in practice

Momentum conservation is such an important rule that it is worth us considering 

a few dierent situations to see how momentum conservation works. In each of 

these cases we assume that the centres of the objects lie on a straight line so that 

the collision happens in one dimension. 

1  Two objects with the same mass, one initially stationary, 

when no energy is lost 
This is known as an elastic collision. No permanent deformation occurs in the 

objects that collide, and no energy can be released as internal energy (through 

friction), as sound or in any other way. The spheres in the Newton’s cradle 

earlier lose only a little energy every time they collide, and this explains why the 

apparatus is a reasonable demonstration of momentum conservation.

Figure 42 shows the arrangement when the rst moving object collides with 

the second stationary object. The rst object stops and remains at rest while the 

second moves o at the speed that the rst object had before the collision. (Try 

icking a coin across a smooth table to hit an identical coin head-on to see this 

happen.) In this case, momentum is conserved because (using an obvious set 

of symbols for the mass m of objects 1 and 2 and their velocities u (before the 

collision) and v (aer the collision)):

m
1
× u = m

2
× v

Because m
1
= m

2
, then u = v, so the velocity of one mass before the collision is 

equal to the velocity of the second mass aerwards. The kinetic energy of the 

moving mass (whichever mass is moving) is 
1

2
mu2 and does not change either. 

Energy is conserved meaning that the collision is elastic.

before:

aer:

u
0 m s 1

v = u
0 m s 1

mass m1 mass m2

mass m1 mass m2

▴ Figure 42 An elastic collision between two 

identical masses, one of them initially at rest.

The discovery of the electron 

antineutrino is a case where the 

energy spectrum of the emitted 

beta-minus particle (β ) in beta 

decay led to the prediction of 

the neutrino and its subsequent 

discovery. You will find the details 

of this discovery in TopicE.3 .

In this course, there are many 

references to the conservation laws 

of charge, energy and momentum. 

Other conservation rules exist 

in physics, too. The concept of 

equilibrium is also universally 

applicable. The equilibrium of the 

skin of a balloon and the steady 

state of stars in the middle of their 

lives arise from a balance of forces, 

inwards and outwards. You will 

find references to conservation in 

every topic in the course and to 

equilibria in Themes B and E.

How are concepts 

of equilibrium and 

conservation applied to 

understand matter and 

motion from the smallest 

atom to the whole universe?

Kinetic energy — the energy that a body has when it is 

moving — is considered in Topic A.3. It is likely, though, 

that you will have met kinetic energy in an earlier course. 

The kinetic energy of translational motion is E
k
=

1

2
mv2, 

where m is the mass of the moving object and v is its  

linear speed.

The unit of energy is the joule (J). An object of mass 1.0 kg 

moving at a speed of 1.0 m s−1 has a kinetic energy of 0.50 J.

There is a convenient link between kinetic energy and 

momentum. The equations E
k
=

1

2
mv2 and momentum  

p = mv can be combined using p2 = m2v2 to give  

E
k
=

p2

2 m
. This is often useful in calculations.
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2  Two objects with dierent masses when no energy is lost 
This time (as you may have seen in an experiment) the situation is more 

complicated (Figure 43).

Again, m
1
u

1
+ m

2
u

2
= m

1
v

1
+ m

2
v

2
 but, this time, we cannot eliminate the mass 

terms from the expression so easily, as m
1
 and m

2
 are not the same. What we do 

know is that kinetic energy is conserved. The kinetic energy before the collision 

must equal the kinetic energy aer the collision (because no energy is lost). 

This means that (summing the kinetic energies before and aer the collision):

1

2
 m

1
u

1
2 +

1

2
 m

2
u

2
2 =

1

2
 m

1
v

1
2 +

1

2
 m

2
v

2
2

The momentum and kinetic energy equations can be solved to show that:

v
1
= (

m
1
−m

2

m
1
+m

2

) u
1
+ (

2m
2

m
1
+m

2

) u
2
 and v

2
= (

m
2
−m

1

m
1
+m

2

) u
2
+ (

2m
1

m
1
+m

2

) u
1

No measurement in science 

is certain. The Heisenberg 

uncertainty principle shows this 

at a fundamental level when 

it predicts that the product of 

uncertainty in energy measurement 

(ΔE) and uncertainty in time 

determination (Δt) must always be 

greater than 
h

4π

, where h is the 

Planck constant. This limitation 

in experimental measurement is 

accepted in science and does 

not inhibit the inquiry cycle of 

scientific discovery. Uncertainties 

in measurement are factored into 

our imprecisionin knowledge 

anddo not prevent the generation 

of theory.

If experimental 
measurements contain 
uncertainties, how can 
laws be developed 
based on experimental 
evidence? (NOS)

Worked example 22

An astronaut of mass 90 kg (including his gear) is initially at rest outside a 

spaceship. The astronaut throws a tool of mass 1.5 kg at a speed of 3.0 m s−1

away from him. Calculate

a. the speed of the astronaut immediately after he releases thetool

b. the ratio 
kinetic energy of the tool

kinetic energy of the astronaut

Solutions
a. The momentum of the system of the astronaut and the tool is zero; hence 

90v −1.5 × 3.0 = 0, where v is the speed of the astronaut. The minus 

sign indicates that the astronaut and the tool are moving in opposite 

directions.  

v =
1.5 × 3.0

90
= 0.050 m s 1

b. The ratio of the kinetic energies is equal to ( P2
tool

2m
tool

)  ÷ (
P2

astronaut

2m
astronaut 

) = m
astronaut

m
tool

. 

Because the tool and the astronaut have equal magnitude of momentum,  

P
tool
= P

astronaut
. Therefore, 

kinetic energy of the tool

kinetic energy of the astronaut
=

90

1.5
= 60.  

The tool has a much greater kinetic energy than the astronaut, even if their 

momenta have equal magnitudes. Note that the answer only depends 

on the masses involved, not on the speed with which the tool has been 

thrown.

before:

aer:

u1

u2

v1

v2

m1
m2

m1
m2

▴ Figure 43 Two moving objects with 

dierent mass in an elastic collision.

• Tool 3: Determine the eect of changes to variables on other variables in 

a relationship.

• Tool 3: Select and manipulate equations.

Dierent cases
O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



A. Space, time and motion 

83

In Topic B.5, electrical resistance is 

related to the collisions between 

electrons moving through a 

conductor and the transfer of 

energy from them to the atoms 

of a metal. Momentum must be 

conserved in all these interactions. 

This is the case where an elastic 

collision occurs between a small 

fast-moving object (the electron) 

and a very massive object (the 

atom). Although the energy transfer 

is not very efficient, there are very 

many interactions every second 

and so an appreciable amount 

of energy is transferred to the 

metal resistor. 

How do collisions 

between charge carriers 

and the atomic cores 

of a conductor result in 

thermal energy transfer? 

3 Two objects colliding when energy is lost 
When a moving object collides with a stationary one and the two objects stick 

together, moving o at the same speed, then some of the initial kinetic energy 

is lost. Aer the collision, there is a single object with an increased (combined) 

mass and a single common velocity. This is an inelastic collision (Figure 45). 

This is a case you can easily study experimentally.

The momentum equation this time is m
1
u

1
= (m

1
+ m

2
)v

1
. A rearrangement shows 

that v
1
=

m
1

(m
1
+ m

2
)
 u

1
 and, as we might expect, the nal velocity is in the same 

direction as before, but is always smaller than the initial velocity. 

As for energy loss, the incoming kinetic energy is 
1

2
 m

1
u

1
2 and the nal kinetic 

energy (substituting for v
1
) is 

1

2
(m

1
+ m

2
) 

m
1
2

(m
1
+ m

2
)2

 u
1
2

This is 
1

2

m
1
2

(m
1
+ m

2
)
 u

1
2 and the ratio 

nal kinetic energy

initial kinetic energy
=

m
1

(m
1
+ m

2
)

There are two interesting cases when mass m
2

is initially stationary and m
1

collides with it: 

• When m
1
 is much smaller than m

2
. In the v

1
 equation, when m

1
 is small, 

the rst term becomes roughly (
−m

2

m
2

) u
1
 which is approximately −u

1
; the 

second term is zero because u
2
= 0;. The small m

1
 mass “bounces o” the 

large mass (this is shown by the minus sign). The large mass gains speed 

in the forward direction. The magnitude of the speed of the larger mass is 

roughly (
2m

1

m
2

) u
1
. This is a small fraction of the original small-mass speed. 

• When m
1

is much greater than m
2
, (m

1
⪢ m

2
). This time the original mass 

loses hardly any speed. The momentum lost by m
1
 is given to m

2
 which 

moves o in the same direction, but at about twice the original speed of 

m
1
. Look at the v

1
 and v

2
 equations and satisfy yourself that this is true. 

Figure 44 shows the eects of the mass ratio for a golf club and ball.

▴ Figure 44 In golf, the head of the driver is heavier than the golf ball. A professional 

golfer club might strike the ball with the club moving at about 50 m s−1 but the ball might 

travel o at about 75 m s−1

before: m2

m1

m1

aer: + m2

u1

v1

0

▴ Figure 45 An inelastic collision between 

two objects.
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Topic A.2      Forces and momentum

Worked example 23

A rail truck of mass 4500 kg moving at a speed of 1.8 m s–1 collides with a 

stationary truck of mass 1500 kg. The two trucks couple together. Calculate 

the speed of the trucks immediately after the collision.

Solution

Initial momentum = 4500 × 1.8 = 8100 kg m s–1. 

Final momentum = (4500 + 1500) × v, where v is the final speed.

Momentum is conserved so v =
8100

4500 + 1500
= 1.4 m s–1

Worked example 24

Stone A of mass 0.5 kg travelling at 3.8 m s–1 across the surface of a frozen 

pond collides with a stationary stone B of mass 3.0 kg. Stone B moves off at 

a speed of 0.65 m s–1 in the same original direction as stoneA. Calculate the 

final velocity of stone A.

Solution

Initial momentum = 0.5 × 3.8 = 1.9 kg m s–1

Final momentum = 3.0 × 0.65 + 0.5v
A

Momentum is conserved so v
A
=

1.9 − (3.0 × 0.65)

0.5
= −0.1 m s–1

The minus sign shows that the final velocity of stone A is opposite to its 

original motion.

No-one has yet observed a case 

where the momentum in an 

isolated system is not conserved, 

but we should continue to look! 

Karl Popper, a philosopher of 

the 20th century, argued that 

the test of whether a theory was 

truly scientic was whether it was 

capable of being falsied. By this 

he meant that there must be an 

experiment that could, in principle, 

contradict the hypothesis being 

tested. Popper argued that 

psychoanalysis was not a science 

because it could not be falsied by 

experiment. 

Popper also applied his ideas to 

scientic induction. He said that, 

although we cannot prove that the 

Sun will rise tomorrow, because it 

always has we can use the theory 

that the Sun rises in the morning 

until the day when it fails to do so. 

At that point we must revise our 

theory. 

What should happen when 

momentum appears not to be 

conserved in an experiment? 

Is it more sensible to look for a 

new theory or to suggest that 

something has been overlooked? 

Popper and  

falsiability

4 Two objects when energy is gained
There are many occasions when two initially stationary masses gain kinetic 

energy. Somelaboratory dynamics carts have a way to demonstrate this with a 

plunger and spring inside the cart. Another easy way is to attach two small strong 

magnets to the front of two carts with the like poles of the magnets facing each 

other. When the carts are released aer being held together, the magnets repel 

and drive the carts apart. 

The analysis is straightforward in this case (Figure 46). The initial momentum is 

zero as neither object is moving. Aer the collision, therefore, the momentum is 

m
1
v

1
+ m

2
v

2
= 0. Thismeans that m

1
v

1
=−m

2
v

2

The objects move apart in opposite directions. When the masses are equal, the 

speeds will be the same, with one velocity the negative of the other. When the 

masses are not equal, then 
m

1

m
2

=−
v

2

v
1

aer:

before:

0 0

m1 m2

m1 m2

v2v1

▴ Figure 46 Energy is gained in this 

collision where a spring between the 

objects is released.
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Practice questions

31. A ball of mass m rolling on a oor with speed v

rebpunds from a wall with an unchanged speed and at 

the same angle θ to the wall. The diagram shows the 

top view of the collision.

m
v

θ θ

Δp is a vector representing the change in the linear 

momentum of the ball.

a. What is the magnitude of Δp?

 A. mv sin θ

 C. 2mv sin θ

 B. mv cos θ

 D. 2mv cos θ

b.  Which arrow correctly represents the direction 

of Δp?

A C

D

B

32. Two rail trucks of equal masses move towards each 

other with speeds 2v and v.  

The trucks collide and stick together. What is the 

speed of the trucks immediately aer the collision?

2v v

A. 0.5v

C. 1.5v

B. v

D. 2v

33. An object of mass 2.0 kg slides without friction on 

a horizontal ice surface at a speed of 6.0 m s−1. The 

object explodes into two pieces of masses 0.5 kg and 

1.5 kg. Immediately aer the explosion, the smaller 

piece stops relative to the ice.

Calculate:

a.  the speed of the larger piece immediately after the 

explosion

b.  the gain in kinetic energy of the system as a result 

of the explosion.

34. An air rie pellet of mass 2.0 g is red horizontally at 

a block of clay of mass 50 g that rests on a frictionless 

horizontal surface. The pellet passes through the 

block with no change in the direction of motion and 

emerges with a speed of 150 m s 1. Immediately aer 

the pellet emerges from the block, the block is 

moving at a speed of 2.4 m s−1

a. Calculate the initial speed of the pellet.

b.  It takes 1.5 × 10−4 s for the pellet to travel through 

the block.

 Calculate:

 i. the average acceleration of the pellet

 ii.  the average force between the pellet and 

theblock.

35. Two rail trucks of masses 6000 kg and 2000 kg collide 

head-on at equal speeds v. 

v v

6000kg 2000kg

Immediately after the collision, the 6000 kg truck stops 

relative to the ground and the 2000 kg truck moves off 

with a speed of 6.0 m s−1

a. Determine the initial speed v of the trucks.

b. Show that the collision is elastic.

A. Space, time and motion 

Momentum conservation in two dimensions

The momentum and energy considerations above were applied to cases where 

the motions of the colliding objects were all in the same line. This is motion in one 

dimension. The physics of two-dimensional collisions is identical to the simpler 

case of linear motion: 

Momentum is conserved; this is true in every direction.

A
H
L
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Topic A.2      Forces and momentum

Figure 47 shows an air puck travelling towards a stationary puck on an air 

hockeytable. 

before

system before

collision

system aer

collision

aer

y

x m1

v1

θ1

θ2

v2

u2 = 0

u1

m1

m2

m2

▴ Figure 47 Momentum conservation in two dimensions. A moving object collides 

o-centre with a stationary object. Aer the elastic collision the objects move apart 

with an angle of θ
1
+ θ

2
 between them.

The centres of the pucks are not in line with the direction of motion of the rst 

puck and so the pucks move o in dierent directions, as shown. We assume that 

the pucks do not rotate either before or aer the motion. Otherwise, we would 

have to allow for the rotational energy and rotational momentum of the pucks; 

this is le for Topic A.4.

Immediately before the collision, the rst puck which has a mass m
1
 is moving 

with speed u
1
. The pucks move as shown in Figure 47 immediately aer the 

collision with speeds v
1
 and v

2
 at angles θ

1
 and θ

2

In problems such as this, a good tip is to choose two axes at right angles that make 

the subsequent analysis as straightforward as possible. For the example here, one 

axis is in the same direction as u
1
 and the other axis is at right angles toit.

For the axis in the same direction as u
1
 (horizontally along the page), applying 

the conservation of momentum immediately before and aer the collision and 

resolving the velocities gives

m
1
× u

1
= m

1
× v

1
 cos θ

1
+ m

2
× v

2
 cos θ

2

For the axis at 90° to u
1
 (vertically up the page), momentum conservation gives

0 = m
1
× v

1
 sin θ

1
− m

2
× v

2
 sin θ

2
 so that m

1
× v

1
 sin θ

1
= m

2
× v

2
 sin θ

2

So far, we have two equations, and we can use these to determine two unknown 

values. For example, suppose v
2
 and θ

2
 are unknown. It is possible to show that

θ
2
= tan 1 ( v

1
 sin θ

1

u
1
−v

1
 cos θ

1

) and v
2
=

m
1
v

1
 sin θ

1

m
2
 sin θ

2

which, when θ
2
 has been calculated, allows v

2
 to be worked out too.

When the collision is elastic (no energy lost from the system), then there is an 

additional equation from equating kinetic energies before and aer the collision:

1

2
 m

1
u

1
2
=

1

2
 m

1
v

1
2
+

1

2
 m

2
v

2
2

In Topic B.3, there is an important 

microscopic analysis of the 

particles in a gas that links the 

motion of these particles to the 

macroscopic measurements 

that we can make of the gas. 

This analysis relies heavily on the 

ideas of force and momentum 

conservation that are introduced in 

this topic.

To carry out the analysis, 

assumptions are required. 

Collisions between the gas 

particles and the wall are assumed 

to be elastic, for example. When 

you have studied the mechanics 

used in the kinetic theory of Topic 

B.3, review this topic, and link 

the ideas there to those here. 

Cross-linking topics in this way will 

improve your understanding of 

both areas of the subject.

What assumptions 
aboutthe forces 
betweenmolecules of 
gas allow for ideal gas 
behaviour? (NOS)

A
H
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A. Space, time and motion 

A
H
LWith the further assumption that the puck masses are the same (m

1
= m

2
), there 

isan interesting result because the combination of the momentum equations 

leads to

1

2
 mu

1
2
=

1

2
 mv

1
2
+

1

2
 mv

2
2
+ mv

1
v

2
 cos (θ

1
+ θ

2
).

For the elastic interaction of two objects with identical masses, conservation of 

momentum and energy indicates that there are three outcomes: 

• v
2
= 0; in other words, the pucks do not collide and v

1
= u

1

• v
1
= 0; the collision was head-on; the rst puck stops dead and the second 

puck continues with the initial velocity of the rst puck.

• cos (θ
1
+ θ

2
) = 0; the angle θ

1
+ θ

2
, which is the angle of separation, must 

beequal to 90° aer the collision. The pucks move apart with an angle  

of 90° between them. 

Figure 48 shows a time-lapse photograph of the collision between two pucks, 

one moving and one stationary before the impact. 

▴ Figure 48 A photograph of an almost 

elastic collision between two air pucks. 

The puck that was initially stationary moves 

o to the bottom of the image. The angle 

between the two velocity vectors aer the 

collision is a right angle.

Worked example 25

An air puck of mass 0.20 kg collides with a stationary air puck of mass 

0.30 kg. After the collision, the second puck moves away with a speed 

of 0.50 m s−1. The paths of the pucks make angles of 37° and 45° with 

the original direction of the first puck.

a.  Determine the speeds u
1
 and v

1
 of the first puck before and after 

thecollision.

b.  Calculate the percentage change in the kinetic energy of thesystem.

Solutions

a. The speed of the first puck after the collision can be determined by considering the vertical component of the 

momentum of the system, which is zero before and after the collision.

 0.20 × v
1
× sin 37° = 0.30 × 0.50 × sin 45° ⇒ v

1
=

0.30 × 0.50 × sin 45°

0.20 × sin 37°
= 0.8812… ≃ 0.88 m s 1

 The horizontal component of momentum is also conserved, which leads to an equation for the initial speed of the 

puck: 0.20 × u
1
= 0.20 × v

1
× cos 37° + 0.30 × 0.50 × cos 45°.

u
1
= v

1
 cos 37° +

0.30

0.20
× 0.50 × cos 45° = 1.234… ≃ 1.2 m s 1

b. The kinetic energy before the collision is 
1

2
× 0.20 × 1.2342

= 0.152 J. 

After the collision, it is 
1

2
× 0.2 × 0.88122

+
1

2
× 0.3 × 0.502

= 0.115 J. 

The kinetic energy of the system has decreased by 0.152 − 0.115 = 0.037 J. This is about 24% of the initialKE of  

the first puck.

37°

45°0.30kg
0.20kg

0.50ms 1

v1

u1
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Practice questions

36. A body of mass 1.0 kg moving at a speed of 1.6 m s 1

collides with an initially stationary body of mass 2.0 kg. 

Aer the collision, the rst body moves at right angles 

to the original direction of motion with a speed of 

0.80 m s 1. 

1.6ms 1

1.0kg 2.0kg

0.80ms 1

a.  Determine the velocity (magnitude and direction) 

of the second body after the collision.

b.  Deduce whether the collision is elastic.

37. A particle of mass m moving at a speed of 200 m s−1

collides elastically with a stationary particle of mass 

4 m. Aer the collision, the rst particle moves with a 

speed of 160 m s−1 at an angle of 82.8° to the original 

direction of motion.

200ms 1

4mm

v

160ms 1

82.8°

θ

a.  Determine the speed v of the second particle after 

the collision. Hint: the kinetic energy is conserved.

b.  Calculate the angle θ that the path of the second 

particle makes with the original direction of motion 

of the first particle.

Topic A.2      Forces and momentum

Worked example 26

A snooker ball moving at a speed of 1.20 m s−1 collides elastically with 

another stationary snookerball of the same mass. After the collision, 

theballs move apart in perpendicular directions. The path of the first ball 

makes an angle of 30° to the original direction.

Determine the speeds v
1
 and v

2
 of the balls after thecollision.

Solution

The second ball recoils at an angle of 60° to the original direction of the first 

ball. The total momentum in the vertical direction iszero:

mv
1
 sin 30° =mv

2
 sin 60° ⇒ v

2
=

sin 30°

sin 60°
v

1

Applying the conservation of momentum in the horizontal direction:

m × 1.20 =mv
1
 cos 30° +mv

2
 cos 60° =mv

1 (cos 30° +
sin 30° cos 60°

sin 60°
) ≃ 1.15mv

1

From here, v
1
=

1.20

1.15
= 1.04 m s−1 and v

2
=

sin 30°

sin 60°
× 1.04 = 0.60 m s−1

30°1.20ms 1

v1

v2
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A. Space, time and motion 

89

Momentum conservation in practice

Recoil of a gun 
Figure 49 shows a gun being red to trigger a snow fall. This prevents a more 

dangerous avalanche. When the gun res its shell, the gun moves backwards in 

the opposite direction to the shell. You should be able to explain this in terms of 

momentum conservation. 

Initially, both gun and shell are stationary; the initial total momentum is zero. 

When the gun is red, the shell is propelled in the forwards direction through the 

gun barrel by the expansion of hot gas. This is the case discussed earlier, in which 

energy is gained. 

The explosion in the barrel is a force internal to the system. The explosion in the 

chamber behind the shell generates gas at high pressure. The gas exerts a force 

on the interior of the shell chamber and hence a force on the gun as well. The 

explosion releases energy and this is transferred into the kinetic energies of both 

the shell and the gun. 

The initial linear momentum was zero and no external force has acted on the 

system. The momentum must continue to be zero and this can only be true when 

the gun and the shell move in opposite directions with the same magnitude of 

momentum. The shell will go fast because it has a small mass compared with the 

gun; the gun moves relatively slowly.

While the gun recoils with equal and opposite momentum to the shell, the kinetic 

energies are not evenly divided. The kinetic energy of the shell is much larger than 

the kinetic energy of the gun’s recoil since the kinetic energy depends on speed2. 

Water hoses 
Watch re ghters extinguish a re using a high-pressure hose and you will see 

the eect of water leaving the system. Oen two or more re ghters are needed 

to keep the hose on target because there is a large force on the hose in the 

opposite direction to which the water emerges. This can be seen when a garden 

hose that is free to move starts to shoot backwards in unpredictable directions 

when the water tap is turned on. 

The cross-sectional area of the hose is greater than that of the nozzle through 

which the water emerges. The mass of water owing past a point in the hose 

every second is the same as the mass that emerges from the nozzle every second. 

The speed of the water emerging from the nozzle must be greater than the water 

speed along the hose itself. The water gains momentum as it leaves the hose 

because of this increase in exit speed compared with the ow speed in the hose. 

The momentum of the system must be constant and so there must be a force 

backwards on the end of the hose which needs to be countered by the re 

ghters. The water pump (or other source of pressure) that feeds water to the re 

hose supplies the kinetic energy and the momentum.

The momentum lost by the system per second is

(mass of water leaving per second) ×  (speed at which water leaves the  

      nozzle – speed in the hose)

The mass of water lost per second is 
Δm

Δt
, so the momentum lost per second is 

p=
Δm

Δt
 (v − u), where v is the speed of water as it leaves the nozzle and u is the 

speed of the water in the hose (Figure 50).

▴ Figure 49 Firing a shell from gun into a 

snow mass to cause a minor avalanche. 
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Practice question

38. Water ows in a garden hose with inner diameter 

14 mm at a rate of 9.0 litres per minute. 

a. Calculate the speed of water in the hose.

 The cross-sectional area of the nozzle of the hose is 

12times smaller than the cross-sectional area of the 

hose itself. 

b.  Determine the change of momentum of the water 

leaving the nozzle in one second.

c.  Explain why a force is needed to keep the nozzle 

of the hose stationary.

Topic A.2      Forces and momentum

90

When we know the cross-sectional area A of the nozzle of the hose and the 

density of the water, ρ, then 
Δm

Δt
 can be determined. Figure 50 shows what 

happens inside the hose during a one-second time interval. Every second you 

can imagine a cylinder of water leaving the hose. This cylinder is v long and has 

an area A. Thevolume leaving per second is therefore Av.

The mass of the water leaving in one second is

Δm

Δt
= (density of water) × (volume of cylinder) = ρAv. 

Because the mass entering and leaving the nozzle per second must be the same, 

this means that

the change of momentum in one second =
Δm

Δt
× (v − u) = ρAv(v u).

When u ⪡ v, then the expression simplies to ρAv2. 

The hose is an example of where it is important to look at the whole system. 

Consider what happens when the water is directed at a vertical wall. The water 

strikes the wall, loses all its horizontal momentum, and trickles vertically down 

the wall. The momentum must have been absorbed by the wall, its foundations 

and, therefore, the ground. We might conclude that Earth itself has gained 

momentum and that we can speed up Earth’s rotation by using a garden hose. 

This is not true, because the water originally gained momentum from a pump. 

This gain in momentum at the pump must have given some momentum toEarth 

too. The amount of momentum Earth gained at the pump is equaland opposite 

to the momentum gained by Earth when the water strikesthe wall. 

Worked example 27

A mass of 0.48 kg of water leaves a garden hose every second. The nozzle of the hose has a cross-sectional area of  

8.4 ×10−5 m2. The water flows in the hose at a speed of 0.71 m s−1. The density of water is 1000 kg m–3. Calculate:

a.  the speed at which water leaves the hose

b. the force on the hose.

Solutions

a. Volume of water leaving the hose per second =
0.48

1000
= 4.8 × 10–4 m3

 This leaves through a nozzle of area 8.4 × 10–5 m2, so the speed must be 
4.8 × 10–4

8.4 × 10–5
=5.71 m s–1

b. The force on the hose = mass lost per second × change in speed = 0.48 × (5.71 − 0.71) = 2.4 N.

v

v

u
A, cross-sectional

area of nozzle
one second of water

▴ Figure 50 Momentum conservation 

when water leaves a hose. 
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A. Space, time and motion 
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A nuclear power station 

demonstrates many aspects of the 

conservation of momentum. The 

simple example of a hose here can 

be extended to the more complex 

situation of a jet of steam at high 

pressure striking the blades of the 

rotating turbine with the transfer 

of kinetic energy from steam to 

turbine. 

The process of moderation in the 

containment vessel of the reactor 

also relies on momentum transfer 

as the neutrons interact (collide) 

with the moderator atoms. This 

is again the case where a moving 

object collides with a stationary 

object. For maximum energy 

transfer the masses of the objects 

should be the same. In practice, 

in reactors the moderator atoms 

are often more massive than the 

neutrons.

Nuclear engineers use 

conservation of momentum to 

predict the number of collisions 

required before a neutron has 

lost sufficient energy (speed) to 

be effective in promoting further 

fissions. This number informs the 

engineers about the shape and size 

of the moderator in the reactor. 

What other examples of 

momentum transfer and 

conservation can you think of for 

the nuclear power station?

How is conservation of 

momentum relevant to 

the workings of a nuclear 

power station?

Helicopters 
Helicopters are aircra that can take o and land vertically and can hover 

motionless above a point on the ground (Figure 51). There were many attempts 

to build ying machines on the helicopter principle over the centuries, but the 

rst commercial aircra ew in the 1930s. 

▴ Figure 51 The rotors of a helicopter allow it to take o and land vertically as well as hover 

above a point on the ground. This uses the principle of conservation of momentum.

A helicopter uses the principle of conservation of linear momentum to hover. 

The rotating blades exert a force on air that was originally stationary, causing it 

to move towards the ground, gaining momentum in the process. As a result of 

Newton’s third law, there is an upward force on the helicopter through the rotors. 

Both seat belts and airbags 

restrain the occupants of a 

car, preventing them from 

striking the windscreen or 

the hard areas around it 

when there is an accident. 

But there is more to the 

physics of the air bag and 

the seat belt than this. 

On the face of it, someone in 

a car loses the same amount 

of kinetic energy and 

momentum whether they 

are stopped abruptly by the 

windscreen or restrained by 

the seat belt. The dierence 

between the two cases is the time during which the kinetic energy and 

momentum are lost. Without the seat belt or air bag, the time taken by the 

passenger to stop will be extremely short and the deceleration will therefore 

be large. Alarge deceleration implies a large force acting on the passenger 

and it is the magnitude of the stopping forcethat determines the amount of 

damage they sustain in an accident. 

Seat belts and air bags increase the time taken bythe occupants of the 

car to stop and as force × time = momentum change, for a constant 

change in momentum, a long stopping time will imply a smaller, and less 

damaging,force.

Global impact of science — Momentum and safety

▴ Figure 52 In the case of a car crash, the front of 

the car is designed to crumple rather than remain 

rigid. This enables the car to slow down over a 

longertime.
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Practice questions

39. A helicopter of mass 3.0 × 103 kg hovers motionless 

above the ground.

a.  Calculate the magnitude of the lift force acting on 

the helicopter.

 The rotor of the helicopter pushes initially stationary air 

with a downward speed v. The surface area of the rotor 

is A = 95 m2. The density ofair is ρ= 1.2 kg m−3

b.  Show that the mass of air pushed downwards per 

second is ρAv

c. Calculate the speed v

 The air is now forced to move with a higher speed u

so that the helicopter ascends with an initial upward 

acceleration of 1.2 m s−2. 

d. Estimate the new speed u

40. A skier of mass 64 kg crashes at a speed of 45 km h−1

into a safety net installed at an edge of a ski slope. The 

skier will avoid injury if the force on her from the safety 

net is less than 6.0 kN.

a.  Calculate the minimum time needed to stop the 

skier safely.

b.  Estimate the distance by which the safety net 

deflects if the skier stops in the minimum safe time. 

Assume that the force on the skier is constant 

during deceleration.

Topic A.2      Forces and momentum
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Worked example 28

A toy helicopter of mass 0.80 kg hovers motionless above the ground. The rotating blades of the helicopter force the 

initially stationary air to move downwards with a speed of 9.0 m s−1

a. Calculate the mass of air pushed downwards in one second so that the helicopter can remain stationary.

b. The density of air is 1.2 kg m 3. The helicopter has a single rotor. Estimate:

 i. the surface area spanned by the blades of the rotor

 ii. the radius of a blade.

Solutions

a. The lift force exerted by the air on the helicopter is equal to the rate of change of the momentum of the air, v 
Δm

Δt
. 

When the helicopter hovers, the magnitude of this force is equal to the weight of the helicopter.  

9.0 
Δm

Δt
= 0.80 × 9.8; therefore 

Δm

Δt
=

0.80 × 9.8

9.0
= 0.87 kg.

b. i. Area =
volume of air passing the blades per second

speed of air
=

0.87 ÷ 1.2

9.0
= 8.1 × 10 2 m2

 ii.  The area spanned by the blades is a circle with radius equal to the length of a blade. 

πr 2 = 8.1 × 10 2
⇒ r =

8.1 × 10−2

π
= 16 cm.

Momentum and sport 

This topic began with a suggestion that it was less painful to catch a table-tennis 

ball than a baseball. You should now be able to understand the reason for the 

dierence. You should also realize why good technique in many sports hinges on 

the application of momentum change. Think about a sport you play or watch, and 

how eective use of momentum change helps the player.
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A. Space, time and motion 
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• Tool 2: Use sensors.

• Tool 3: Select and manipulate equations.

• Inquiry 3: Explain realistic and relevant improvements 

to an investigation.

You can estimate the force used to kick a soccer ball 

in a laboratory. It uses many of the ideas contained in 

this topic and is a good place to conclude our study of 

momentum. The basis of the method is a measurement 

of the contact time between the foot and the ball and the 

subsequent change in momentum of the ball (Figure 53).

The use of

force × contact time = change in momentum

allows the force to be calculated. 

• To measure the contact time: Stick some metal foil 

to the shoe of the person who is to kick the ball and 

to the soccer ball itself. Set up a data logger or fast 

timer so that it only times while the two pieces of foil 

are in contact. 

• To measure the change in momentum: The ball 

starts from rest so all you need to estimate is the 

magnitude of the final momentum. The ball should 

be kicked horizontally from a lab bench. 

 º Measure the distance s from where the ball is 

kicked to where it lands.

 º Measure the distance h from the bottom of the 

ball on the bench to the floor.

 º Use projectile motion and the kinematic 

equations to calculate the time t taken for the 

ball to reach the floor: h =
1

2
gt 2 and therefore 

t = √√2h
g

 º Use this value of t to estimate the initial speed 

u of the ball as u =
s

t
. 

 º Measure the mass of the ball M; therefore 

the change in momentum is Mu which is equal 

to the force on the ball × T

This method can be modied to estimate the impact 

forces involved in many sports including hockey, 

baseball and golf. Consider this as a possible preliminary 

experiment leading to your IA. Think about how you 

might develop the experiment within an inquiry cycle  

(see the Tools for physics section).

Force acting on a soccer ball

h

s

aluminum foil

foot

to timer

ball

▴ Figure 53 An estimation of the force that acts on a 

soccer ball when it is kicked requires a measurement of the 

contact time and the change in momentum.

Many sports in which an object — usually a ball — is struck by hand, foot or bat rely 

on the ecient transfer of momentum. This transfer is oen enhanced by a “follow 

through”, which increases the contact time between bat and ball. The player can 

maintain the same force but for a longer time interval, so the impulse on the ball 

increases, increasing the momentum change as well. 
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▴ Figure 54 A fairground carousel — the 

physics of circular motion in action.

θ
ω, angular speed 

t2 − t1

θ

t

time t1

θ

ω

time t2

▴ Figure 56 Angular speed.

▴ Figure 55 What keeps the object 

moving in the horizontal circle? Why is the 

string not horizontal?

Motion in a circle
Theme-park rides are popular with many people. Such rides oen include 

movement around a circle, sometimes moving horizontally, sometimes vertically 

(Figure 54). What is the physics of circular motion (Figure 55)? 

Imagine a small object whirling around in a horizontal circle with a constant 

speed held at the end of a piece of string. 

The choice of the words “constant speed” is deliberate. When motion is circular, 

you can say that the “speed is constant” but not that “velocity is constant”. 

Motion around a circle at a constant speed is known as uniform circular motion

Velocity — a vector quantity — has both magnitude and direction. The object on 

the string has a constant speed but the direction in which the object is moving 

is changing all the time. The velocity has a constant magnitude but a changing 

direction. When either of the two elements that make up a vector change, then 

the vector can no longer be regarded as constant. 

As the velocity changes (even if only the direction is changed) then the object 

has been accelerated. Understanding the physics of this acceleration is the key to 

understanding circular motion. But before looking at how the acceleration arises, 

you will need a technical language to describe rotational motion.

Angular displacement 

Angular displacement is the angle through which an object moves in its circular 

motion. Angular displacement can be regarded as a scalar. Angular displacement 

can be measured in degrees (°) or in radians (rad). Radians are more commonly 

used than degrees in this branch of physics so, if you have not met radians before, 

read about the dierences between radians and degrees in the Tool for physics

section on page 335.

Angular speed and angular velocity

The term speed is usually used to refer to “linear speed” — motion in a straight 

line. When the motion is in a circle, there is an alternative: angular speed. This is 

given the symbol ω (the lower-case Greek letter, omega). 

average angular speed =
angular displacement

time for the angular displacement to take place

Figure 56 shows how the symbols are dened and you will see that, in symbols, 

the denition of angular speed becomes ω=
θ

t
, where θ is the angular 

displacement and t is the time taken for the angular displacement. In terms 

ofthediagram: 

ω=
θ

t
2
−t

1

.

You will also meet the term “angular velocity” in the IB Diploma Programme 

physics course. You will not have to treat it as a formal vector quantity.
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You may be wondering about the distinction between angular speed and 

angular velocity, and whether angular velocity is a vector like linearvelocity. 

The answer is that angular velocity is a vector but with a surprising direction 

which is along the axis of rotation, as shown in Figure 57. In other words, 

through the centre of the circle around which the object is moving, and 

perpendicular to the plane of the rotation. 

The direction follows a clockwise corkscrew rule so that, in this example, 

because the object is rotating clockwise, the direction of the angular velocity 

vector is into the plane of the paper. 

In the IB Diploma Programme physics course, both the terms angular velocity 

and angular speed are used but they refer always to the magnitude of the 

angular velocity.

Angular speed or angular velocity? 

direction
of angular
velocity vector

direction
of rotation

▴ Figure 57 Angular velocity direction.

Period and frequency 

The time taken for a rotating point to go round its circle once is known as the 

periodic time or simply the period of the motion; it has the symbol T. In one time 

period, the angular distance travelled is 2π rad and therefore T =
2π

ω

When T is in seconds, the units of ω are radians per second, abbreviated to 

rad s 1. 

If you have already studied waves in this course, you will have met the similar idea 

of time period as the time taken for one cycle of the wave. 

Another quantity that is associated with T is frequency. Again, this quantity 

is common to both the physics of rotation and wave theory. Frequency is the 

number of times an object goes round a circle in unit time, and one way to 

express the unit of frequency would be in “per second” or s 1. However, the unit 

of frequency is re-named aer the 19th-century physicist Heinrich Hertz and is 

abbreviated to Hz. T is linked to f by: T =
1

f

This leads to a link between ω and f: ω = 2πf

Linking angular and linear speeds 

Sometimes you know the linear speed around a circle and need the equivalent 

angular speed or vice versa. 

This is straightforward. When the circle has a radius r, its circumference is 2πr.  

T is the time taken to go around the circle once. 

The linear speed of the object along the edge of the circle v is: v =
2πr

T

Rearranging the equation gives: T =
2πr

v

Also, T =
2π

ω
, so equating the two equations for T gives T =

2πr

v
=

2π

ω
.

Cancelling the 2π and rearranging gives v = rω.

Notice that both in this equation and in the earlier equation s = r θ, the radius r 

multiplies the angular term to obtain the linear term. This is a consequence of our 

denition of angular measure. 
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Practice question

41. The motion of Earth around the Sun can be modelled 

as uniform circular motion around an orbit of radius 

1.50 × 1011 m.

Calculate, for the orbital motion of Earth:

a. the angular speed

b. the linear speed.

42.  The blades of a toy helicopter complete 670 

revolutions in one minute. Each blade is 16 cm long. 

Calculate:

a.  the angle, in radians, swept by a blade in one 

second

b. the linear speed of the tip of a blade.

Topic A.2      Forces and momentum
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Worked example 29

A large clock on a building has a minute hand that is 4.2 m long. Calculate:

a. the angular speed of the minute hand

b. the angular displacement, in radians, in the time periods:

 i. 12 noon to 12.20     ii.  12 noon to 14.30.

c. the linear speed of the tip of the minute hand.

Solutions

a. The minute hand goes round once (2π rad) every hour.  

One hour is 3600 s.

 Angular speed =
angular displacement

time taken
=

2π

3600
= 0.001 75 rad s 1

b. i. 20 minutes is 1

3
 of 2π, so 

2π

3
 rad

 ii. 2.5 h is 2π × 2.5 = 5π rad

c. v = rω= 4.2 × 0.001 75 = 0.007 33 m s 1 
= 7.3 mm s 1

Worked example 30

The International Space Station (ISS) moves in an approximately circular orbit, 420 km above Earth’s surface, with a 

linear speed of7650 m s−1. The radius of Earth is 6370 km. Calculate the number of times the ISS orbits Earth each day.

Solution

The orbital radius of the ISS is 6370 + 420 = 6790 km. The period of one orbit is

circumference

linear speed
=

2π × 6790 × 103

7650
= 5.58 × 103 s

The number of orbits in one day (24 × 60 × 60 seconds) is therefore 
24 × 60 × 60

5.58 × 103
= 15.5.

Centripetal acceleration 

An object moving at a constant angular speed in a circle is being accelerated. 

Newton’s rst law tells us that, for any object in which the direction of motion or 

the speed is changing, there must be an external force acting. In circular motion, 

the direction of motion is constantly changing and so the object accelerates, 

andthere must be a force acting on it to cause this to happen. The force that acts 

to keep the object moving in a circle is called the centripetal force. This force 

leads to a centripetal acceleration. (The word “centripetal” originates from two 

Latin words, centrum and petere — literally “to lead to the centre”.)
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Practice questions

43. A paper disc of radius R rotates at a constant angular 

speed about an axis passing through the centre of the 

disc. P and Q are two particles of the disc. P is on the 

circumference of the disc and Q is at a distance of 
R

2
from the centre.

2

rotation

R

R

Q

P

What is the ratio 
centripetal acceleration of P

centripetal acceleration of Q
?

A. 
1

2

C. 2

B. 1

D. 4

44. Neutron stars, known for their relatively small size 

andfast rotation, are compressed remnants of 

exceptionally massive supergiant stars. A neutron star 

has a radius of 10 km and rotates at a frequency of 

5 Hz. For a particle on the equator of the neutron star, 

calculate:

a. the linear speed

b. the centripetal acceleration.
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Worked example 31

Using the data provided in Worked example 30, calculate the centripetal acceleration of the International Space 

Station in its orbital motion.

Solution

a =
v 2

r
=

76502

(6370 + 420) × 103
= 8.6 m s 2

The numerical value of the answer is slightly less than the acceleration of free fall near Earth’s surface (9.8 m s−2). This is 

not a coincidence! In Topic D.1 you will learn that all bodies moving in a gravitational field of a massive object such as 

Earth experience an acceleration due to gravity whose magnitude decreases with the distance from the centre of the 

object. At an altitude of 420 km, the gravitational acceleration is reduced to about 88% of its value on Earth’s surface.

Worked example 32

A cyclist rides along a circular track of radius 25 m at a constant linear speed of 30 km h−1. Calculate:

a. the angular speed of the cyclist

b. the centripetal acceleration.

Solutions

a. The linear speed should be converted to m s 1, v =
30

3.6
= 8.3 m s 1. Angular speed ω=

v

r
=

30 ÷ 3.6

25
= 0.333 rad s 1

b. Acceleration a =ω
2r = 0.3332

× 25 = 2.8 m s 2

The centripetal acceleration is directed inwards towards the centre of the circle. 

The acceleration is always at 90° to the velocity vector. 

The centripetal acceleration a is given by

a =
v2

r
=ω

2r = vω
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45. A Ferris wheel rotating at a constant angular speed 

completes two revolutions per minute. Passengers 

riding on the Ferris wheel move at a linear speed 

of3.0 m s−1. 

 Calculate:

a. the angular speed of the Ferris wheel

b. the radius of the Ferris wheel

c.  the centripetal acceleration of a passenger taking 

the ride.

• Tool 3: Determine the effect of changes to variables 

on other variables in a relationship.

• Inquiry 1: Identify and justify the choice of 

dependent, independent and control variables.

• Inquiry 3: Identify and discuss sources and impacts of 

random and systematic errors.

• Inquiry 3: Explain realistic and relevant improvements 

to an investigation.

This experiment tests the relationship m
v2

r
= Mg

and uses the simple apparatus shown in Figure 58. To do 

this an object is whirled in a horizontal circle.

mass, m

r

glass tube

paper clip

string

weight (Mg)

▴ Figure 58 A simple experiment to conrm F = m 
v2

r

• An object (of weight Mg) hangs from one end of 

a string and a mass (a rubber bung of massm) is 

attached to the other end of the string. A paper clip is 

attached to the string below a glass tube. The clip is 

used to ensure that the radius of rotation of the bung 

is constant. The bung should be rotated at a speed 

so that the paper clip stays just below the glass tube. 

• The tension in the string is the same everywhere 

(whether below the glass tube or above in the 

horizontal part). This tension is equal to Mg, where M 

is the mass of the object that hangs vertically. 

• Use an angular speed at which you can comfortably 

count the number of rotations of the bung in a 

particular time. From these data you can work out the 

linear speed v of the bung. 

• To verify the equation, you need to test each variable 

against the others. There are several possible 

experiments. In each of these, one variable is 

held constant (a control variable), oneis varied 

(the independent variable), and thethird (the 

dependent variable) is measured. One example is: 

Variation of v with r

• In this experiment, m and M must be unchanged. 

Move the clip to change r and, for each value ofr, 

measure v using the method given above. 

• Analysis: 
v2

r
= constant and so a graph of v2 against r

ought to be a straight line passing through the origin. 

Alternatively, for each experimental run, you might 

simply divide v2 by r and look critically at the result 

(which should be the same each time) to see if the 

value is constant. You should assess the errors in the 

experiment and put error limits on your value of 
v2

r

• What are other possible experimental tests? 

• In practice, the string cannot rotate in the horizontal 

plane because of its own weight. How can you 

improve the experiment or the analysis to allow this? 

Investigating how F varies with m, v and r
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Centripetal force 

Newton’s second law of motion in its simpler form tells us that F = ma using the 

usual symbols. The second law applies to the force that provides the centripetal 

acceleration, so the magnitude of the force is:

ma = m 
v2

r
= mω

2r = mvω

The question you need to ask for any situation involving circular motion is: what 

force provides the centripetal force in that situation? The direction of this force 

must be along the radial line between the object and the centre of the circle.

When discussing circular motion, you will almost certainly 

have heard the term “centrifugal force” — probably 

everywhere except in a physics laboratory! However, so 

far this course has exclusively used “centripetal force”. 

Why are two terms in use, and which is correct? 

The alternative idea of centrifugal force comes from 

common experience. Imagine you are in a car going 

round a circle at high speed. You will undoubtedly feel 

that you are being “ungoutwards”. 

One way to explain this is to imagine the situation from 

the point of view of a helicopter passenger hovering 

stationary above the circle around which the car is 

moving (Figure 59). From the helicopter you can see the 

passenger attempting to go in a straight line (Newton’s 

rst law). Nevertheless, the passenger is forced to 

move in a circle through friction forces acting between 

passenger and car seat. If the seat is frictionless and the 

passenger is not wearing a seat belt, then he or she will not 

get the “message” that the car is turning. The passenger 

will continue to move in a straight line eventually meeting 

the door that is turning with the car. If there is no door, 

what direction will the passenger take? 

Another way to explain this is to imagine yourself in the 

car as it rotates. This is a rotating frame of reference thatis 

accelerating and so does not obey Newton’s laws of 

motion. You instinctively think that your rotating frame is 

stationary. Therefore, your tendency to go in what you 

believe to be a straight line feels like an outward force 

away from the centre of the circle (remember that the rest 

of the world now rotates round you, and the straight line 

you imagine that you are travelling along is actually part 

of a circle). Think about a cup of coee sitting on the oor 

of the car. When there is insucient friction at the base 

of the cup, the cup will slide to the side of the car. In the 

inertial frame of reference (Earth) the cup is trying to go 

in a straight line. In your rotating frame of reference you 

have to “invent” a force acting outwards from the centre 

of the circle to explain the motion of the cup.

There are many examples of changing a reference frame 

in physics. Research the Foucault pendulum and perhaps 

go to see one of these fascinating pendulums in action 

or set one up in a high-ceilinged room in your school. 

Find out what is meant by the Coriolis force and how it 

aects the motion of weather systems in the northern and 

southern hemispheres. 

Physicists oen change reference frames. It is the Nature 

of Science to adopt alternative frames of reference to 

make explanations and theories more accessible. 

Models — Centripetal or centrifugal?

real centripetal force

supplied by friction

at tyres

direction of car

straight on direction

at this instant

car

▴ Figure 59 The centripetal force acting on a car seen from above.
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Centripetal accelerations and forces in action 

Satellites in orbit 
Figure 60 shows satellites in a circular orbit around Earth. Why do satellites follow 

these paths? Gravitational forces act between the centre of mass of Earth and the 

centre of mass of the satellite. The direction of the force acting on the satellite 

is always towards the centre of the planet and it is the gravity that supplies the 

centripetal force. Topic D.1 returns to the subject of gravitational orbits and looks 

at them in a quantitative way.

Amusement park rides 
Many amusement park rides take their passengers in curved paths. In the type 

of ride called a rotor (Figure 61), the riders are inside a drum that rotates about 

a vertical axis. When the rotation speed is large enough, the people are forced 

to the sides of the drum and the oor drops away. The people are quite safe 

because they are “held” against the inside of the drum as the reaction at the wall 

provides the centripetal force to keep them moving in the circle. The people in 

the ride feel the reaction between their spine and the wall. Friction between the 

rider and the wall prevents the rider from slipping down the wall.

Turning and banking 
When a driver wants to make a car turn a corner, a resultant force must act 

towards the centre of the circle to provide a centripetal force. The car is in vertical 

equilibrium (the driving surface is horizontal) but not in horizontal equilibrium. 

Turning on a horizontal road 
For a horizontal road surface, the friction force acting between the tyres and the 

road becomes the centripetal force. The friction force is related to the coecient 

of friction and the normal reaction at the surface where friction occurs (Figure 62). 

The centripetal force required must be less than the frictional force if the car is not 

to skid: 

m 
v2

r
 < µ

s
mg

where µ
s

is the static friction coecient of friction. The expression can be 

rearranged to give a maximum speed before skidding occurs of

v
max

= µ
s
gr

for a circle of radius r

weight

Reaction of

wall on rider
friction

force

N

▴ Figure 61 The “rotor” fairground ride 

in action.

geostationary

orbit

polar

orbit

▴ Figure 60 Satellites in orbit. The 

polar orbit takes about 90 minutes. 

Ageostationary satellite orbits once in 

24hours and so appears to sit at one point 

above the equator.

elevation

reaction, R

centre of circle

mg, W

friction

plan

direction

friction

▴ Figure 62 How friction between the 

road and the tyres enables a car to move 

around a circle.

(a)

(b)

The expression for work done (= force × displacement in direction of force) 

has a vector nature that becomes apparent when dealing with motion in 

a circle. This is outlined in TopicA.4. The centripetal force thatis required 

to maintain a circular trajectory acts towards the centre of the circle around 

which the object is moving. The displacement is zero in this direction as 

the circle radius is constant, and the work doneis also zero. Of course, any 

force in the direction of travel — to overcome air resistance, for example — will 

require a transfer of energy in the usual way.

Why is no work done on a body moving along  

a circular trajectory?
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Banking 
Tracks for motor or cycle racing, and even ordinary roads for cars are sometimes 

banked (Figures 63). The curve of the banked road surface is inclined at an angle, 

so that the normal reaction force contributes to the centripetal forcethat is needed 

for the vehicle to go round the track at a particular speed. Bicycles and motorcycles 

can achieve the same eect on a level road surface by “leaning in” to the curve. 

Tyres do not need to provide so much friction on a banked track compared to a 

horizontal road; this reduces the risk of skidding and increases safety. 

normal

reaction

resultant

force

weight

friction

▴ Figure 63 (a) A cycle velodrome is banked at varying angles to assist the cyclists. (b) The 

forces that act on a cyclist ona banked surface.

(b)(a)

Although you will not be asked 

to solve mathematical problems 

on this topic in your IB physics 

examination, you do need 

to understand the principles 

ofbanking. 

Figure 64 shows forces acting on an object rolling round a banked track. This is 

simplied to a point object moving in a circle to remove the complications of size 

and shape. A horizontal centripetal force directed towards the centre of the circle is 

needed for the rotation. The other forces that act on the ball are the force N normal to 

the surface (which is at the banking angle θ) and its weight mg acting vertically down. 

The vector sum of the horizontal components must equal the centripetal force. 

The centripetal force is equal to N sin θ. The normal force resolved vertically is 

Ncos θ and is, of course, equal and opposite to mg. So,

F
centripetal

= N sin θ = (
mg

cos θ)  sin θ = mg tan θ

As usual, F
centripetal

=
mv2

r
 and therefore tan θ =

v2

gr

The banking angle is correct at a particular speed and a particular radius. Notice 

that it does not depend on the mass of the vehicle, so a banked road works for all 

the road users provided that they are going at the same speed. At speeds greater 

or less than this, there will need to be a horizontal component of friction supplied 

between the tyre and the road surface to prevent a slide. The direction of the 

frictional force can change: at speeds higher than the correct banking speed it is 

towards the centre of the circle, at lower speeds towards the outside of the bend.

Some more examples of banking
• Commercial airline pilots y around a banked curve to change the direction 

of a passenger jet. When the angle is correct, the passengers will not feel the 

turn, they just feel a marginal increase in weight pressing down on their seat. 

• Some high-speed trains tilt as they go around curves so that the passengers 

feel more comfortable. 

N

N
 c

o
s
 θ

N sin θ

mg

θ

θ

▴ Figure 64 The forces involved 

inbanking.
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Worked example 33

A cyclist riding at a speed of 11 m s−1 attempts to make a sharp turn on a horizontal road. The turn can be modelled as 

a circle of radius 15 m.

a. State the force that provides the centripetal acceleration of thebicycle.

The coefficient of static friction between the tyres of the bicycle and the road is µ = 0.75.

b. Deduce whether the cyclist will be able to turn without skidding.

c. Outline how banking of the turn can increase the maximum safe speed of the cyclist.

Solutions

a. The centripetal force is the friction between the tyres and the road. The direction of this force is towards the centre of 

the turn.

b. The maximum centripetal force is µmg, where m is the combined mass of the cyclist and the bicycle. This can be 

equated to the expression m 
v 2

r
 for the centripetal force, to give the condition for the maximum safe speed v of the 

bicycle. m 
v 2

r
= µmg; hence v = µgr= 0.75 × 9.8 × 15 = 10.5 m s 1  The cyclist rides just above this speed, so he 

will start skidding during the turn.

c. On a banked road, the normal reaction force has a horizontal component that adds to the frictional force, increasing 

the maximum centripetal force and hence the maximum centripetal acceleration.

Worked example 34

An amusement park ride called the rotor (see Figure 61) is a large cylinder rotating about the vertical axis. When the 

cylinder rotates fast enough, the floor drops out and the people taking the ride remain motionless against the inside 

of the cylinder.

a. State the force that provides the centripetal acceleration of a passenger taking the rotor ride.

b. Show that for the passenger to not slide down the inside of the cylinder, the centripetal acceleration amust satisfy 

the condition a ≥
g

µ
, where µ is the coefficient of static friction between the passenger and thecylinder.

The coefficient of static friction is 0.36. The inner radius of the cylinder is 4.0 m.

c. Determine the maximum period of rotation of the cylinder so that the passenger will not slide down the inside of 

the cylinder.

Solutions

a. The centripetal force in this situation is the normal reaction force on the person from the inner surface of the cylinder.

b. To prevent the passenger from sliding down, the static frictional force acting upwards must be equal to the 

passenger’s weight, mg. The static frictional force cannot be greater than µN, where N is the normal force from the 

cylinder. This leads to the condition µN ≥ mg. But N is the force that provides the centripetal acceleration a, so  

N = ma. Substitution into the previous inequality gives µma ≥ mg; hence a ≥
g

µ

c. It is convenient to first find the minimum angular speed ω of the cylinder.  

ω
2r ≥

g

µ
, so ω≥ √√ 9.8

0.36 × 4.0 = 2.61 rad s 1. Themaximum period of rotation is then T =
2π
ω

=
2π

2.61
= 2.4 s. 

This corresponds to about 25 rotations per minute!
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Practice questions

46. A small box is placed at the 

edge of a turntable of radius 

30 cm that rotates about the 

vertical axis. The coecient of 

static friction between the box 

and the turntable is 0.70.

a.  Determine the maximum 

angular speed of the turntable so that the box does 

not fall off.

b.  Calculate the period of rotation of the turntable 

that corresponds to the angular speed you have 

found in part a.

47. Modern jet ghter aircras can structurally sustain 

accelerations of up to about 9 g during manoeuvring 

(1g is equivalent to the acceleration offree fall, 9.8 m s−2).

 A jet aircra ying at a speed of 280 m s−1 is to make a 

circular turn in a horizontal plane.

 Estimate the minimum possible radius of the turn.

48. A small marble rolls around 

a horizontal circular path on 

the inner surface of a conical 

bowl. Thesurface of the 

bowl makes an angle θ with 

the vertical.

a.  Draw a free-body 

diagram of the forces acting on the marble.

b.  Show that the acceleration a of the marble is given 

by a=

g

tan θ

 The speed of the marble is 1.5 m s−1 and its mass 

is3.0 g. The angle of the bowl is θ = 28°.

c. Calculate:

 i. the radius of the marble’s path

 ii.  the magnitude of the reaction force on the 

marble from thebowl.

 A small frictional force acts on the marble so that it 

gradually spirals down the bowl along a path that can 

be modelled as a circle of slowly decreasing radius.

d.   Predict the effect this will have on the angular 

speed of the marble.

turntable rotation

box

marble
path of

the

marble
θ
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Worked example 35

An aircraft flying at a constant speed makes a banked turn in a horizontal 

plane. The wings of the aircraft make an angle θ with thehorizontal.

a. Draw a free-body diagram showing forces acting on the aircraft in the 

vertical plane.

b. The speed of the aircraft is 180 m s 1 and the radiusof the turn is 7400 m. 

Determine the banking angle θ

Solutions

a. The forces on the aircraft are the lift force (acting perpendicular to the 

plane ofthe wings, so at an angle θto the vertical) and the weight. 

The diagram also shows the resultant force on the aircraft, which acts 

towards the centreof theturn and provides the centripetal acceleration. 

It is important to realize thatthis is not an independent forcebut rather 

the vector sum of the lift force and weight.

b. The centripetal acceleration of the aircraft is a=

1802

7400
= 4.38 m s 2.  

The lift force can be resolved into horizontal and vertical components. 

The horizontal component is equal to the centripetal force on the aircraft, 

ma, and the vertical component is equalto the weight, mg. Applying 

trigonometry to vector components leads to  

tan θ =

resultant force

weight
=

ma

mg
=

a

g
. From here, tan θ =

4.38

9.8
= 0.447 ⇒ θ = 24°.

θ

li force

resultant force

weight

θ
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radius of

curvature

v

▴ Figure 67 A car going over a curved 

bridge.

Moving in a vertical circle 

The examples so far have been of motion around a horizontal circle. The amount 

of thrill from a ride such as that in Figure 65 depends on its height and speed, 

and the forces that act on the riders. 

How must the horizontal situation be modied when the circular motion of the 

mass is in a vertical plane? What forces act when motion is in a vertical circle? 

Imagine a mass on the end of a string that is moving in a vertical circle at 

constantspeed. 

Look carefully at Figure 66 and notice the way in which the tension in the string 

changes as the mass goes around in an anticlockwise direction.

Begin with the case when the string is horizontal, at point A. The weight acts 

downwards and the tension in the string is the horizontal centripetal force 

towards the centre of the circle. 

The mass continues to move upwards and reaches the top of the circle at B. At 

this point, the tension in the string and the weight both act downwards. Thus,

T
down

+ mg = m 
v2

r

and therefore

T
down

= m 
v2

r
− mg

The weight of the mass combines with the string tension to provide the centripetal 

force and so the tension required is less than the tension T when the string is horizontal. 

At C, the bottom of the circle, the tension and the weight both act vertically but in 

opposite directions, so

T
up
= m 

v2

r
+ mg

At the bottom, the string tension must include the weight and the required 

centripetal force. 

As the mass moves around the circle, the tension in the string varies continuously. 

It has a minimum value at the top of the circle and a maximum at the bottom. 

Thebottom of the circle is the point where the string is most likely to break. 

Whenthe maximum breaking tension of the string is T
break

, then, for the string to 

remain intact,

T
break

 > m 
v2

r
+ mg

and the linear speed at the bottom of the circle must be less than

√√ r  (T
break

− mg)
m

If this seems to you to be a very theoretical idea without much practical value, 

think about a car going over a bridge (Figure 67). Assuming that its shape is part 

of a circle, then the bridge will have a radius of curvature r. What is the speed at 

which the car will lose contact with the bridge?

This is the case considered above, where the object, in this case, the car, is at the 

top of the circle. What is the “tension” (in this case, the force between car and 

road) when the car wheels lose contact with the bridge? To answer this question, 

you might begin with a free-body diagram. You should be able to show that the 

car loses contact at a speed equal to gr . 

▴ Figure 66 Forces acting in circular 

motion in a vertical plane.

mg

T T

Tdown

Tup

mg

mg

mg

C

AD
A

B

▴ Figure 65 A theme park ride.
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Practice questions

49. A stone of mass 0.25 kg attached to the end of a 

string is moving in a vertical circle of radius 0.80 m at a 

constant speed. The string will break if the tension in it 

exceeds 10 N.

a. Explain whether the string is more likely to break 

when the stone passes the lowest or the highest 

point of the path.

b. Calculate:

i. the minimum speed of the stone so that the 

string remains taut at the highest point

ii. the maximum speed of the stone so that the 

string doesn’t break.

50. A car of mass m moving at speed v goes over a bridge 

whose central part can be modelled as a section of a 

circle of radius r (see Figure 67).

a. Derive an expression, in terms of m, v and r, for the 

magnitude of the normal reaction force between 

the car and the bridge as the car passes the top.

It is given that r= 60 m and m=1400 kg.

b. Calculate:

i. the normal reaction force on the car at the top 

of the bridge when the car moves at 50 km h−1

ii. the speed that the car would have if the 

normal reaction force at the top of the 

bridgewas reduced to 10% of its value on a  

horizontal road.

A. Space, time and motion 
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Worked example 36

A hammer thrower in an athletics competition swings the hammer on its chain round 7.5 times in 5.2 s before 

releasing it. The hammer describes a circle of radius 2.1 m and has a mass of 4.0 kg. Assume that the hammer is  

swung in a horizontal circle and that the chain is horizontal.

a. Calculate, for the rotation:

 i. the average angular speed of the hammer

 ii. the average tension in the chain.

b. Comment on the assumptions made in this question.

Solutions

a. i. 7.5 revolutions = 15π rad 

  Angular speed =
15π

5.2
= 9.1 rad s–1

 ii.  Tension in the chain = centripetal force required for rotation.

  Centripetal force =mrω
2
= 4.0 × 2.1 × 9.12

= 690 N

b. The thrower usually inclines the plane of the circle at about 45° to the horizontal in order to achieve maximum 

range. Even if the plane were horizontal, then the weight of the hammer would contribute to the system so that a 

component of the tension in the chain must allow for this. Both assumptions are unlikely.
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Energy is a central concept throughout all of science. 

During an energy transfer, work can be done and the rate 

at which energy is transferred shows the power of the 

system that is doing the transfer. The law of conservation 

of energy predicts the overall transfers that occur when 

energy changes its nature. We can predict this change, 

either within a system or between systems. The fact that a 

conservation law exists underlines the importance of the 

energy concept in science. 

So far in this theme, you have used derived equations (such 

as the suvat kinematic equations) and known physics laws 

(such as Newton’s laws of motion) to predict the outcomes 

of mechanical changes. Youcan also calculate outcomes 

in mechanics by considering the energy changes. Indeed, 

in some circumstances, considering energy transfer can be 

the only reliable method possible.

Figure 1 shows the transfer of energy between many forms 

in a fountain. Kinetic energy is transferred to the water in 

this fountain as it rises into the air. As it does so, the kinetic 

energy is transferred to gravitational potential energy. 

The water does work against air resistance which causes 

energy to be transferred to thermal energy and the water 

will be marginally hotter when it returns to the ground. The 

lights also transfer energy (fromelectricalenergy).

How are concepts of work, energy and power used to predict changes within a system?

How can a consideration of energetics be used as a method to solve problems in kinematics?

How can transfer of energy be used to do work?

106

A.3 Work, energy and power

▴ Figure 1 A water fountain is an example of energy transfer. 

• conservation of energy and work done by a force

• energy transfers

• kinetic energy, gravitational potential energy and 

elastic potential energy

• power as the rate of doing work and transferring 

energy 

• efficiency 

• Sankey diagrams.

In this topic, you will learn about: 

Introduction 

Topic A.3 examines the physics of energy transfer. The importance of energy only 

becomes clear when it moves between different forms. As this happens, we can 

make energy do useful work. 

The study of energy has a long history stretching back to Aristotle (384–22BCE). 

However, the energy concept that we use today stems from a proposal by 

Gottfried Leibniz (1646–1716) who suggested a “vis viva” (living force) which 

was mass × speed2. His “living force” was transformed into what we call “heat” 

as objects decelerate. The mathematician and natural philosopher Emilie du 

Châtelet (1706–49) is believed to have been the first person to recognise the 

concept of energy conservation in a closed system. By the middle of the 19th 

century, many people working in industry were examining the concept of 
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energy in ways close to our present understanding. The idea that energy can 
be transferred was sealed by James Prescott Joule (1818–89) when he linked 

mechanical work to the production of heat in a quantitative way.

Energy forms and transfers 

We now recognize that energy can be stored in many different forms. Some 
ofthe important ones are listed in Table 1.

Energy Nature of energy associated with… Note

kinetic the motion of a mass

(gravitational) potential the position of a mass in a gravitational eld sometimes the word “gravitational” is not used

electric/magnetic charge owing

chemical atoms and their molecular arrangements

nuclear the nucleus of an atom related to a mass change by ΔE=Δmc2

elastic (potential) an object being deformed The word “potential” is not always used.

thermal (heat) a change in temperature or a change ofstate A change of state is a change of a substance 
between phases, i.e. solid to liquid, or liquid 

to gas. The colloquial term “heat” is usually 
acceptable when referring to situations 
involving conservation of energy.

mass conversion to binding (nuclear) energy when 
nuclear changes occur

vibration (sound) mechanical waves in solids, liquids or gases The amount of sound energy transferred is 

almost always negligible when compared with 
other energy forms.

light photons of light another form of electric/magnetic energy, 

sometimes called “radiant energy”

▴ Table 1 The dierent forms of energy and what they are associated with.

Energy can be transferred between any of its forms, and it is during these 

transfers that you see the effects of energy. For example, water can fall vertically 
to turn the turbine of a hydroelectric power station and drive a generator. Many 
energy transfers occur in this apparently simple example. Water molecules are 

attracted gravitationally by Earth and accelerate downwards through a pipe. 
Their momentum is transferred to the blades of the turbine which rotates, gaining 

rotational energy, to turn the coils in the generator. As the coils turn, electrons are 
forced to move and there is an electric current in the coil. This chain of physical 
processes can be summed up as the transfer of gravitational potential energy of 

the water into electrical energy. 

Another example of an energy transfer is when an animal converts stored 
chemical energy in its muscles into kinetic and gravitational potential energy. 

Some of this chemical energy is also transferred to frictional energy losses.

You will learn more about the 
later developments of energy 
transfer — a study now known as 

thermodynamics — in Topic B.4.
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Topic A.3      Work, energy and power
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You should learn to recognize the physical (and sometimes chemical) processes that 

occur in an energy transfer. It is easy to describe the changes in broad terms. Always 

try to explain the effects in terms of microscopic or macroscopic interactions. 

Energy is a scalar quantity, which means it has no direction. Whatever the form of 

the energy transfer, we use a unit of energy called the joule (J). This is in honour 

of James Joule, the English scientist, who devoted his scientific efforts to studying 

energy and its transfers.

One joule is the energy transferred when a force of one newton 

actsthrougha distance of one metre.

In some applications, such as when discussing the output of power stations, 

the joule is too small a unit, so you will frequently see energies expressed in 

megajoules (MJ or 106 J) or even gigajoules (GJ or 109 J). You should become used 

to working both in powers of ten and with the SI prefixes when dealing with 

energy quantities.

• Tool 3: Use of units (for 

example, eV, eVc 2, ly, pc, 

h, day, year) whenever 

appropriate.

You will come across different 

energy units in some parts of 

science. These have usually arisen 

historically. For example, the 

electronvolt (eV), is the energy 

gained by an electron when it is 

accelerated through a potential 

difference of one volt. Another 

example is the calorie which is 

sometimes used to talk about the 

energy in food. One calorie (cal)  

is 4.2 J. 

You will learn the detail about any 

special units used in the course in 

the appropriate place in this book.

Other energy units

Elsewhere in the course, equilibrium states, such as those in a star, are 

described in terms of a balance of forces. For the star, these are inward 

collapse due to gravitation and outwards expansion due to gas pressure. 

However, systems that are in equilibrium can also be described as having 

attained a minimum in their total energy. Imagine a cylinder of gas with a 

piston and a weight resting on the piston. The total energy of the system is 

the internal energy of the gas together with the gravitational potential energy 

of the weight. When the volume of the gas is too small for equilibrium, forces 

in the gas will push the piston and weight upwards. If this change occurs 

slowly, then the entropy of the system and surroundings (Topic B.4) will be 

constant. It is possible to show that when the force upwards on the piston 

(pressure × piston area) is equal to the weight acting downwards, the energy 

is minimised.

How is the equilibrium state of a system, such as Earth’s 

atmosphere or a star, determined?

Worked example 1

Describe and explain the energy changes that occur when:

a. a balloon is inflated

b. the air is released from the balloon.

Solutions

a. Air molecules enter the balloon with a certain amount of kinetic energy. The newly added kinetic energy is 

distributed among the molecules of air through intermolecular collisions, and results in an increased pressure and 

increased force outwards on the skin of the balloon. As the balloon expands, the elastic potential energy stored 

in the skin of the balloon increases, until a new equilibrium is established between the tension in the skin and the 

atmosphericpressure.

b. The opposite process happens when the balloon is released and deflated. The elastic potential energy stored in the 

skin of the balloon is converted to kinetic energy of the air leaving the balloon.
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Conservation of energy

When energy transfers from one form to another nothing is lost (providing that 

you take care to include every single form of energy involved in the transfers). This 

is known as the principle of conservation of energy which states that energy 

cannot be created or destroyed.

Physicists now recognize that mass must be included in any table of energy forms 

because if the mass changes the total energy also changes. For most changes, 

the mass difference between the beginning and end of a process is insignificant, 

but in a nuclear reaction it makes a major contribution to the transfer.

The rule that energy is conserved 

underpins this entire topic. 

Without the conservation of 

energy and the concept of a 

conservative force, many of our 

theories would have no basis. 

But you will see many conservation 

laws that apply throughout science. 

Topic B.5 shows that charge cannot 

be lost or destroyed. Several other 

properties of nuclear particles are 

also conserved (Theme E), so it is 

possible to predict the outcomes of 

nuclear interactions and events.

Here in Theme A, kinetic energy 

is an attribute of a moving object. 

In Theme C, the assertion is 

that energy is transferred by the 

wave without displacement of 

the medium carrying it. This is a 

result of the cyclic nature of the 

particle motion in the medium. 

These particles undergo cycles of 

displacement and, as they move, 

are able to transfer energy in the 

propagation direction of the wave. 

When the wave has passed, the 

individual particles return to their 

equilibrium positions. They were 

the agents of energy transfer only 

while they were moving.

Where do the laws of 
conservation apply in other 
areas of physics? (NOS)

How do travelling waves 
allow for a transfer of 
energy without a resultant 
displacement of matter?

The conservation of energy is a law of physics. As such it is empirical — that is, 

based on observation — rather than something that can be derived through 

mathematics or deduced with logic. Unlike a scientific theory, a scientific law 

makes no attempt to explain why the observations are as they are. In other 

words, the law of conservation of energy does not explain why energy is 

conserved. It merely states thatitis.

Noether’s theorem can be used to derive the conservation of energy from the 

fact that the laws of physics do not change over time. This merely moves the 

argument to the constant nature of the laws of physics — we have a law that 

they do not change over time; however, we cannot explain why.

Do laws of physics count as a valid way of knowing?

Laws of physics

Emmy Noether (1882 –1935) was a mathematician working in Germany in the 

early 20th century. In 1918, she published work, now referred to as Noether’s 

theorem, which links the conservation of energy to the fact that the laws of 

physics do not change over time. A similar application to the conservation 

of momentum links this to the fact that the laws of physics do not change in 

different spaces.

At that time, it was unusual for women to enter higher education (she was one 

of only two female students out of almost one thousand) and even more unusual 

for women to teach at a university. To do this she had to lecture under the name 

of another mathematician and often was not paid for her work. However, she 

was held in high esteem by some of the most renowned mathematicians of the 

age and was always encouraged to persevere in her work.

When she died, Albert Einstein wrote in the New York Times that she was “the 

most significant creative mathematical genius thus far produced since the 

higher education of women began”.

Constructively assessing the contribution of peers ATL
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Doing work

In 1826, Gaspard-Gustave Coriolis was studying the engineering involved in 

raising water from a flooded underground mine (Figure 2). He realized that 

energy was being transferred when the steam engines were pumping the water 

through a vertical distance. He described this energy transfer as “work done”, 

and he recognized that the energy was transferred because the pumping 

engines exerted a force on a particular mass of water and lifted it from the bottom 

of the mine to the surface.

In other words:

work done (in J) = force exerted (in N) × distance moved in the direction of the 

force (in m)

When a weight of 5 N of water was lifted vertically through a height of 150 m, 

then the work done by the engine on the water was 5 × 150 = 750 J.

In the underground mine Gaspard studied, the force and the distance moved 

were in the same direction (vertically upwards), but in many cases this will not be 

the case. For example, in a sand yacht (Figure 3), the force F from the wind acts in 

one direction and the sail is set so that the yacht moves through a displacement s

that is at an angle θ to the wind (Figure 4). 

Because the distances moved in the direction of the force and by the yacht are 

not the same, you can use the force component in the direction of movement. In 

this case, work done = F cos θ × s

▴ Figure 2 A mine steam engine.

▴ Figure 3 Sand yachts.

Work done against a resistive force

Work is done when a resistive force is acting too. Consider a box being pushed 

at a constant speed in a horizontal straight line (Figure 5). For the speed to be 

constant, friction forces must be overcome. The force that overcomes the friction 

may not act in the direction of movement. Again, the work done by the force is 

force acting × distance travelled × cos θ. 

▴ Figure 4 The wind does work on the sand yacht, even though the wind direction and the 

direction in which the yacht travels are not the same.

▴ Figure 5 Work done to overcome a resistive force.

force exerted

by wind, F

sail
θ

distance moved

by sand yacht, s

plan view

θ

direction of motion

horizontal component

of force = F × cos θ
box

force  FO
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



Practice questions

1. A particle travels a distance of 2.5 m along a straight 

line. A constant force of magnitude 0.60 N acts on the 

particle. Calculate the work done by the force on the 

particle, when the angle between the force and the 

displacement of the particle is:

a. 60°

b. 90°

c. 160°.

2. A car moves at a constant speed of 50 km h 1 on a 

horizontal road. Thework done by the driving force of 

the car in one minute is 190 kJ.

 Calculate:

a. the distance travelled by the car in one minute

b. the magnitude of the resistive force acting on the car

c. the work done by the resistive force.

A. Space, time and motion
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Worked example 2

The thrust (driving force) of a microlight aircraft engine is 3.5 × 103 N. Calculate the work done by the thrust when the 

aircraft travels a distance of 15 km.

Solution

Work done = force × distance = 3500 × 15 000 = 5.3 × 107 J = 53 MJ

Worked example 3

A large box is pulled a distance of 8.5 m along a rough 

horizontal surface by a force of 55 N that acts at 50° to the 

horizontal. Calculate the work done in moving the box 8.5 m.

Solution

The component of force in the direction of travel is  

55 × cos 50° = 35.4 N.

The work done = this force component x distance travelled = 35.4 × 8.5 = 301 J.

Worked example 4

A cart rolls down a ramp that makes an angle of 25° with the 

horizontal. A horizontal force of magnitude 6.0 N acts on the cart. 

The cart moves a distance of 0.75 m down the ramp. Calculate the 

work done by the horizontal force.

Solution

The angle between the force and the direction of motion is  

180° − 25° = 155°. 

The work done = 6.0 × 0.75 × cos 155° =−4.1 J.

Note that the work done is negative, which indicates that the horizontal force has a component acting against the 

displacement of the cart. In other words, the force opposes the motion of the cart.

8.5 m

55 N

50°

25°

6.0N

155°

6.0N
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Worked example 5

The graph shows the variation with displacement d of a force F that is applied 

to a toy car. Calculate the work done by the force F in moving the toy through a 

distance of 4.0 cm. 

Solution

The work done is equal to the area of the triangle enclosed by the graph and the axis. 

This is 
1

2
× base of the triangle × height of the triangle =

1

2
× 4.0 × 10 2

× 5.0 = 0.10 J.

Worked example 6

An initially stationary ice hockey puck is hit by a stick. The graph 

shows how the force exerted by the stick on the puck varies with the 

distance travelled by the puck.

The work done on the puck is 30 J. Determine the peak force F
max

on thepuck.

Solution

The area under the force-distance graph is 
1

2
× 5 × 10 2 F

max
. On the 

other hand, the area is equal to the work done on the puck.

1

2
× 5 × 10 2 F

max
= 30; hence F

max
=

30 × 2

5 × 10 2
= 1200 N.

Force–distance graphs 

In practice, it is rare for the force acting on a moving object to be constant. Real 

boxes or sand yachts are subject to air resistance and frictional losses. These lead 

to energy losses that vary depending on the speed of the object or the type of 

surface that the object runs over. 

When you know how the force varies with distance, then you can use this to 

calculate the work done. 

For example, when the force is constant (Figure 6(a)), the graph of force against 

distance will be a straight line parallel to the x-axis. The work done is the product 

of force × distance (we are assuming that θ= 90° in this case). This corresponds 

to the area under the graph of force against distance. 

When the force is not constant with distance moved (Figure 6(b)), the work done 

is still the area under the line, but this time you must work a little harder and 

estimate the number of squares under the graph and equate each square to the 

energy that it represents. Energy for one square × number of squares will then 

give you the overall work done. 
▴ Figure 6 The work done in a process 

can be determined by evaluating the area 

under the graph of force–distance moved. There is a further example of this type of calculation later in the topic on elastic 

potential energy. 
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Practice questions

3. The graph shows how the driving force provided by 

the engine of a car varies with the distance moved by 

the car.

0
0 10 20 30 40 50 60 70 80 90 100

distance / m 

0.4

0.8

1.2

1.6

2.0

fo
rc

e
/

10
3

 N

a.  Calculate the work done by the driving force in 

moving the car through a distance of 100 m.

b.  A constant force of 400 N opposes the motion of 

the car. The mass ofthe car is 1600 kg. Calculate 

the acceleration of the car when is hastravelled a 

distance of:

 i. 50 m

 ii. 100 m.

4. The graph shows how a force exerted on an object 

in the direction of its motion varies with the distance 

travelled by the object.
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 Calculate:

a.  the work done by the force when the object has 

moved a distance of 10 m

b.  the distance moved by the object when the work 

done by the force is zero.
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Power

Imagine two people, Renee and Phillipe, with identical body weights (say, 650 N) 

who climb the same hill (70 m high). Because they have the same weight and 

climb the same vertical distance, they both gain the same amount of gravitational 

potential energy. However, Renee climbs the hill in 150 s whereas Phillipe takes 

300 s.

Renee is gaining potential energy twice as fast as Phillipe because Renee’s time 

is half that of Phillipe’s. This is important when we compare machines or people 

taking different times to carry out the same amount of work. 

The quantity power is used to measure the rate of doing work. In other words, 

the number of joules that can be converted every second. Power is definedas:

power =
energy transferred

time taken for change

When the energy change is in joules, and the time for the transfer measured in 

seconds then the power is in watts (W). 

1 W ≡ 1 J s 1

In the example of Renee and Phillipe above, both did 45.5 kJ of work against 

gravity, but Renee’s power in climbing the hill was 
650 × 70

150
= 300 W and 

Phillipe’s was 150 W because Phillipe took twice as long in the climb. 

The use of rate of change — the 

variation of a quantity with time — is 

often found in science. Topic 

A.1 shows the repeated use of 

rate of change of displacement 

leading first to velocity and then 

to acceleration. Power is the rate 

of transfer of energy which has a 

bearing both here and in the work 

on heat capacity and latent heat 

in Theme B. Similar arguments to 

those in mechanics occur in the 

wave theory of Theme C. Topic D.4 

connects the generation of emf 

with rate of change of magnetic 

flux. Finally, the rate of change of 

activity of a sample of a radioactive 

nuclide is important in TopicE.3.

Which other quantities  

in physics involve rates  

of change?
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The equation work done = force × distance can be rearranged to give another 

useful expression for power. 

 power =
work done

time
=

force × distance moved by force

time taken

= force ×
distance moved by force

time taken

This is the same as power = force × speed. The power required to move an object 

travelling at a speed v with a force F is Fv.

Maximum speed of a car 

The maximum speed of any car is determined by several factors. There is a 

maximum force that the engine can exert through the tyres on the road surface. 

But, as with a sphere falling through a fluid, this is not the only force acting. There 

is a considerable drag force on the vehicle due to the air. This force increases 

significantly as the speed of the car becomes larger. Typically, when the speed 

doubles the drag force F
d
 will increase by at least a factor of four, in other words  

F
d
∝ v2

There is a maximum power that the car engine can produce. When the car 

accelerates and the speed increases, the power dissipated in friction also 

increases. When the maximum energy output of the engine every second is 

completely used in overcoming the energy losses, then the car cannot accelerate 

further and has reached its maximum speed.

▴ Figure 7 James Watt (1736–1819).

James Watt was a Scottish 

mechanical engineer who worked 

in the 18th and 19th centuries. He 

improved steam engine design and 

developed a way of making copies 

of paper documents used in offices 

until early in the 1900s.

Watt wanted to sell more engines 

and made money based on the 

amount of coal saved by using his 

more efficient engines. He came 

up with a unit called horsepower 

which enabled him to compare the 

power of his engines to machines 

previously run by horses. One 

horsepower is equal to about 

750 W.

He was also careful to compare 

his engines in a favourable way. 

A horse can generate over ten 

horsepower for short amounts of 

time. But by taking an average over 

one day, Watt convinced potential 

buyers that his engine was more 

powerful than a horse.

Today, the unit of horsepower is still 

widely used by car manufacturers.

Communication skills ATL

Worked example 7

A car is travelling at a constant speed of 25 m s 1 and its engine is producing 

a useful power output of 20 kW. Calculate the driving force required to 

maintain this speed.

Solution

Driving force =
power

speed
=

20 000

25
= 800 N

Worked example 8

A cyclist rides up a 1.5 km long hill at a constant speed in a time of 350 s. The 

cyclist maintains a power of 240 W for the whole ride. The hill makes an angle 

of 3.0° with the horizontal. The mass of the cyclist and the bicycle is 80 kg.

Calculate:

a. the total work done by the cyclist

b.  the forward force exerted on the system of the cyclist and thebicycle

c. the magnitude of the resistive force acting on the system.

Solutions

a. work = power × time = 240 × 350 = 84 kJ

b. force =
work done

distance
=

84 × 103

1.5 × 103
= 56 N
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Practice questions

5. A skier is towed at a constant speed of 1.5 m s 1 by a 

ski li whose cable makes an angle of 60° with the ski 

slope. The rate at which work is being done in towing 

the skier is 180 W.

 What is the tension force in the cable?

A. 60 N B. 120 N

C. 180 N D. 240 N

6. A railway locomotive is driven from rest along a 

horizontal track. The locomotive develops a constant 

power. What is correct about the acceleration of the 

locomotive?

A. It is constant.

B. It increases uniformly with time.

C. It increases from zero to a maximum.

D. It decreases from a maximum to zero.

7. A car of mass 1600 kg is initially at rest and accelerates 

uniformly at 2.5 m s 2. A constant force of 500 N 

opposes the motion of the car.

a. Calculate the driving force acting on the car.

b. For the rst 10 s of the motion, calculate:

i. the total work done by the driving force

ii. the average power developed by the car.

c.  Explain why the power developed by the car must 

increase to maintain a constant acceleration.
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c. The forces opposing the motion of the system are the component of the 

weight acting down the slope, equal to 80 × 9.8 × sin 3° = 41 N, and the 

unknown resistive force. The cyclist rides at a constant speed; hence  

the net force on the system must be zero. Therefore the resistive force  

is 56 − 41 = 15 N.

Kinetic energy (KE) 

Kinetic energy E
k

is the energy an object has because of its motion. Objects gain 

kinetic energy when their speed increases.

An object of mass m is at rest at time t = 0 and is accelerated by a force F for a 

time T. The kinematic equations and Newton’s second law allow us to work out 

the speed of the object v at time t = T. 

The acceleration a is F

m
(using Newton’s second law of motion). 

Therefore v = 0 + 
F

m
T (because the initial speed is zero). So F =

mv

T

The work done on the mass is the gain in its kinetic energy ΔE
k
 and is F × s where 

s is the distance travelled. So, ΔE
k
= F × s =

mv

T
×

vT

2
 because s =

(v + 0) × T

2
 .  

The work done by the force is equal to the gain in kinetic energy and is:

ΔE
k
=

1

2
mv2

Remember that this is the case where the initial speed was 0. When the object is 

already moving at an initial speed u, then the change in kinetic energy will be  

ΔE
k
=

1

2
m(v2 −u2), as shown in Figure 8. 

▴ Figure 8 The speed of an object of 

mass m increases from u to v. The change in 

kinetic energy, ΔE
k
, is 1

2
m(v2 −u2).

m (v2
− u

2)change in KE = 1
2

umass

m

mu
2KE = 1

2

vmass

m

mv
2KE = 1
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Practice questions

8. A railway truck of mass 2500 kg is moving at an initial 

speed of 8.0 m s 1. A forward driving force is applied 

to the truck. The graph shows how the driving force 

varies with the distance travelled. No other forces act 

in the direction of motion.
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 Calculate:

a. the work done on the truck by the driving force

b. the speed of the truck when it has travelled 100 m.

9. A cart of mass 1.2 kg moves up a ramp with an initial 

speed of 2.7 m s 1. The net force acting on the cart is 

constant. The kinetic energy of the cart is halved aer 

0.90 s.

 Calculate, for the rst 0.90 s of motion:

a. the work done on the cart by the net force

b. the nal speed of the cart

c. the distance travelled.
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Worked example 9

A vehicle is being designed to capture the world land speed record. It has a 

maximum design speed of 1700 km h 1 and fully fuelled mass of 7800 kg.

Calculate the maximum kinetic energy of the vehicle.

Solution

1700 km h 1
≡ 472 m s 1

E
k
=

1

2
mv2 = 0.5 × 7800 × 4722 = 8.7 × 108 J = 0.87 GJ

• Tool 3: Select and manipulate 

equations.

There is a subtle piece of notation 

here. When we talk about a value 

of kinetic energy, we write E
k
, 

but when we are talking about a 

change in kinetic energy from one 

value to another then we should 

write ΔE
k 
where “Δ”, as usual, 

means “the change in”.

This equation for ΔE
k
 is one that 

needs a little care. Notice where 

the powers are: they are attached 

to each individual speed. This 

equation ΔE
k
=

1

2
m(v2 −u2) is not 

the same as ΔE
k
=

1

2
m(v−u)2

Kinetic energy can also easily be 

linked to linear momentum p. 

Remember that p = mv and that 

E
k
=

1

2
mv2. Therefore, E

k
 can be 

written as E
k
=

1

2

(mv)2

m
=

p2

2m
 .

Kinetic energy  

equation

Worked example 10

A car of mass 1.3 × 103 kg accelerates from a speed of 12 m s 1 to a speed 

of20 m s 1. Calculate the change in kinetic energy of the car.

Solution

ΔE
k
=

1

2
m(v2 −u2) =0.5 × 1300 × (202 − 122) = 1.7 × 105 J

Worked example 11

An object of mass 0.80 kg moving in a straight line has an initial kinetic 

energy of 24 J. Calculate:

a. the initial speed of the object

b.  the distance in which the object will come to rest when a net force 

of4.0 N opposes the motion.

Solutions

a. 
1

2
× 0.8 × v2 = 24 ⇒ v= √√24 × 2

0.8
= 7.7 m s 1

b. There must be 24 J of work done to stop the motion of the object.  

The force acting is 4.0 N, so the stopping distance is 
24

4.0
= 6.0 m.
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Gravitational potential energy (GPE)

Gravitational potential energy E
p
 is the energy an object has because of its 

position in a gravitational field. When a mass is moved vertically up or down in the 

gravity field of Earth, it gains or loses gravitational potential energy. Only the initial 

and final positions relative to the surface determine the change of GPE ΔE
p
. 

Conservative forces 

There is an important difference between forces such as gravitational forces and 

frictional forces. 

When an object is raised in a gravitational field, the work done is independent of 

the path. It depends only on the start height and end height of the motion. It does 

not depend on the route taken by an object to get from start to finish. The end 

position does not have to be vertically above the starting position. Gravitational 

force is said to be conservative. In other words, it conserves energy. We can 

recover all the energy by moving the object back to the starting point. When the 

object is moved in a closed path, the work done in a conservative field is zero.

In contrast, friction acts between a book and the surface of a table when a book 

is moved on the surface from one point to another. When the book goes directly 

from start to finish, a certain amount of energy will be required to overcome the 

friction. But if the book goes by a longer route, more energy is needed (work 

done = friction force × distance travelled). A force is said to be non-conservative

when the exact route must be known to calculate the total energy conversion. If 

the book is moved back to its starting place, you cannot recover the energy in the 

way that you could when only a gravitational force acts. 

Calculating gravitational potential energy

The work done when an object is raised at constant speed through a change in 

height Δh is, as usual, equal to force × distance moved. In this case, the force 

required is mg and work done, ΔE
p
= mg ×Δh. 

The value of g close to Earth’s surface is 9.8 m s 2, but this value becomes smaller 

when we move away from Earth.

The value of g varies with the location where it is 

measured. This can be in terms of a position at sea level 

at different places on the planet, or it can be in terms 

of height above sea level. The theory behind this is 

explained in more detail in Topic D.1. 

Gravitational field lines extend outwards from the centre 

of a sphere of uniform density. The gravitational force on 

a nearby object is directed along these field lines. With 

a large sphere the size of Earth these are (as far as we are 

concerned) locally at right angles to the surface. However, 

move away from Earth’s surface and the lines begin to 

spread out indicating a reduction in the gravitational pull 

and a smaller value for g. For the scale over which we can 

ignore the non-perpendicular nature of the field lines, 

we can use mgΔh. Otherwise, the full Newtonian law of 

gravitation in Topic D.1 must beused.

The value of g is also highly dependent on the density of 

the material, especially when there are density variations 

close to the surface. This is the basis of gravimetry where 

small local changes in the gravitational field at Earth’s 

surface are measured by instruments on the surface and by 

those carried in orbiting satellites. The observed range is 

from 9.79 m s 2 to 9.83 m s 2

Why is the equation for the change in gravitational potential energy only relevant close to the 

surface of Earth? What happens when moving further away from the surface?

▴ Figure 9 The gain in gravitational 

potential energy is equal to mg ×Δh. 

mass, m

gain in GPE(∆Ep) = mg∆h

g

∆h
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Energy transferring between GPE and KE

The kinetic energy and the gravitational potential energy of a body or system 

can be summed to give a new quantity known as the mechanical energy of the 

system. The mechanical energy of a system is constant provided that the system 

is isolated and is subject only to conservative forces. Thus, a satellite orbiting a 

planet with no atmosphere in an elliptical orbit is constantly transferring energy 

between the kinetic and gravitational potential forms with no overall change in 

the total mechanical energy available.

Sometimes the use of mechanical energy provides a neat way to solve a problem. 

For example, in Figure 10 a snowboarder is moving down a curved slope starting 

from rest (u = 0). The vertical change in height of the slope is Δh = 50 m. What is 

the speed of the snowboarder at the bottom of the slope? Assume that we can 

ignore friction at the base of the snowboard and air resistance.

You must not use the kinematic (suvat) equations in this example. They do 

not apply here because the acceleration of the snowboarder is not constant. 

Although they give the correct numerical answer in this case, they should 

not be used because the physics is incorrect. The final answer is correct only 

because we use the start and end points and because the gravitational force is 

conservative. We are also using an average value for acceleration down the slope 

by assuming that the angle to the horizontal is constant. The kinematic equations 

would not give the correct answer if friction forces were involved.

Conservation of energy helps because (as friction loss is negligible) we know 

that the loss of gravitational potential energy as the snowboarder goes down 

the slope is equal to the gain in kinetic energy over the length of the slope (in 

other words, the mechanical energy is constant). Because we know that the GPE 

change depends only on the initial and final positions, then we do not need to 

worry at all about what is going on at the base of the snowboard.

So ΔE
p
= m × g ×Δh =

1

2
× m × v2. Rearranging this gives v = √2gh

In this case, v = √2 × 9.8 × 50 = 31 m s 1

(This is a speed of about 110 km h 1, which tells you that the assumption about no 

air resistance and no friction is a poor one!)

Notice that the answer does not depend on the mass of the snowboarder: the 

mass term cancels out in the equations. Again, including the effects of friction 

(depending on the snowboarder’s mass) and air resistance (depending on the 

snowboarder’s shape) will reduce the estimate of final speed.

▴ Figure 10 The mechanics of 

snowboarding.

Δh = 50 m

Worked example 12

A ball of mass 0.35 kg is thrown vertically upwards at a speed of 8.0 m s 1. Calculate:

a. the initial kinetic energy

b. the maximum gravitational potential energy

c. the maximum height reached.
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Solutions

a. E
k
=

1

2
mv2 =

1

2
× 0.35 × 82 = 11.2 J

b. At the maximum height, all the initial kinetic energy will have been converted to gravitational potential energy,  

so the maximum value of the GPE is also 11.2 J.

c. The maximum GPE is 11.2 J and this is equal to mgΔh, so Δh=
11.2
mg =

11.2

0.35 × 9.8
= 3.3 m 

Worked example 13

A pendulum bob is released from rest 0.15 m above its rest position. 

Calculate the speed as it passes through rest position.

Solution

E
k
 at the rest position = E

P
 at the release position so 

1

2
mv2 =mgΔh which  

rearranges to v= √2gΔh = √2 × 9.8 × 0.15 = 1.7 m s 1

Worked example 14

In ski jumping, competitors glide down a steep low-friction ramp before taking off.  

A ski jumper of mass 60 kg starts the in-run phase from rest and reaches a take-off  

speed of 90 km h 1 after travelling a vertical height of 40 m down the ramp.

a.  Calculate the ratio  
kinetic energy gained by the ski jumper

change in the gravitational potential energy
 .

b.  Calculate the work done on the ski jumper by any resistive forces.

The in-run ramp is 75 mlong.

c.  Estimate the magnitude of the average resistive force on the jumper.

Solutions

a. The take-off speed is 25 m s 1

ΔE
k

ΔE
p

=

1

2mv2

mgΔh
=

0.5 × 252

9.8 × 40
= 0.80. It means that 80% of the GPE that the jumper had 

on top of the ramp has been transferred to KE.

b. The GPE on top of the ramp is greater than the KE at take-off, and the work done by  

the resistive forces accounts for the difference.

 work done by resistive forces = (GPE loss) − (KE gain) = 60 × 9.8 × 40 −
1

2
× 60 × 252 = 4.8 kJ

c. Work = force × distance; hence the resistive force is  
4.8 × 103

75
= 64 N. The force is  

not necessarily constant during the in-run phase, so the answer represents the average value.

0.15m
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Practice questions

10. An object of mass 1.5 kg slides down a 4.0 m long 

ramp that makes an angle of 30° with the horizontal. 

30°

4.
0
m

 What is the work done on the object by the 

gravitational force?

A. 3.0 J   B. 6.0 J   C. 30 J   D. 60 J

11. A pendulum bob is released from rest in the horizontal 

position. The only forces acting on the bob are the 

weight and the tension in the string.

What is the acceleration of the bob when the string is 

vertical?

A. 0   B. g   C. 2g   D. 3g
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Worked example 15

A steel ball of mass m is attached to the end of a weightless string of length R and 

made to move in a vertical circle. The speed of the ball at the lowest point of the 

circle is u. The only forces acting on the ball are the weight and the tension in  

the string.

a.  State the work done by the tension in the string during one full rotation.

b.  Derive an expression, in terms of u and R, for the speed v of the ball at the 

highest point of the path.

c.  Show that the ball will not reach the highest point of the path unless u≥ √5gR

d.  It is given that R= 1.2 m. Calculate the minimum value of u so that the ball 

reaches the highest point of the path.

Solutions

a. The angle between the tension and the velocity is always 90°, so the work done by the tension is zero.

b. The loss of KE of the ball between the lowest and the highest point of the path is equal to the gain of GPE.
1

2
mu2 −

1

2
mv2 = mg(2R), because the change in height is 2R. The equation can be solved for the speed  

at the top of the circle: v = √u2 − 4gR  .

c. For the ball to reach the highest point and continue to move in a circular path, its instantaneous acceleration a must 

be related to the speed and radius through the equation a =
v2

R
 (this is the centripetal acceleration formula that you 

met in Topic A.2). At the highest point, the net force on the ball is equal to or greater than the ball’s weight (because 

weight and tension act in the same direction), so the smallest possible acceleration of the ball is g. This leads to the 

condition 
v2

R
≥ g, or v2 ≥ gR . Combining this inequality with the result of part b. gives u2  4gR ≥ gR, which results in 

a condition for the speed at the bottom of the path: u ≥ √5gR

d. Substitution into the inequality in part c. gives the minimum speed of the ball at the bottom of the path,  

√5 × 9.8 × 1.2 = 7.7 m s 1

path of the ball

R

u

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



12. A helicopter of mass 2900 kg takes o vertically and 

ascends to a height of 45 m above the ground. A 

constant li force of 3.2 × 104 N acts on it.

a. Calculate:

i.  the work done on the helicopter by the li force

ii.  the change in the gravitational potential 

energy of thehelicopter.

b.  Explain why the answers in a. i. and ii. are dierent.

c.  Determine the nal vertical speed of the helicopter.

13. A block of wood of mass 250 g is suspended at 

rest from a string. An air rie pellet of mass 1.80 g is 

red horizontally at the block of wood at a speed 

of 200 m s 1. The pellet becomes embedded in 

theblock.

200ms 1

pellet

h

block

 Determine the vertical height h through which the 

block of wood risesaer the impact.

14. A tennis ball is served from 

a height of 2.50 m above 

the ground at an initial 

speed of 20.0 m s 1. Air 

resistance is negligible. 

a. Explain why the speed with which the ball  

hits the ground does not depend on the angle 

that the initial velocity of the ball makes with  

the horizontal.

b.  Calculate the speed with which the ball hits 

theground.

20.0ms 1

2.50m

ball
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• Inquiry 1: Appreciate when and how to reduce friction.

• Inquiry 1: Design and explain a valid methodology.

• Inquiry 3: Compare the outcomes of an investigation 

to the accepted scientic context.

• Inquiry 3: Evaluate the implications of 

methodological weaknesses, limitations and 

assumptions on conclusions.

smart pulley
to interface

clamp

cart

mass

▴ Figure 11 The mass falling vertically transfers gravitational 

potential energy to the kinetic energy of all moving masses: 

cart, string, pulley and falling mass.

• Arrange a cart on a track and compensate the track 

for friction. This is done by raising one end of the 

track through a small distance so that the cart travels 

down the track at constant speed.

• Pass a string over the pulley. Attach a known mass to 

the other end of the string.

• Measure the mass of the cart.

• Devise a way to measure the speed of the cart. 

You could use a “smart pulley” that can measure 

the speed as the string turns the pulley wheel. 

Alternatively, use an ultrasound sensor, a data logger 

with lightgates, or your mobile phone.

• When the mass is released, the cart gains speed, as 

its gravitational potential energy changes.

• Make measurements to assess the gravitational 

potential energy lost (you will need to know the 

vertical height through which the mass falls) and the 

kinetic energy gained (you will need the nal speed). 

Notice that only the falling mass is losing GPE but 

both masses and the cart are gaining kinetic energy.

• Compare the two energies. Is the energy 

conserved? Where do you expect energy losses in 

the experiment to occur? 

Transferring GPE to KE 
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Elastic potential energy 

As you saw in Topic A.2, when a force is applied, the shape of a solid can be 

changed. Some materials will be able to return the energy that has been stored 

in them when the force is removed. A metal spring, that obeys Hooke’s law is 

a good example of this. Most springs are designed to store energy in this way 

in many different contexts. The materials that can return energy in this way have 

stored elastic potential energy E
H

. 

Hooke showed that, for small loads acting on a spring, the extension of the 

spring is directly proportional to the load. The graph of force F against extension 

Δx is a straight line going through the origin.

In symbols, this is F ∝ Δx, or F = kΔx, where k is the spring constant as usual  

(see page 56). The gradient of the graph is equal to k. 

You can now relate this graph to the work done in stretching the spring 

(Figure12). The force is not constant (the bigger the extension, the bigger  

the force required) but we know how to deal with this. The work done on  

the spring is the area of the right-angled triangle under the F –Δx graph.  

This is E
H
=

1

2
F

max
×Δx

Hooke’s law is F =kΔx, so k =
F

Δx
 and E

H
=

1

2
k (Δx)2 .

▴ Figure 12 The force–extension graph  

for stretching a spring. The shaded area  

is the energy transferred to the spring as  

it stretches.

fo
rc

e

extension0
0

∆x

Fmax

Area = Fmax × ∆x
1

2

= stored elastic potential energy

= work done in extending spring

Worked example 16

A spring, of spring constant 48 N m 1, is extended by 0.40 m. Calculate the 

elastic potential energy stored in the spring.

Solution

Energy stored =
1

2
kx2 = 0.5 × 48 × 0.402 = 3.8 J

Worked example 17

An object of mass 0.78 kg is attached to a vertical spring of unstretched 

length 560 mm. When the object has come to rest, the new length of the 

spring is 620 mm. Calculate the energy stored in the spring as a result of this 

extension.

Solution

Change in length of spring, Δx = 620 − 560 = 60 mm.

The final tension in the spring will be equal to the weight of the object  

= mg = 0.78 × 9.8 = 7.64 N.

The energy stored in the spring =
1

2
FΔx = 0.5 × 7.64 × 0.06 = 0.23 J.
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Practice questions

15. The elastic potential energy stored in a spring extended 

through a distance Δx from its relaxed length is E. 

 How much work is done on the spring when its 

extension increases from Δx to 2Δx?

A. E B. 2E

C. 3E D. 4E

16. A block of mass m is attached to the end of a 

weightless spring and placed on a frictionless 

horizontal surface. When the spring is compressed 

through a distance Δx from its unstretched length, it 

exerts a force F on the block. 

Fblock

∆x

 The block is released from rest from the position 

shown in the diagram. What is the speed of the block 

when the spring returns to its unstretched length?

A. 
FΔx

2m
 B. 

FΔx

m

C. 2FΔx

m
D. 2 FΔx

m

17. A force of magnitude 60 N is needed to hold a spring 

that is extended through a distance of 3.0 cm from its 

unstretched length.

a. Calculate:

i. the spring constant

ii.  the elastic potential energy stored in the 

spring when its extension is 3.0 cm.

         Work of 0.70 J is done to extend the spring further.

b.  Determine the new extension of the spring, 

relative to its unstretched length.

18. A block of mass 

0.60 kg is dropped 

onto a vertical 

weightless spring. 

The spring is initially 

unstretched. The 

speed of the block 

just before it makes 

contact with the 

spring is 2.0 m s 1

 The block instantaneously stops when the spring is 

compressed through a distance of 5.1 cm.

a. Calculate:

i. the initial kinetic energy of the block

ii.  the work done on the block by the 

gravitational force, since the rst contact with 

the spring until it stops

iii.  the elastic potential energy stored in the 

spring at the instant when the block is at rest.

b. Hence, calculate the spring constant.

c.  Determine the acceleration of the block at the 

instant when the block is at rest.

A. Space, time and motion
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0.60kg 2.0ms–1
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• Tool 1: Recognize and address relevant safety, ethical or environmental issues in an investigation.

• Tool 3: Construct and interpret tables and graphs for raw and processed data including scatter graphs and line and 

curve graphs.

• Tool 3: Draw and interpret uncertainty bars.

• Tool 3: On a best-t linear graph, construct lines of maximum and minimum gradients with relative accuracy 

(by eye) considering all uncertainty bars.

You must wear safety glasses for this experiment and ensure that your flying 

spring will not hit anyone. 

• Get a spring and a length of wood (a wooden ruler would do). 

• Make a notch in the top of the length of wood so that the end of the 

spring does not slip o (Figure 13).

• Mark the natural (unextended) length of the spring on the wood.

• Pull the spring so that it extends by 2 cm. Release it so that it ies 

vertically into the air.

• Measure the maximum height of the spring’s motion. You should 

repeat this measurement three times.

• Repeat for ve dierent extensions of the spring. 

• Tabulate your values of extension and height. Take averages of the heights.

• By considering energy transfer, consider what you should plot on the x- or y-axes to give a linear graph. Plot this 

graph (use a computer spreadsheet to do it quickly). Is your graphlinear?

• Use the variation in your repeats and the uncertainties to add error bars to your graph. 

• Is it possible to draw a line of best t that passes within the errorbars?

• What does the gradient of your linear graph represent? How could you deduce the spring constant k of the spring 

from your gradient?

• What is the uncertainty of your gradient? Can you deduce the uncertainty in your measurement of k?

• Measure the spring constant in a dierent way (e.g. by considering Hooke’s law). Try to evaluate the uncertainty in 

this measurement. Do your two values of k agree?

▴ Figure 13 Fire the spring vertically and 

estimate the maximum height reached.

stretched

spring

ruler

Measuring the spring constant
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Practice questions

19. A cyclist rides up a 50 m high hill in a time of 200 s.  

The average power developed by the cyclist is 270 W. 

The mass of the cyclist and the bicycle is 85 kg.

 Determine the eciency with which the work done  

by the cyclist is transferred to the gravitational  

potential energy.

20. An electric car of mass 1600 kg accelerating on a 

horizontal road converts 65% of the electrochemical 

energy stored in the battery to kinetic energy.

 Calculate the energy transferred from the battery when 

the car accelerates from rest to a speed of 50 km h 1

A. Space, time and motion
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Eciency

In most real experiments where gravitational potential energy is transferred to 

kinetic energy, some gravitational potential energy will not appear in the kinetic 

energy of the object. Some energy is lost: 

• to internal energy, because of friction

• to elastic potential energy, etc. 

We need to have a way to quantify these losses. One way is to compare the total 

energy put into a system with the useful energy that can be taken out. This is 

known as the efficiency of the transfer and can be applied to all energy transfers, 

whether carried out in a mechanical system, electrical system or other type of 

transfer. The definition can also be applied to power transfers because the energy 

change in these cases takes place in the same time for the total energy in and the 

useful work out. 

efficiency =
useful work out

total energy in
=

useful power output

total power input

Worked example 18

An electric motor raises a weight 

of 150 N through a height of 7.2 m. 

Theenergy supplied to the motor 

during this process is 3.5 × 103 J.

Calculate:

a.  the increase in gravitational 

potential energy

b.  the efficiency of the process.

Solutions
a. ΔE

p
= 150 × 7.2 = 1080 J

b. efficiency 

=
useful work out

energy in

=
1080

3500
= 0.31 or 31%

A ball is dropped from a fixed height of 1.00 m so that it 

bounces several times. The subsequent heights that it 

reaches are measured after each successive bounce. The 

results are given in the table.

• Calculate the energy of the ball on each bounce.

• Hence calculate the eciency of the ball when it 

bounces.

• How could you show that these data display an 

exponential trend (once you have studied Topic E.3)?

• Identify other topics in this book where you nd 

examples of exponential decay.

Number of 

bounces
Height / cm

Trial 1 Trial 2 Trial 3

 0 100 100 100

 1  94  93  91

 2  85  84  82

 3  77  78  76

 4  69  73  71

 5  64  61  66

 6  59  58  59

 7  53  55  54

 8  49  50  50

 9  46  45  44

10  42  40  42

Data-based questions
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Figure 14 is a Sankey diagram that shows the transfer of energy in an electric lamp.

It shows the energy transfers that begin with the conversion of chemical energy 

from fossil fuels and end with light energy emitted from the filament of the lamp. 

Red arrows represent energy that is transferred from the system. In any process 

where there is an energy transformation, this energy is “lost” and is no longer 

available to perform a useful job. This degraded energy loss occurs in all energy 

transfers. 

Of the original primary energy in Figure 14, only 35% appears as useful secondary 

energy. The remaining 65% is lost to the surroundings in the generation 

processes. The arrows that point downwards show this. There are losses involved 

in the transmission and distribution of the electricity, and losses in the house 

wiring. In the lamp itself, most of the energy (28% of the original) is transferred to 

the internal energy of the surroundings. Only 1% of the original primary energy is 

left as light energy for illumination.

A Sankey diagram is a useful way to visualize the energy consumption of nations. 

You can see many examples of this on the Internet. Figure 15 shows the energy 

flows associated with the US economy in 2017. Search the Internet to find the 

Sankey diagram for the energy demand of the country where you live.

Sankey diagrams 

Sankey diagrams are visual representations of the flow of the energy in a device 

or in a process. 

The rules to remember about using Sankey diagrams are: 

• Each energy transfer in the process is represented by an arrow. 

• The diagram is drawn to scale with the width of the arrow being proportional 

to the amount of energy transfer it represents. 

• The energy ow is drawn from le to right. 

• When energy is lost from the system, it moves to the top or bottom of 

thediagram. 

• Power transfers as well as energy ows can be represented. 

▴ Figure 14 A Sankey diagram for the energy transferred to an electric lamp.
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▴ Figure 15 The energy ow for the USA in 2017. Lawrence Livermore National Laboratory and the US Department of Energy (March, 2022). 

One quad is equal to 2.9 × 1011 kW h (about 180 million barrels of petroleum, 39 million tons of coal, or 1000 billion cubic feet of natural gas).

Worked example 19

An electric kettle of rating 2.0 kW is switched on for 90 s. During this time 

20 kJ of energy is lost to the surroundings from the kettle. Draw a Sankey 

diagram of this energy transfer.

Solution

The energy supplied in 90 s is 2 × 1000 × 90 = 180 kJ.

Percentage lost to the surroundings =
20

180
× 100 = 11%.

160 kJ

to heating

water

180 kJ

supplied

to kettle

20 kJ

to surroundings

Worked example 20

In a petrol-powered car 34% of the energy in the fuel is converted 

into kinetic energy of the car. Heating the exhaust gases accounts 

for 12% ofthe energy lost from the fuel. The remainder of the 

energy is wasted in the engine, the gearbox and the wheels. Use 

these data to sketch a Sankey diagram for the car.

Solution

Energy lost in the engine and transmission 

= 100 − 34 − 12 = 54%.

A convenient way to draw the diagram is on squared paper. Use a 

convenient scale: 10% ≡ 1 large square is a reasonable scale here.

1000  J as chemical 

energy

880 J as kinetic

energy in the engine

120 J

as exhaust

340  J useful energy

to move the car

540  J

wasted 

in moving 

all the 

engine

parts
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Practice question

21. The energy losses in a pumped storage power station are shown in the 

following table:

Source of energy loss
Percentage loss 

of energy

friction and turbulence of water  

in pipe
27

friction in turbine and ac generator 15

electrical heating losses 5

a. Calculate the overall eciency of the conversion of the gravitational 

potential energy of water in the tank into electrical energy.

b. Sketch a Sankey diagram to represent the energy conversion in the  

power station.

Energy density

Much of the extraction of fossil fuels involves hard and dangerous work in minesor 

on oilrigs. The effort and risk of extracting fossil fuels does not seem to be justified 

when there are other sources of energy available. So why are fossil fuels still 

extracted? The answer becomes more obvious when we look at the energy 

available from the fossil fuel itself. Energy density is one way to quantifythis.

Density is a familiar concept; it is the amount of quantity possessed by one cubic 

metre of a substance. Energy density is the number of joules that can be released 

from one cubic metre (1 m3) of a fuel. Table 2 shows the energydensitiesof some 

common fuels. Notice the wide range of values inthistable.

Topic A.3      Work, energy and power
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Fuel Energy density / GJ m−3

uranium (nuclear ssion) 1.3 × 109

coal 20–80

diesel 37

gasoline (petrol) 35

natural gas 0.036

hydrogen 0.01

▴ Table 2 The energy densities of some common fuels.
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Worked example 21

A fossil-fuel power station burns coal. It has an efficiency of 25% and 

generates 1200 MW of useful electrical power. The energy density of the 

coal is 42 GJ m 3. Calculate the volume of coal burnt every minute in the 

power station.

Solution

The fuel energy equivalent required every second is
1.2 × 109

0.25
= 4.8 × 109 J. In 

volume terms, this is 
4.8 × 109

42 × 109
=0.114 m3. In one minute, the station will burn 

0.114 × 60 = 6.9 m3 of coal.

Worked example 22

A camping stove that burns gasoline (petrol) is used. 70% of the energy 

from the fuel reaches the cooking pot. The energy density of the gasoline  

is 35 GJ m 3

a.  Calculate the volume of gasoline needed to raise the temperature of 1 

litre of water from 10°C to 100°C. Assume that the heat capacity of the 

pot is negligible. The specific heat capacity of the water (see Topic B.1)

is 4.2 kJ kg 1 K 1. 

b.  Estimate the volume of fuel that a student should purchase for a 

weekend camping expedition.

Solutions

a. 1 litre of water has a mass of 1 kg so the energy required to heat the  

water is 4200 × 1 × 90 which is 0.38 MJ. Allowing for the efficiency 

value, 
0.38

0.70
= 0.54 MJ of energy is required, and this is a fuel volume of 

0.54 × 106

3.5 × 1010
= 1.6 × 10−5 m3 or about 20 ml. 

b. Assume that 2 litres of water are required for each meal, and that there 

will be five cooked meals during the weekend. So, 200 ml of fuel should 

be enough.
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This topic illustrates how scientists use one set of ideas 

in an altered context. The kinematics and mechanics 

of linear motion from Topics A.1 and A.2 are used as a 

model for rotational motion. On the face of it, the two 

types of movement could not be more different. One is 

a translational motion of a point object through space. 

The other is a motion of an object that has size and shape 

and which rotates around a fixed point. Nevertheless, 

all your understanding of quantities of force, energy and 

momentum can be extended to rotational concepts. 

This extension requires the recognition that, for rotation, 

the distribution of an object’s mass is important. The mass 

has a reduced relevance in rotational mechanics. The size, 

shape and the arrangement of mass within a rigid body 

ultimately determine its response to changes in the forces 

acting. 

However, it is no longer enough to relate the rotational 

response to the force alone. The force can act at any 

point on the body, so the response of the body will 

depend on where the force acts relative to the axis of 

rotation. This was not an issue with the translational and 

linear motion of the point object. You need to use a new 

concept — torque — the rotational equivalent of force. 

From this you can state the equivalents of Newton’s laws 

of motion and the conservation rules already familiar from 

linear mechanics in the context of rotation.

Introduction 

There is an equivalent rotational quantity for each of the linear quantities used  

in Topics A.1 and A.2: mass, speed, acceleration, force, momentum and so  

on. There is a link between each of the quantities in linear mechanics and its 

equivalent in rotational terms.

Figure 1 shows an artist’s impression of a black hole. Matter swirls around to form 

an accretion disk. Conservation of angular momentum means that, as the matter 

is pulled closer towards the black hole, the angular velocity increases. The gas 

close to a black hole is moving extremely quickly. It is extremely hot and emits 

large quantities of radiation. Once the matter falls inside the black hole, this 

radiation cannot escape. But, in falling, the release of energy is one of the most 

efficient processes in the universe. Up to around 40% of the mass–energy of the 

material that falls in is radiated away.

How can the understanding of linear motion be applied to rotational motion?

How does the distribution of mass within a body affect its rotational motion?

How is the understanding of the torques acting on a system used to predict changes in 

rotationalmotion?

• torque and rotational acceleration

• rotational equilibrium 

• angular displacement, angular velocity and angular 

acceleration

• the equations of motion for uniform angular 

acceleration

• the kinetic energy of rotational motion

• moment of inertia

• Newton’s second law for rotation 

• angular momentum and conservation of angular 

momentum

• angular impulse.

130

A.4 Rigid body mechanics

In this additional higher level topic, you will learn about: 

▴ Figure 1 An artist’s impression of a 

black hole.
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In Topic A.2, you were introduced 

to the terms angular displacement 

and angular velocity. Remember 

that angular velocity is treated as a 

scalar quantity.

Throughout this topic there are many parallels drawn between linear and rotational motion. Linking the descriptions 

of the two types of motion has lots of advantages. Not least, the common framework allows you to quick transfer 

the understandings you have mastered in one area to another area. Always look out for patterns and trends that link 

scientic ideas: this highlights the nature of science.

How are the laws of conservation and equations of motion in the context of rotational motion 

analogous to those governing linear motion?

Take care with acceleration in a rotational context. There 

are three accelerations to consider.

• Angular acceleration α: The rate of change of the 

angular velocity. The angular velocity itself is the rate 

at which the angular displacementchanges.

• Centripetal acceleration a
c
: The acceleration of the 

object directed towards the centre of the rotation. It 

is a
c
=

v
2

r
 in our usual notation. 

• Tangential acceleration a
t
: This is a linear acceleration 

and is the instantaneous rate at which the object is 

changing its speed along the circumference of the 

circle. It is a
t
= αr in our usual notation.

A constant angular velocity means that the angular 

acceleration is zero and the tangential acceleration is zero. 

There will still be a centripetal acceleration towards the 

centre of the rotation, however.

Rotational acceleration

Angular acceleration 

Just as in linear motion, a rotating object can speed up or slow down. To do this 

it must undergo an angular acceleration α, the change in angular velocity Δω in a 

given time interval Δt. In equation form:

α =
Δω

Δt
=
ω

2
− ω

1

t
2

− t
1

where ω
1
 is the initial angular speed at time t

1
 and ω

2
 is the final angular speed at 

time t
2
. As you may expect, the units of α are rad s 2. 

Worked example 1

A bicycle is placed on a repair stand and a mechanic spins its rear wheel from  

rest to a nal angular velocity of 240revolutions per minute in a time of 4.0 s. 

a. Calculate the angular acceleration of the wheel, in rad s 2, assuming that it is constant.

b. The radius of the wheel is 34 cm. Calculate the final linear speed of a point on the circumference of the wheel.

c. Outline how the centripetal acceleration of the point on the circumference of the wheel varies with time.

Solutions

a. The final angular velocity is equal to 240

60
× 2π = 25 rad s 1. The angular acceleration is therefore 

25

4.0
= 6.3 rad s 2

b. The linear speed is v = ωr = 25 × 0.34 = 8.5 m s 1

c. The centripetal acceleration depends on the angular velocity of the wheel (alternatively, on the linear speed of the 

points on the circumference), as seen in the equations a = ω
2
r =

v
2

r
. Since the velocity of the wheel increases, the 

centripetal acceleration of the points on the circumference increases too. Angular acceleration and centripetal 

acceleration are different quantities and should not be confused. Angular acceleration describes the rotation of 

the wheel as a whole, while centripetal acceleration refers to the circular motion of individual particles at a certain 

distance from the axis of rotation.
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Worked example 2

The angular acceleration of a wheel, rotated from rest, is 16 rad s 2. The wheel accelerates for 5.0 s. Calculate:

a. the final angular velocity

b. the number of revolutions of the wheel in reaching this angular velocity.

Solutions

a. ω
f
= ω + at so ω

f
= 0 + 16 × 5 = 80 rad s 1

b. θ =

ω + ω
f  

2
t =

(0 + 80)

2
× 5.0 = 200 rad

One revolution corresponds to the angular displacement of 2π rad. Hence, the wheel makes
200

2π
 = 32 revolutions 

during the acceleration.

Rotational equations of motion

In Topic A.1, we developed four kinematic equations of motion which can be 

applied to motion when its acceleration is linear and constant.

The definitions of angular displacement, angular velocity and angular 

acceleration are directly analogous to those of linear displacement, speed and 

acceleration. This means that an equivalent set of equations can be developed 

for rotational motion for all situations when the angular acceleration is constant. 

When acceleration is not constant, you must look for other methods to solve a 

particular problem.

Table 1 gives the notation used for some rotational quantities.

Therefore, the rotational kinematic equations are:

ω
f
= ω + αt

θ = ω t +
1

2
αt2

ω
f
2

= ω 2
+ 2αθ

θ = (
ω

f
+ ω

2 )t
Although these equations probably look strange to begin with, they can be used 

in exactly the same way as the set of linear equations. 

Worked example 3

A spinning top is rotating with an initial angular velocity of 30 rad s 1. It decelerates at a constant  

rate of 0.45 rad s 2. The top falls over when its angular velocity has decreased to 5.0 rad s 1. Calculate:

a. the number of rotations the top makes before it falls over

b. the time it takes for the top to fall over.

Solutions

a. We use the equation ω
f
2

= ω2
+ 2αθ to find the angular displacement θ. Note that the substituted  

value of the angular acceleration must be negative because the top is slowing down.

 5.02
= 302  2 × 0.45θ ⇒ θ = 970 rad. The number of revolutions is 

970

2π
= 150.

b. 5.0 = 30  0.45t ⇒ t = 56 s.

Symbol Quantity

θ angular displacement 

ω
i

initial angular velocity

ω
f

nal angular velocity

α angular acceleration 

t time 

▴ Table 1 Notation for rotational 
quantities.
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Practice questions

1. A wheel is rotating with an initial angular velocity of 

5.0 rad s 1. The angular velocity increases uniformly to 

15 rad s 1 during a time of 20 s. Calculate:

a. the angular acceleration

b.  the number of revolutions the wheel makes during 

this time.

2. The drum of a washing machine rotates from rest 

with a constant angular acceleration of 4.7 rad s 2. 

The drum reaches its nal angular velocity aer a time 

of20 s.

a.  Calculate the nal angular velocity of the drum. 

Give the answer in revolutions per minute.

b.  Calculate the number of revolutions the drum 

makes during this time.

3. A battery drill is switched on from rest and reaches its 

nal angular velocity of 1800 revolutions per minute in 

a time of 0.10 s.

a. Calculate the angular acceleration of the drill.

 The drill, initially rotating at 1800 revolutions per 

minute, jams and comes to rest aer making ve 

complete revolutions.

b.  Calculate the time taken for the drill to stop, 

assuming a constant angular deceleration.

4. The angular velocity of a ywheel is increased 

uniformly from 10 rad s 1 to 50 rad s 1. During the 

acceleration, the ywheel turns through 20complete 

revolutions. Calculate:

a. the angular acceleration of the ywheel

b. the time to complete

i. all 20 revolutions

ii. the rst 10 of the 20 revolutions.

A
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Worked example 4

A merry-go-round of radius 2.0 m is rotated from rest with a constant angular  

acceleration and makes two complete revolutions during a time of 16 s. Calculate:

a. the angular acceleration

b. the final linear speed of a point on the circumference of the merry-go-round

c. the time it took to complete the first revolution.

Solutions

a. Two revolutions correspond to the angular displacement of 4π. The initial angular  

velocity is zero and we use the equation θ=
1

2
αt

2
⇒ 4π=

1

2
α × 162. From this, α= 0.098 rad s 2 .

b. The final angular velocity can be calculated from ω
f
= αt= 0.098 × 16. The linear speed  

at the circumference is ω
f
r= 0.098 × 16 × 2.0 = 3.1 m s 1

c. The angular displacement for one revolution is 2π. 2π=
1

2
× 0.098t

2
⇒ t= 11 s.

Rotational mechanics graphs

You can also deduce the graphs showing the variation of angular quantities with 

time from their linear equivalents. Figure 2 shows how the second equation of 

rotational motion is derived from the graph of angular velocity against time.

The angular displacement is equal to the area below the line in a graph of angular 

velocity against time. You can derive an equation for angular displacement by 

adding together the two areas. 

Angular displacement θ= total area =ω t+
1

2
αt

2

▴ Figure 2 The equation θ =ω t +
1

2
αt

2

is derived by adding the two areas.

time t0
0

ωi

ωf

areaΔ (ωf − ωi) × t
1

2

area▫ = ωi × t
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• Tool 3: Work with fundamental units.

Although the equations are similar to those for linear 

kinematics, think carefully about the units.

• Time should be in seconds. This is straightforward as 

the units are unchanged. Make sure that all values are 

in seconds before you do any calculations. 

• Angular velocity must always be in radians per unit 

time. The time unit here must match the rest of the 

problem. Usually it will be rad s 1

• Angular acceleration must match the angular velocity 

and the time. The unit rad s 2 is the most common. 

Try not to use mixed units such as rad s 1 hour 1. 

These are bound to give conversion diculties at 

the end.

• Angular displacement can be the trickiest of all as there 

are several ways to specify it. Using radians is usually 

best for calculations. One revolution is equivalent to 

once round a circle, so one revolution ≡ 2π rad.

For example, a flywheel is turning at 150 revolutions per 

minute. What is the angular velocity in rad s 1?

In 1.0 s the flywheel must turn through 
210

60
= 3.5 

revolutions. This is 3.5 × 2π = 22 rad.

The angular velocity is 22 rad s 1

Using units in rotational mechanics

Worked example 5

The diagram shows a hula-hoop (a large plastic ring) rolling with  

constant angular speed along a horizontal surface, A. It then rolls  

down a uniform inclined plane, B. When it reaches a second  

horizontal surface, C, it moves with a constant angular speed again. 

Sketch and explain graphs to show the variation with time of:

a. the angular velocity

b. the angular acceleration.

Solutions

a. The graph shows the hula-hoop travelling 

with constant angular velocity along A and C. 

It has a greater value along C since it has now 

undergone angular acceleration. As B is of 

constant gradient, the angular acceleration is 

constant here.

b. The second graph shows zero angular 

acceleration throughout A and C, and a 

constant angular acceleration along B. 

Note: compare these graphs with the graphs for a 

point object moving along a frictionless surface.

A

B

hula-hoop

C

ω/arbitrary 
units

t/arbitrary 
units

A

B

C

When the hula-hoop is travelling at the 
higher angular velocity it covers the same 
distance in a shorter time

α/arbitrary 
units

t/arbitrary 
units

A

B

C
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Worked example 6

The graph shows how the angular velocity of a 

rotating cylinder varies with time.

Calculate:

a. the angular acceleration of the cylinder during  

the first 4.0 s

b. the angular displacement of the cylinder from  

0 to 10.0 s.

Solutions

a. The angular acceleration is the gradient of the 

graph: α =
5.0

4.0
= 1.25 rad s 2

b. The angular displacement is the area under the graph: θ =
1

2
× 4.0 × 5.0 + 6.0 × 5.0 = 40 rad.

0
0 1 2 3 4 5 6 7 8 9 10

time / s 
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4

5
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Moment of inertia

Mass played an important role in linear mechanics when you were treating 

masses as point objects. What is its equivalent in rotational mechanics?

It is not just the mass that is important but the way the mass is distributed about 

the centre of rotation. The inertial mass of an object is a measure of its opposition 

to changes in its linear motion. We need a rotational equivalent which gives a 

measure of how hard it is to change the rotational speed of an object. This is 

called the moment of inertia. The moment of inertia of an object is its resistance 

to a change in its rotational motion. The moment of inertia of an object depends 

on the axis about which it is rotated.

For example, flywheels are designed to store rotational kinetic energy for 

machines. The two flywheels in Figure 3 are mounted on the same axle. Both are 

designed with large mass and these masses are arranged to be as far from the 

axis of rotation as possible. This makes it difficult to change the rotational speed 

and means that they have high moments of inertia.

Figure 4 shows a single point mass rotating in a circle of radius r. The axis of rotation 

is a line at 90° to the plane of the circle of rotation that goes through the centre of the 

circle. The moment of inertia I for this mass is given by

I= m × r2

The unit of moment of inertia is kg m2 and it is a scalar quantity. 

However, a single point mass rotating about a circle is of little practical use. You 

need to know how to treat objects that have more than one mass or a mass that is 

distributed (spread out) in space. When there is more than one mass the moment of 

inertia is calculated by adding together the moments of inertia for each point mass:

I =∑mr2

The symbol “∑” here means “add up every mass × (its distance from the axis of 

rotation)2”. For an arrangement of three masses, m
1
, m

2
, m

3
 that are r

1
, r

2
 and r

3
, 

respectively, from the axis, I is m
1
r

1

2 + m
2
r

2

2 + m
3
r

3

2. 

▴ Figure 3 Two ywheels both with 

a large mass placed as far from the 

rotation axis as possible.

axis of

rotation

▴ Figure 4 A single mass m rotating 

in a circle of radius r has a moment of 

inertia of m × r2

axis of 

rotation

m

r
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A simple dumbbell with a small mass at each end of a light rod of total length 2L.  

The dumbbell is rotating about the midpoint of the light rod in a plane at 90° to 

the axis. Figure 5 shows that the moment of inertia is given by 2mL2

When the mass is distributed, perhaps as a thin disc or as a pendulum, 

the problem becomes more complicated. Integral calculus or a numerical 

computation is used for such calculations. 

Table 2 gives the equations for the moments of inertia of some common shapes 

that you may meet. (The mass is always m and the shapes are assumed to have 

a uniform density.) You do not need to learn these. In IB Diploma Programme 

physics examinations you will be provided with the equation for the moment of 

inertia of a particular shape distribution when you need it.

Shape and rotation axis Moment of inertia

sphere of radius R rotating around a diameter I=
2

5
mR2

disc of radius R rotating about an axis 

perpendicular to and through the centre 
I=

1

2
mR2

rod of length L rotating about its centre 

perpendicular to the length
I=

1

12
mL2

rod of length L rotating about one end 

perpendicular to the length
I=

1

3
mL2

hoop of radius R rotating about its central axis I=mR2

▴ Table 2 Equations for the moment of inertia of dierent shapes.

▴ Figure 5 Two identical point masses 
connected by a light rod (a dumbbell 
shape) rotating in a circle of radius L
have a moment of inertia I given by  
m × L 2 +m × L2 = 2mL2

axis of rotation

into plane 

of page

light

connecting

rod
point masses 

of value m
L

L

simple dumb-bell

m

Neutron stars are very dense objects created from the collapse of a massive star. 

A typical neutron star will have a mass of about 2.8 × 1030 kg and a radius of about 

11 km. This would give it a moment of inertia of about 1.4 × 1038 kg m2. This is 

important, as some neutron stars rotate with a time period of less than a second.

However, neutron stars are complex and, since they are almost impossible to 

investigate directly, somewhat mysterious. It is not easy to make measurements of 

their mass or radius and their rotational frequency is so small that it too can aect the 

radius and moment of inertia. Mathematical models are required to investigate how 

a neutron star might theoretically behave and these models are then compared with 

astronomical observations.

Models

▴ Figure 6 An artist’s 

impression of a neutron star.

Worked example 7

A bicycle wheel has a mass of 850 g and a radius of 34 cm. Estimate  

the moment of inertia of the wheel about the axis of rotation.

Solution

If we assume that all of the wheel’s mass is concentrated in the rim, it can be modelled as  

a thin hoop. I=MR2 = 0.850 × 0.342 = 0.098 kg m2. The actual moment of inertia is slightly  

less than the calculated value because some of the mass is in the hub and in the spokes, and  

hence closer to the axis of rotation than the wheel’s radius.
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Practice questions

5. Ball A is made of steel and ball B is made of lead. The 

density of lead is greater than that of steel. Outline 

which ball has a greater moment of inertia, when the 

balls have

a. equal mass

b. equal radius.

6. Two balls are made of the same material. The moment 

of inertia of the rst ball is I. The radius of the second 

ball is half of the radius of the rst ball. What is the 

moment of inertia of the second ball?

A. 
I

32
 B. 

I

16

C. 
I

8
 D. 

I

4
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Worked example 8

Two circular discs are cut from the same uniform metal plate. The moment of inertia of the rst 

disc about its central axis is I. The radius of the second disc is twice the radius of the rst disc. 

Calculate, in terms of I, the moment of inertia of the second disc.

Solution

If M and R are the mass and the radius of the rst disc, then I =
1

2
MR2 . The surface area and hence  

the mass of the second disc is four times greater than that of the rst disc. The moment of inertia of  

the second disc is therefore 
1

2
× 4M × (2R)2 = 16 ×

1

2
MR2 = 16I, which is sixteen times greater than  

that of the rst disc.

Torque — Newton’s first and second laws of rotational motion

In linear mechanics, the net force acting on an accelerated object is F = ma

(Newton’s second law), when we know m and a

Moment of inertia I is the rotational equivalent of mass m; angular acceleration α

is the rotational equivalent of linear acceleration a. The rotational equivalent of 

Newton’s second law of motion, is:

τ = I × α

This defines the torque τ acting on the object. The symbol used for torque is a 

Greek lower case tau τ

The unit of torque is the newton-metre (N m).

You can use Figure 7 to define torque. A force F acts on a point P and causes a 

rotation about a point r away from P. The radius of the rotation is r. The force acts 

at angle θ to the line between the centre and P. Torque is then defined as:

τ = Fr sin θ

This can be imagined also as F × (r sin θ) where the quantity in brackets is the 

perpendicular distance from the line of action of the force to the centre of rotation.

A given pair of F and r gives its maximum torque when θ = 90° (sin θ = 1). In this 

case, τ = Fr

A torque is also known as a “moment”. However, you may want to avoid this term 

as it is easy to confuse with the word “momentum”.

According to Newton’s first law of motion, no resultant force acts on a body in 

translational equilibrium. The equivalent statement in rotational terms is that for an 

object in rotational equilibrium, no external resultant torque can act on it. Such an 

object continues at rest or rotating with a constant angular velocity. 

▴ Figure 7 The denition of torque in 

terms of the force F acting on a point P to 

move it about a radius r away from P.

r sinθ F

P

radius (r) θO
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Topic A.2 showed that a body in 

translational equilibrium does not 

accelerate. It remains either at rest 

or moving with a uniform velocity.

Formally, Newton’s first law for angular motion may be stated as: 

An object moves at a constant angular velocity (which may be 

zero) unless an external torque acts on it. 

For an object to be in rotational equilibrium, the total clockwise torque 

acting on the object must equal the total counter-clockwise torque acting. This 

statement is the principle of moments. 

Strictly speaking, a torque is a type of vector with a 

direction at 90° to the plane of the circle in which 

the object rotates. The direction follows a right-hand 

corkscrew rule: imagine that your right hand grips the 

rotation axis so that the fingers curl round the axis in the 

direction of applied force; your thumb then points in the 

direction of the torque vector. Vector aspects of rotation 

are not used in IB Diploma Programme physics.

Direction rules

▴ Figure 8 Direction rules for rotational mechanics. The torque 

acting on an object follows a right-hand corkscrew rule. 

torque

direction

τ

radius

from 

axis r

applied

force
F

Worked example 9

The picture shows a child leaning against a strongwind.

a.  Draw a diagram showing the forces acting on the child. Assume that 

the effect of air resistance can be represented by a single force acting 

horizontally through the child’s centre of mass.

b.  The child remains in translational equilibrium. State the relationship between 

the magnitudes of the horizontal and the vertical forces acting on him.

c.  To remain in rotational equilibrium, the child must lean at an angle of 65° to 

the horizontal. His mass is 42 kg.

  Determine the magnitude of the force of air resistance acting on the child.

Solutions

a. The forces acting through the centre of mass C are weight W and air resistance  

due to the wind, F
d
. The forces applied to the point of contact with the ground  

are the static frictional force F
f
 and the normal reaction force N

b. The net force must be zero; hence F
d
= F

f
 and W=N

c. The net torque about the pivot point P must be zero. Friction and the normal 

force act through P and their torque is therefore zero. The air resistance force 

acts at an angle 65° to the line PC and provides a clockwise torque about P. 

The weight acts at an of angle 25° and provides an anticlockwise torque. The 

torques have equal magnitudes, so mgr sin 25° = F
d
r sin 65°, where r is the 

distance between C and P. From this, F
d
=
mg sin 25°

sin 65°
= 190 N.

C Fd

W N

PFf

C Fd

W N

PFf
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Practice questions

7. Two objects of masses 1.5 kg and m are attached to 

the ends of a weightless horizontal rod, as shown in 

the diagram. The rod is supported at point P.

80cm

1.5kg m

P

100cm

 The rod remains in equilibrium. Calculate:

a. the mass m

b. the reaction force on the rod at P.

8. A ladder of mass 12 kg leans against a vertical 

frictionless wall. The ladder is at rest and makes an 

angle of 55° with the oor.

ladder

55°

a. Draw a diagram showing the forces acting on 

theladder.

b. Determine the magnitude of the reaction force 

between the wall and the ladder.

c. Calculate the minimum value of the coecient 

of static friction between the oor and the 

ladder so that the ladder does not slide away 

from the wall.

9. A rod of mass 40 kg is attached to a vertical wall at 

point P. The other end of the rod is suspended from a 

string that makes a right angle with the rod. The rod 

remains in equilibrium.

30°

string

rod

P

a. Determine the magnitude of the tension in 

thestring.

b. Explain whether the contact force on the rod from 

the wall at P has a vertical component. 

10. A uniform rod rests horizontally on two supports P and 

Q. A mass m is attached to the rod, at a distance of 

10 cm from P and 40 cm from Q.

10cm

m

P Q

40cm

What is the increase in the reaction force on the rod 

from support P aer the mass has been attached to 

the rod?

A. 0.25mg B. 0.50mg

C. 0.75mg D. 0.80mg
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Couples 

A common arrangement of forces that gives rise to a turning effect is known as 

a couple. A couple consists of two equal and opposite forces which do not act 

along the same straight line. Because the forces are offset, they produce a torque 

which causes the system to rotate. Because they are equal and opposite, they do 

not produce a linear acceleration. The system is in  translational equilibrium but 

not rotational equilibrium. 
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A Wilberforce pendulum is a mass–spring system that acts rst as a vertical 

oscillator and later as a torsional oscillator, eventually reverting to the vertical 

motion again. Energy is being transferred between the two modes of 

motion. You can see many videos on the Internet of the pendulum in action.

In its torsional mode, the loaded cylinder, suspended on the spring, rotates 

about a vertical axis and the spring becomes twisted. This twist exerts 

a torque on the cylinder trying to restore the cylinder to its equilibrium 

position. For small rotations, the torque is directly proportional to the 

angular displacement and tends to return the spring to equilibrium; precisely 

the conditions required for simple harmonic motion (Topic C.1).

This is a special case of resonance (Topic C.4); one mode can be regarded 

as providing the forcing oscillation for the other mode. Because the two 

modes have the same oscillation frequency, the system cannot make up its 

mind whether to oscillate vertically or in torsion. It moves between them one 

aer the other!

How does a torque lead to simple harmonic motion?

Figure 9(a) shows an example of a couple. The torque due to each force about 

the point P in the system of Figure 9(a) is F ×
d 

2
. Both torques act in the same 

rotational direction (in this case, clockwise) so they add together making the total 

torque acting 2 × F ×
d 

2
= Fd: that is, the product of one of the forces, F, and the 

perpendicular distance d between the forces

To emphasise the importance of d being the perpendicular distance, consider 

the slightly different arrangement in Figure 9(b). Now the forces still act in 

opposite directions and are still offset by a distance d. 

You must use the perpendicular distance between the lines of action of the 

forces (the construction with dashed lines shows this) and so the torque is  

still F × d

▴ Figure 9 (a) A couple consisting of two 

equal, parallel but opposite forces that will 

turn the rod about P but not translate it.  

(b) The line of action between the forces 

is still d (the distance between where the 

forces act is now greater) so the couple will 

be the same.

F

P

F
d

(a)

F

P

Fd

(b)

▴ Figure 10 The Wilberforce pendulum. The two modes of oscillation have the 

same time period and the system switches repeatedly between the two modes.O
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Worked example 10

Two parallel forces of magnitudes F
1
= 3.0 N and F

2
= 4.0 N are applied to 

a circular disc, as shown in the diagram.

a. Calculate the magnitude of:

 i. the net force acting on the disc

 ii. the net torque about the centre P of the disc.

b. The moment of inertia of the disc is 0.080 kg m2. Calculate the initial 

angular acceleration of the disc.

Solutions

a. i. The forces act in the same direction, so the net force is 4.0 + 3.0 = 7.0 N. 

 ii.  The torque provided by F
1
 is τ

1
= 3.0 × 0.50 × sin40° = 0.96 N m and the torque provided by 

F
2
 is τ

2
= 4.0 × 0.20 = 0.80 N m. τ

1
 acts clockwise and τ

2 
 acts counter-clockwise, so the net torque 

is the difference τ = 0.96  0.80 = 0.16 N m in the clockwise direction.

b. τ = Iα ⇒ α =
τ

I
=

0.16

0.080
= 2.0 rad s 2

Worked example 11

A constant force of 25 N is applied tangentially to the sprocket of a bicycle wheel. 

The wheel accelerates from rest to an angular velocity of 40 rad s 1 in a time of 3.0 s. 

The radius of the sprocket is 4.0 cm.

Calculate the moment of inertia of the wheel.

Solution

The torque applied to the wheel is τ = 25 × 0.040 = 1.0 N m. The wheel’s angular  

acceleration is α =
40

3.0
= 13.3 rad s 2. Using Newton’s second law for rotation, I =

τ

α
=

1.0

13.3
= 0.075 kg m2

P

40°

0.50m

0.20m

F1

F2

25N

Worked example 12

A constant frictional torque acting on a spinning top causes its angular velocity to decrease  

from 150 rad s−1 to 80 rad s−1. The top undergoes 300 revolutions while the angular velocity is  

changing. The moment of inertia of the spinning top is 5.0 × 10−3 kg m2. Calculate the magnitude  

of the frictional torque acting on the top.

Solution

The angular acceleration can be found from 802 = 1502 – 2α × 300 × 2π ⇒ α = 4.27 rad s–2.  

The torque acting on the top is therefore τ = 5.0 × 10–3 × 4.27 = 0.021 N m.

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



Practice questions

11. A couple consisting of two forces F acts on a system 

of two masses m connected by a weightless rod of 

length L

L

m

m

F

F

 What is the angular acceleration of the system about 

the midpoint of the rod?

A. 
F

2mL
  B. 

2F

mL
  C. 

F

mL
  D. 

4F

mL

12. A uniform cylinder of radius 4.0 cm and mass 1.2 kg 

can rotate freely around its central axis. A string is 

wrapped ve times around the cylinder and a constant 

force of 1.8 N is applied to the string. The cylinder is 

initially at rest and the string unwinds without slipping.

1.8N

 Calculate:

a. the angular acceleration of the cylinder

b.  the nal angular velocity of the cylinder when the 

string unwinds completely

c. the time taken to unwind the string.

13. A bicycle wheel has a moment of inertia of 

0.090 kg m2 and rotates at an angular velocity of 

23 rad s 1. When the brakes are applied to the wheel, 

it turns through one quarter of a revolution before 

coming to rest.

a. Calculate the frictional torque acting on the wheel.

The wheel is equipped with a disc brake system in 

which a force is applied to the disc by a pair of braking 

pads, one on each side of the disc, at a distance of 

8.0 cm from the axis of rotation of the wheel. The 

coecient of dynamic friction between braking pads 

and the disc is 0.85.

b.  Calculate the magnitude of the normal force 

acting between the disc and each braking pad.

14. A fan rotates at an initial rate of 320 revolutions per 

minute. When the motor is switched o, a resistive 

torque of 0.10 N m brings the fan to rest in a time of 

8.0 s. Calculate:

a. the moment of inertia of the fan

b.  the number of revolutions the fan rotates through 

before coming to rest.
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Worked example 13

Two objects of masses 2.0 kg and 1.0 kg are attached to the ends of a 

weightless rod supported at point P as shown in the diagram. The rod is 

initially horizontal.

Determine the initial linear acceleration of each mass when the rod is 

released.

Solution

The moment of inertia of the system about P is I=∑mr2 = 2.0 × 0.402 + 1.0 × 0.602 = 0.68 kg m2.  

The weights of both masses are initially at right angles to the rod, so the initial torque about P is 

τ= 2.0 × 0.40  1.0 × 0.60 = 0.20 N m. The torque acting on the 2.0 kg mass is greater than that  

due to the 1.0 kg mass; hence the net torque is directed counter-clockwise. The initial angular 

acceleration is α=
τ

I
=

0.20

0.68
= 0.294 rad s 2 and is equal for both masses. The initial linear accelerations  

are different: 0.294 × 0.40 = 0.12 m s 2 downward for the 2.0 kg mass and 0.294 × 0.60 = 0.18 m s 2

upward for the 1.0 kg mass.

40cm

2.0kg 1.0kg

P

60cm
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Centre of mass

The centre of mass of an object is the point that moves as though the whole mass 

were concentrated there. An external force applied at the centre of mass causes 

linear but not angular acceleration. Figure 11 shows the centres of mass for some 

common shapes.

▴ Figure 11 The position of the centre of 

mass (CoM) for four objects.

triangular plate

h/3

CoM

rectangular plate

b

l

l/2

b/2

CoM

solid circular cone 

h

h/4

CoM

solid hemisphere

R

O

3R/8
CoM

• Inquiry 1: State and explain predictions using scientic understanding.

• Inquiry 2: Identify and record relevant qualitative observations.

• Inquiry 3: Compare the outcomes of an investigation to the accepted 

scientic context.

• Set up the arrangement shown in the diagram, with two forks sticking 

into opposite ends of a cork and a match stuck in the middle of the cork.

• Consider where the centre of mass of this combination is.

• Investigate how you could nd the centre of mass of this combination.

• The centre of mass of the combination of two forks and a cork lies 

somewhere in the space between the forks. 

• Balance the fork, cork and match combination on the edge of a cup. The 

combined centre of mass is at the point where the match balances on 

the edge of the cup.

• Slightly wet the match above this balance point.

• Light the match and watch what happens. Consider why this is.

Consequences of centre of mass

When a single force acts on an object through the centre of mass, then the object 

will undergo linear acceleration (in a straight line). This is known as translational 

acceleration

However, when the single force acts on an object in any other direction than 

through the centre of mass, two things happen. There is both a translational 

acceleration and a rotational acceleration. Figure 12 shows how this arises. The 

single force F acts near the top of the baseball bat. This has two effects on the 

bat:

• A force F acts at the centre of mass. This gives rise to a translational 

acceleration to the right.

• A couple acts on the bat producing a clockwise rotation. The couple has 

forces + 
1

2
F at the top of the bat and 

1

2
F at the bottom.
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▸ Figure 12 The eects of a force acting 

on a baseball bat at a position other than the 

centre of mass.

centre of mass

F

translation rotation

F

1

2

= +

1

2

F

F

• Inquiry 1: Demonstrate creativity in the designing, 

implementation or presentation of the investigation

• Inquiry 1: Develop investigations that involve hands-

on laboratory experiments, databases, simulations 

and modelling.

• Inquiry 1: Design and explain a valid methodology.

Anyone who plays a game that involves a bat will be 

aware that all bats and racquets have a single “sweet 

spot”. This is the region on the bat where contact with a 

ball gives minimal jarring of the wrist(s) and produces the 

best result in terms of transferring energy to the ball. 

This phenomenon is caused by the existence of a centre 

of percussion. Again, the example of a baseball bat 

shows how it occurs.

For the sake of simplicity, the bat is modelled as a 

horizontal block of wood of constant cross-section that 

is pivoted (hinged) at one end. The hinge corresponds 

to the player’s wrist. When the ball impacts the bat at the 

centre of percussion, the wrist is not jarred.

centre of gravity

centre of

percussion

centre of gravity

centre of

percussionF

F

stationary

▴ Figure 13 Centre of percussion.

When a force F is applied to the object there are always 

two eects: 

• The force applies a rotational impulse about the 

centre of gravity (unless F acts exactly at the centre of 

gravity). This rotates the bat.

• The force applies a translational motion to the bat 

which moves it linearly.

Figure 13 shows these two eects in operation. When 

F acts below the centre of gravity, the rotation caused 

is counter-clockwise giving an impulse to the le at the 

hinge. The linear eect is to the right at the hinge. The 

centre of percussion is the point at which these two 

eects will have the same magnitude and be opposite in 

direction so that there is no net force acting at the hinge.

Devise an investigation along the lines of an internal 

assessment to determine the position of the centre of 

percussion for a bat used in sport.

Centre of percussion

When a force has acted on the bat, it will be moving at a constant linear velocity 

and rotating with a constant angular velocity. 
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Newton’s third law of rotational motion 

The rotational equivalent of Newton’s third law is straightforward. In rotational 

terms, the action torque and reaction torque are equal and opposite. The pair of 

torques, as in action–reaction pairs for linear motion, must act on different bodies. 

When object A applies a torque to object B, then object B will apply an 

equal and opposite torque to object A.

Rotational kinetic energy 

The work done by a torque when an object is rotated is an analogue of the work 

done by a force acting in a linear direction: 

W= torque × angular displacement = τ × θ

and for power 

P= torque × angular velocity = τ × ω

The kinetic energy of an object in linear motion is E
k
=

1

2
mv2. Therefore, the 

rotational kinetic energy of a rotating object is

E
k
=

1

2
Iω2. 

Worked example 14

A uniform disc of mass 0.25 kg and radius 0.15 m rotates about the central axis with an initial 

angular velocity of 8.0 rad s 1. Calculate:

a. the initial rotational kinetic energy of the disc

b. the work done in increasing the angular velocity of the disc from 8.0 rad s 1 to 16 rad s 1

Solutions

a. I=
1

2
MR2

=
1

2
× 0.25 × 0.152

= 2.8 × 10 3 kg m2. The kinetic energy is E
k
=

1

2
Iω2

=
1

2
× 2.8 × 10 3

× 8.02
= 0.090 J.

b. The work done is equal to the change in the rotational energy of the disc,  

W=
1

2
I(ω

f

2 ω2) =
1

2
× 2.8 × 10 3

× (162  8.02) = 0.27 J.

Worked example 15

A stationary bicycle trainer has a ywheel with electronically controlled resistance to simulate  

dierent cycling conditions. When the cyclist stops pedalling, the ywheel comes to rest from  

an initial angular velocity of 180 rad s 1 in a time of 9.0 s. The moment of inertia of the ywheel is 0.070 kg m2. 

Calculate:

a. the resistive torque acting on the flywheel, assuming that it is constant

b. the work done by the resistive torque in stopping the flywheel

c.  the power that the cyclist needs to transfer to the flywheel to maintain the constant angular velocity of 180 rad s 1
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Worked example 16

A metre stick of mass 0.15 kg is suspended at one end and can rotate freely 

about the point of suspension. The metre stick is set in motion so that it passes 

through the vertical position with an angular velocity of 3.4 rad s 1

a.  Calculate the rotational kinetic energy of the metre stick in the vertical  

position.

b.  Explain why the torque acting on the metre stick increases with the angular 

displacement from the vertical position. State the direction of the torque.

c.  Determine the maximum angle θ
max

 through which the metre stick rotates before 

it reverses the direction of motion.

Solutions

a. The moment of inertia of the metre stick through the fixed end is I=
1

3
 ML2

=
1

3
× 0.15 × 1.02

= 0.050 kg m2. The kinetic energy is therefore E
k
=

1

2
× 0.050 × 3.42

= 0.29 J.

b. The torque is provided by the weight W, applied to the centre of mass of the metre stick at its 

midpoint.

 Since τ= W ( L

2 )sin θ, the torque increases with θ, and reaches the maximum value when the  

metre stick is horizontal. The torque is directed clockwise towards the vertical position, so  

against the angular displacement of the metre stick.

c. At the angular position θ
max

, all of the kinetic energy of the metre stick has 

been converted to gravitational potential energy; hence mgh =
1

2
Iω

0

2, 

where h is the height through which the centre of mass of the metre stick 

has risen, and ω
0
 is the angular velocity in the vertical position.  

0.15 × 9.8h =
1

2
× 0.050 × 3.42

⇒ h = 0.20 m. In the initial position, 

 the centre of mass was 0.50 m below the fixed end so now it is  

0.50  0.20 = 0.30 m below the end. The angle of rotation can be 

determined using triangle trigonometry: cos θ
max

=
0.30

0.50
⇒ θ

max
= 53°.

1.0m

3.4rads 1

θmax

Solutions

a. The angular deceleration of the flywheel is α=
180

9.0
= 20 rad s 2. The resistive torque is therefore  

τ= Iα= 0.070 × 20 = 1.4 N m.

b. The work done is equal to the change in rotational kinetic energy of the flywheel: W =
1

2
× 0.070 × 1802

= 1.1 kJ.

c. When the flywheel rotates with a constant angular velocity ω= 180 rad s 1, the external torque applied to the flywheel 

by the cyclist must be equal to the resistive torque, and the power transferred by the cyclist is 

P= τω= 1.4 × 180 = 250 W. 

W

θ

θ

0.30 m

0.50 m

h = 0.20 m

centre of massθmax
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Practice questions

15. A football can be modelled as a thin spherical shell of 

mass 0.45 kg and radius 0.11 m. The football is kicked 

sothat it rotates with angular velocity 60 rad s 1

a.  Calculate the rotational kinetic energy of the 

football. The moment of inertia of a spherical shell 

of mass m and radius R is 
2

3
mR2

b.  Determine the linear speed of the football if 

its translational and rotational kinetic energies 

areequal.

16. A wind turbine transfers kinetic energy of the wind to 

electrical energy at a rate of 1.5 MW. The turbine rotates 

at a constant angular velocity and makes one complete 

revolution in a time of 4.0 s. Calculate the torque acting 

on the turbine due to the wind.

17. Earth has radius 6.4 × 106 m and mass 6.0 × 1024 kg 

and rotates about its axis once every 24 hours. 

a.  Calculate the rotational kinetic energy of Earth, 

assuming that it is a uniform sphere.

b.  The density of Earth is not uniform but increases 

towards the centre. Outline what eect this has on 

the energy calculated in a.

18. A merry-go-round rotates at an angular velocity of 

0.60 rad s 1. Assuming that the merry-go-round can be 

modelled as a ring of mass 150 kg and radius 2.5 m, 

calculate:

a.  the rotational kinetic energy of the 

merry-go-round

b.  the power required to stop it in a time of 5.0 s.
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Angular momentum 

Angular momentum L is the direct rotational equivalent of linear momentum. It 

is defined as the product of an object’s moment of inertia and its angular velocity. 

It is a vector quantity but in the IB Diploma Programme physics you will only 

consider its sense (clockwise or counter-clockwise). 

Using the symbols already defined: 

L= I ×ω

The units of angular momentum are kg m2 [rad] s 1. The radian is a ratio and so 

unitless. It is normally omitted.

Conservation of angular momentum 

The total (linear) momentum of a system remains constant when no external 

forces act on the system. In rotational dynamics, a similar law of conservation of 

angular momentum applies: 

The total angular momentum of a system remains constant providing no 

external torque acts on the system.

In equation terms, using the summation symbol (∑) introduced earlier: 

∑(I
initial

×ω
initial

) =∑(I
final
×ω

final
).

Imagine two co-axial flywheels (Figure 14) rotating in opposite directions at 

different angular velocities (I
1
 and I

2
) and with different initial angular velocities  

(ω
1
 and ω

2
). When these flywheels are suddenly clamped together so that 

they must rotate at the same speed Ω, then the equation that describes the 

conservation of angular momentum is I
1
ω

1
I
2
ω

2
= (I

1
+ I

2
 )Ω. 

The negative sign on the left-hand side is there because the flywheels are rotating 

in opposite directions. The final sign of Ω will show the direction in which the 

pair of flywheels rotate afterwards. If Ω is positive, the pair will rotate in the same 

direction as flywheel 1 initially. If Ω is negative, the pair will rotate in the same 

initial direction of flywheel 2.

▴ Figure 14 Two ywheels rotating just 

before they are clamped together. Angular 

momentum must be conserved when  

this happens.

Rotational kinetic energy can 

be written in terms of rotational 

momentum L: E
k
=

L2

2I
 to match the 

E
k
=

p2

2m
 formulation from linear 

mechanics.

Rotational momentumO
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Figure 15 gives another example of angular momentum conservation when a 

small mass is dropped onto a disc that is spinning freely in a horizontal plane. The 

combined moment of inertia of the disc and mass is greater than the moment of 

inertia of the disc alone. Friction acts between the mass and the disc surface and 

this accelerates the mass. The reaction force to this friction decelerates the disc. 

The angular velocity of the system will decrease so that angular momentum is 

conserved. 

Conservation of angular momentum is of great importance in sport. An ice skater 

can increase their angular velocity about a vertical axis by pulling their arms tightly 

into their body (Figure 16). 

▴ Figure 16 The ice skater conserves 

angular momentum as she rotates (a). She 

pulls in her arms to decrease her moment of 

inertia (b). As a result, her angular velocity 

increases.

Worked example 17

A disc of radius 30 cm and mass 1.2 kg spins freely at an angular velocity 

of 5.0 rad s 1. A small object of mass m= 0.25 kg is dropped onto the 

disc with a negligible initial velocity and comes to rest relative to the 

disc at a distance of 20 cm from the axis of rotation.

a. Calculate the final angular velocity of the system consisting of the disc and  

the mass, assuming that no external torques act on the system.

b. Determine the change in the rotational kinetic energy of the system.

c. Explain why the rotational kinetic energy has decreased.

Solutions

a. The moment of inertia of the disc about the axis of rotation is I
disc

=
1

2
× 1.2 × 0.302

= 0.054 kg m2 and 

the moment of inertia of the mass is I
mass

= 0.25 × 0.202
= 0.010 kg m2. Initially, the mass has zero angular 

velocity and it does not contribute to the angular momentum L of the system, L = I
disc

ω
0
= 0.054 × 5.0 =

0.27 kg m2 s 1. When the mass has come to rest relative to the disc, the system rotates with a new angular 

velocity ω and with a combined moment of inertia I
disc

+ I
mass

. The angular momentum is unchanged,  

so L = (I
disc

+ I
mass

) ω= I
disc

ω
0
. From here, ω=

I
disc

ω
0

I
disc

+ I
mass

=
0.27

0.064
= 4.2 rad s 1

b. The initial rotational energy is that of the spinning disc alone, 
1

2
I
disc

ω
0

2. The final rotational energy 

is 
1

2
(I

disc
+ I

mass
) ω2. The change is therefore 

1

2
× 0.064 × 4.22 1

2
× 0.054 × 5.02

= –0.11 J. 

The negative sign indicates that the energy has decreased.

c. Before the mass has come to rest relative to the disc, a frictional force must have acted on the mass at the 

disc surface, slowing it down relative to the disc. The work done by the frictional force results in a decrease 

of the kinetic energy of the system by the amount equal to the work done.

▴ Figure 15 Conservation of angular momentum as a small mass is dropped 

onto a turntable. 

small mass

r

spinning disc

(a) (b)

30 cm

spinning disc
5.0 rad s 1

20 cm

m
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Practice questions

19. An ice skater doubles the angular velocity about the 

vertical axis of rotation by pulling in her arms close to 

her body. The initial rotational kinetic energy of the ice 

skater is E. No external torques act on the ice skater. 

What is the change in her rotational kinetic energy?

A. 0

C. 2E 

B. E

D. 3E

20. A ywheel in the shape of a solid cylinder of mass 

7.0 kg and radius 0.10 m rotates at an initial angular 

frequency of 80 rad s 1. Another ywheel, of radius 

0.25 m and mass 3.0 kg, is initially at rest. The 

ywheels are coupled together. Calculate:

a. the nal angular velocity of the system

b. the change in the rotational kinetic energy.
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Worked example 18

A rotating star collapses, decreasing its moment of inertia to 
1

1000
 of the initial value. The initial angular  

velocity of the star is ω
0
 and its initial rotational kinetic energy is E

0
. For the star aer the collapse, calculate:

a. the angular velocity

b. the rotational kinetic energy.

Solutions

a. The angular momentum is unchanged; hence I
0
ω

0
=

I
0

1000
ω. From here, ω = 1000ω

0

b. The new kinetic energy is E
k
=

1

2
Iω2

=
1

2

I
0

1000
(1000ω

0
)2
= 1000E

0
. The collapse of the star results in 

a thousandfold increase in both the angular velocity and the rotational kinetic energy. Where do you 

think this additional energy comes from?

Worked example 19

A child sits at the edge of a merry-go-round of radius r = 2.5 m. The child throws a stone of  

mass m= 0.50 kg tangentially to the merry-go-round, with an initial speed of v= 8.0 m s 1

a.  Show that the angular momentum of the stone relative to the rotation axis of the  

merry-go-round is given by L = mvr

The merry-go-round is initially at rest and can rotate without friction. The combined moment of 

inertia of the child and the merry-go-round is I =1400 kg m2

b. Calculate the final angular velocity ω of the merry-go-round.

Solutions

a. The initial moment of inertia of the stone is I
s
= mr2 and its initial angular velocity relative to the  

centre of the merry-go-round is ω
s
=

v

r
. Hence, L = I

s
ω

s
= mr2v

r
= mvr

b. The total angular momentum is zero; hence Iω mvr = 0. The minus sign means that the  

merry-go-round rotates away from the direction of the initial velocity of the stone.  

ω =
mvr

I
= 7.1 × 10 3 rad s 1. This corresponds to about 0.4° per second.

2.5m

0.50kg8.0ms 1
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Topic E.1 describes the important work of Niels Bohr 

who took empirical data for the hydrogen spectrum 

and linked it to the energy states of the atom. This work 

moved the description of the atom forward. Even though 

he used classical mechanics to describe the behaviour 

of what is a quantum-mechanical system, Bohrmade 

predictions and hypotheses that were conrmed 

experimentally. He was able to calculate the radius of the 

electron orbit in the ground state using conservation of 

angular momentum.

How does conservation of angular momentum lead to the determination of the Bohr radius?

In Topic D.4, you will learn that a conducting coil rotating 

relative to a magnetic eld will lead to the generation of 

an electromotive force across the terminals of the coil. 

There are direct links between the theory you meet in 

this topic and the later one which deals with the eects 

of changing a magnetic ux. Some of the mathematical 

ideas will appear again too.

How can rotation lead to the generation of an electric current?

A gyroscope consists of a disc that spins rapidly. Gyroscopes can be used 

to help keep things level and upright. For example, they can be used to aid 

navigation or to help stabilize cameras. In Figure 17, the camera operator is 

standing on a self-balancing transporter that uses gyroscopes to detect the 

tilt and adjusts the wheels to keep the rider in balance. 

Because gyroscopes spin rapidly, they have a large angular momentum. The 

eects of this angular momentum can cause a gyroscope to have seemingly 

strange properties. Similar eects can be observed with other spinning 

objects such as bicycle wheels.

A fast-moving object with a large linear momentum requires a large force to 

stop it or to change its direction within a given timeframe — this is because 

of Newton’s second law, F =
Δp

Δt
. The same eect applies to a gyroscope. 

Itslarge angular momentum requires a large torque to change the direction 

of rotation. 

Applying key ideas and facts in new concepts ATL

▴ Figure 17 A gyroscope can be 

used to stabilize cameras because its 

large angular momentum means that 

alarge torque is required to change 

itsdirection.

Kepler identied the three law of planetary motion which 

are described in Topic D.1 and are now named aer him. 

The second law involves the line joining the centre of a 

planet to the centre of the Sun. The law suggests that this 

line sweeps out equal areas in equal times. This is clear 

for a circular orbit with the planet moving with a constant 

angular velocity. For comets where the orbit can be 

ellipses, then it is not so clear.

The conservation of angular momentum helps here. 

The angular momentum of the comet is equal to 

m × v × r, where m is the mass of the comet, v is its linear 

speed and r the radius of its orbit. When the distance of 

the comet from the Sun is large, its speed is small and 

vice versa. Analysing the orbit carefully and assuming 

conservation of angular momentum shows that the area 

the comet sweeps out is indeed constant, which veries 

Kepler’s second law. 

Similar ideas apply to the rotation of a charged particle 

moving in a magnetic eld. Topic D.4 contains the 

analysis which can be easily carried out in terms of 

rotational mechanics.

How does rotation apply to the motion of charged particles or satellites in orbit? 

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



A
H
L

A. Space, time and motion

151

▴ Figure 18 When spinning, a 

gyroscope can balance in a way that 

seems unexpected.

The behaviour of spinning objects 

such as gyroscopes can seem 

strange. They do not seem to 

follow the laws of physics. What 

is really happening is that we are 

making poor assumptions as to 

what the laws of physics predict.

Oen, intuition is correct and can 

predict the outcome of events. 

Sometimes, however, it lets us 

down. Is intuition a valid way of 

predicting what will happen?

Behaviour of gyroscopes

• Inquiry 2: Identify and record relevant qualitative observations.

• Inquiry 2: Interpret qualitative and quantitative data.

Imagine a bicycle wheel that is spinning counter-clockwise in a horizontal plane.

The wheel’s angular momentum can be represented by a vector along its 

axis. In this instance, the direction of the vector would be vertically upwards.

Now imagine twisting the bicycle wheel by liing the far side upwards and 

the near side downwards. This is represented by a torque with its vector 

direction acting along the axis of rotation to the right. This torque creates an 

angular impulse in the same direction.

The angular impulse gives the change in the angular momentum. 

The axis of rotation has changed so that the le-hand side of the wheel 

rotates upwards and the right-hand side moves downwards. But this was not 

the direction in which the wheel was rotated.

• Try this with a bicycle wheel. Make it spin rapidly — you could add some 

mass evenly distributed around the rim to increase the moment of inertia 

of the wheel. This will make the eect more noticeable.

• Try standing on a rotating platform while you twist the bicycle wheel. 

What happens?

direction of

angular

momentum

direction of rotation 

direction of

angular

momentum

angular

impulse

• If you cannot carry out the experiment, you could search for a video 

online — try searching for “angular momentum conservation with rotating 

bicycle wheel”.

Investigating a spinning bicycle wheel

Earth rotates about an axis which passes between the 

North and South poles. This axis is tilted, relative to the 

plane in which Earth rotates about the Sun, by an angle of 

about 23.5°. This tilt is responsible for the seasons — for 

example, when the North Pole is tilted towards the Sun, it 

is summer in the Northern Hemisphere.

The tilt varies slowly over a period of about 41,000years. 

Additionally, the gravitational eect of the Sun and the 

moon create a torque which causes the direction of the 

tilt to wobble with a period of about 26,000years.

The way in which the rotational motion of Earth varies 

over time causes variation in the seasons and in Earth’s 

climate. These variations are called Milankovitch cycles 

and they have caused periodic ice-ages in Earth’s history. 

Understanding the rotational dynamics of Earth’s orbit 

helps us to understand what eect these cycles currently 

have on Earth’s climate and to evaluate the impact of 

humans on theplanet.

Global impact of science

23.5° 

Sun

▴ Figure 19 The tilt of Earth is responsible for the seasons.
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Angular momentum is important when considering 

the Solar System. Table 1 shows that the Sun accounts 

for approximately 99.9% of the Solar System's mass. 

However, the Sun does not account for the majority 

of the angular momentum in the Solar System. This is 

important when considering theories for how the Solar 

System formed.

The planets possess angular momentum because of their 

rotation about their axis (as a rotating sphere: I =
2

5
MR2) 

as well as their orbit around the Sun (acting as a point 

mass: I = MR2).

• Use the rotational period and radius to calculate 

the angular momentum of each of the solar system 

objects as they spin on their axis.

Two objects rotate in the opposite direction and so 

their rotational periods are expressed with a minus 

sign. You may wish to use a spreadsheet here.

• Use the orbital period and orbital radius to calculate 

the angular momentum of the planets as they orbit 

the Sun. The Sun has zero angular momentum from 

this motion.

• Hence calculate the total angular momentum of each 

object.

• Calculate the percentage of the total angular 

momentum of the solar system that is possessed by:

a. the Sun

b. Jupiter.

• Draw a pie chart to represent the distribution of the 

angular momentum of the Solar System objects.

Data-based questions

Solar System 

object
Mass / × 1024 kg

Orbital 

period / × 106 s

Orbital 

radius / × 109 m

Rotational 

period / × 106 s
Radius / × 106 m

Sun 1 990 000 - 0 2.16 696

Mercury 0.330 7.60 57.9 5.07 2.44

Venus 4.87 19.4 108 −21.0 6.05

Earth 5.97 31.6 150 0.0860 6.38

Mars 0.642 59.4 228 0.0886 3.40

Jupiter 1900 374 779 0.0356 71.5

Saturn 568 929 1430 0.0385 60.3

Uranus 86.8 2640 2870 −0.0619 25.6

Neptune 102 5170 4500 0.0580 24.8

Angular impulse

As you saw in Topic A.2, in linear mechanics, impulse J is the product of the 

average resultant force acting on an object F and the contact time Δt over which 

the force acts. In symbols, J = FΔt

In rotational dynamics, the angular impulse ΔL is the product of the average 

torque τ and Δt: 

ΔL = τ ×Δt

This can also be written as

Δ(I ×ω)

The units of angular impulse using ΔL= τΔt are N m s (τ has the units N m). 

Because angular impulse is equal to 

the change in angular momentum, 

both quantities should have the 

same units. Earlier the units for 

angular momentum were stated as 

being kg m2 rad s 1 or kg m2 s 1. It is 

easy to show that the newton has 

units kg m s 2 and so (N × m × s) is 

(kg m s 2 × m × s) ≡ kg m2 s 1

Units of angular  

impulse
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Worked example 20

Two rocket thrusters T
1
 and T

2
 separated by a distance of 80 m are used to rotate 

a space station around its axis. Each of the thrusters provides a 1.0 kN force at a 

right angle to the line joining the thrusters. The moment of inertia of the space 

station about the point halfway between the thrusters is 2.8 × 108 kg m2

The space station rotates initially in a clockwise direction with a period of 20 

minutes. The thrusters operate for 30 s. Calculate:

a. the initial angular momentum of the space station

b. the angular impulse delivered to the space station by the thrusters

c. the final rotational period of the space station.

Solutions

a. The initial angular velocity of the space station is ω
0

=
2π

T
0

=
2π

20 × 60
= 5.24 × 10 3 rad s 1.  

The angular momentum is L
0

= Iω
0

= 2.8 × 108 × 5.24 × 10 3 = 1.47 × 106 N m s.

b. The torque provided by the thrusters is τ = 1.0 × 103 × 80 = 8.0 × 104 N m. 

The impulse delivered for 30 s is ΔL = τΔt = 8.0 × 104 × 30 = 2.40 × 106 N m s.

c. The final angular momentum is L = L
0

+ ΔL = 1.47 × 106 + 2.40 × 106 = 3.87 × 106 N m s. 

This corresponds to the angular velocity ω =
L

I
=

3.87 × 106

2.8 × 108
= 1.38 × 10 2 rad s 1,  

and the period of 
2π

1.38 × 10 2
= 455 s = 7.6 minutes.

 Solve the same task using the equations for uniformly accelerated motion, instead of angular momentum and impulse.

1.0kN

1.0kN

T1

T2

80m

Worked example 21

A ywheel of the moment of inertia 0.070 kg m2 is driven by an electric 

motor that provides a torque that varies with time t. The graph shows 

the variation with t of the net torque applied to the ywheel.

The ywheel is initially at rest. Calculate:

a. the angular momentum of the flywheel when t = 5 s

b. the angular velocity of the flywheel when t = 10 s

c. the average acceleration of the flywheel during the first 10 s.

Solutions

a. The initial angular momentum is zero so the angular momentum at t = 5 s is equal to  

the area under the graph for t ∈[0,5] s. L =
1   

2
× 4 × 5 + 1 × 5 = 15 N m s.

b. The angular momentum at t = 10 s is the total area under the graph, L = 35 N m s. 

The angular velocity is ω =
L

I 
=

35

0.070
= 500 rad s 1

c. α =
Δω

Δt
=

500   

10
= 50 rad s 2

0
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Practice questions

21. The motor of an electric saw delivers a torque of 

40 N m to a circular cutting blade. The moment of 

inertia of the cutting blade about the rotation axis 

of the saw is 8.0 × 10 3 kg m2. The cutting blade 

accelerates to its operating speed in a time of 0.10 s.

a.  Calculate the angular impulse delivered to the 

cutting blade in 0.10 s.

b.  Hence, calculate, in revolutions per minute (rpm), 

the nal angular velocity of the cutting blade.

22. A golf ball can be modelled as a uniform solid sphere 

of radius 2.2 cm and mass 45 g. The ball is hit by a golf 

club and is launched with an initial angular velocity of 

75 rad s 1.  

a.  Calculate the angular impulse delivered to the ball 

by the golf club.

b.  The ball is in contact with the golf club face for 

a time of 15 ms. Calculate the average torque 

exerted by the golf club on the ball.

23. The graph shows how the net torque acting on a 

turntable varies with time t. The turntable starts from 

rest and its moment of inertia about the rotation axis is 

0.16 kg m2

a.  Determine the angular velocity of the turntable 

at t = 1.0 s.

6

0

t / s 

to
rq

u
e

/
N

 m

4

2

0

2

4

6

b. Explain why the angular velocity remains constant 

between t = 1.0 s and 8.0 s.

c. Calculate the number of revolutions the turntable 

makes between t = 1.0 s and 8.0 s.

d. Explain why the turntable comes to rest at t= 10 s.
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Change in angular momentum

As shown in Topic A.2, you can extend Newton’s second law from the simple 

equation F = ma to the more complex form FΔt =Δ(mv). This change expresses 

the link between change in momentum and impulse. This led to a second 

expression for Newton’s second law as

F = m 
Δv

Δt
+ v 

Δm

Δt

The first term on the right-hand side of the equation is Newton’s law in its simple 

form. The second term gives the dynamic contribution of the change of mass 

while the force acts to the overall change.

As you will expect, there is an equivalent statement for rotational dynamics: 

τ= I 
Δω

Δt
+ω

ΔI

Δt

It is clear from this equation that a torque is required to: 

• change the angular velocity of an object that has a constant moment of inertia 

(e.g. accelerating a flywheel), or

• maintain, at a constant angular velocity, any object that has a changing 

moment of inertia (e.g. a figure skater).

Both of these conditions can change simultaneously.
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Worked example 22

Sand is poured at a rate of 8.0 g s 1 onto a spinning disc. The sand lands with 

a negligible vertical speed at an average distance of 10 cm from the centre of 

the disc. The moment of inertia of the disc is 0.040 kg m2 and its initial angular 

velocity is 5.0 rad s 1. No external torques act on the system consisting of the 

disc and sand.

a. Calculate the rate of change of the moment of inertia of the system.

b. Calculate the initial angular acceleration of the spinning disc.

c.  Explain whether the acceleration will remain constant as the sand is  

being poured.

Solutions

a. 
ΔI

Δt
=
Δm

Δt
R2 = 0.0080 kg s 1 (0.10 m)2 = 8.0 × 10 5 kg m2 s 1

b. From I
Δω

Δt
= –ω

ΔI

Δt
, the angular acceleration is α=

Δω

Δt
= –

ω

I

ΔI

Δt
= –

5.0
0.040

× 8.0 × 10 5 = – 0.010 rad s 2

c. The angular velocity of the system decreases and the moment of inertia increases, so the magnitude of  

the angular acceleration will decrease, as given by |α| =
ω

I

ΔI

Δt

spinning disc
5.0 rad s 1

10 cm

sand

8.0 g s 1

Rolling and sliding 

It is important to distinguish between two motions: rolling and sliding. Rolling 
means that the object is rotating across a surface about an axis of rotation. Sliding 
means that the object is moving smoothly along the surface. When an object is 
moving on a perfectly frictionless surface, then it cannot roll — the only motion 
possible is sliding. 

When there is friction between surface and object, the point of contact between 
the two is instantaneously at rest; this implies that the coefficient of static friction 
μ

s
 must be used in any calculation. 

Figure 20 shows a rolling disc with its motion broken down into a linear, 
translational motion (Figure 20 (a)) and rotational motion (Figure 20 (b)). The disc 
of radius r has a linear motion of v

0
 and an angular velocity ω. When the point 

of contact at the ground is instantaneously stationary, then v
0
 must be equal to 

rω — which is the tangential velocity of each point on the edge of the disc. At the 
top of the disc the speed must be v

0
+ rω, which is 2v

0

There is more about coecients of 
static friction in Topic A.2.

▴ Figure 20 When a disc or a sphere rolls, the point of contact with the ground has an instantaneous 

velocity of zero and the top of the object has a speed of 2v
0
, where v

0
 is the linear speed of the centre of mass.

v0 v0

rω

v0

v0

v0

rω

ω

v0

v0 + r ω

ω

(a) (b) (c)
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Worked example 23

A round object of mass M, radius R and moment of inertia I rolls without slipping down an inclined plane 

that makes an angle θ with the horizontal.

a. Draw a diagram showing the forces acting on the object.

b. Derive an expression for the linear acceleration of the object.

c. Calculate, in terms of θ, the linear acceleration of the object if the object is:

   i. a solid sphere     ii.  a solid cylinder    iii.  a thin hoop.

Solutions

a. The forces acting on the object are the weight, Mg, the normal reaction force, 

N, and the static frictional force F
f
 between the object and the plane. The 

frictional force provides the angular acceleration, because both Mg and N act 

through the centre of the object and their torque is zero. The diagram also 

shows the parallel and normal components of the weight.

b. The object has both a linear acceleration a and an angular acceleration α. The 

net force acting on the object down the plane is Mg sin θ F
f
. Hence the linear 

acceleration is a = g sin θ
F

f

M
. The torque provided by the frictional force 

is F
f
R. Hence the angular acceleration is α =

F
f 
R

I
. The object rolls without slipping so the linear and 

angular accelerations are related to each other, a = αR. We eliminate α from the last two equations and 

get F
f
=

aI

R2
. This expression is substituted into the equation for the linear acceleration: a = g sin θ

aI

MR2

. From here, the acceleration is a =
g sin θ

1 +
I

MR2

c.   i. For a solid sphere, I =
2 

5
MR2 and a =

g sin θ

1 +
2

5

=
5 

7
 g sin θ

  ii. For a cylinder, I =
1 

2
MR2 and a =

g sin θ

1 +
1

2

=
2 

3
g sin θ

 iii. For a thin hoop, I = MR2 and a =
g sin θ

1 + 1
=

1 

2
g sin θ

  Of these three objects, the sphere is rolling down with the greatest acceleration, and the hoop with 

the smallest. Note that, for each object, the acceleration only depends on the angle of inclination, and 

not on the mass or the radius of the object.

Rolling and slipping — An energy perspective 

The total kinetic energy of a body of mass m and moment of inertia I rolling without 

slipping at linear speed v and angular velocity ω is 1  

2
mv2 +

1  

2
Iω2. When the body 

rolls down a slope of vertical height Δh, it loses mgΔh of gravitational potential 

energy. Applying conservation of total energy gives mgΔh = 1  

2
mv2 +

1  

2
Iω2. By 

combining this equation with the moment of inertia for a particular shape, you can 

often eliminate ω and I, and use this to calculate quantities such as the velocity of 

the rolling object.

N

Mg

Mgcosθ

Mg sinθ

θ
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Practice questions

24. A solid cylinder and a thin hoop have the same mass 

and roll equal distances down the same inclined 

plane. The rolling occurs without slipping. Which 

is correct about the total kinetic energy and the 

translational kinetic energy of the objects?

Total kinetic 

energy

Translational 

kinetic energy

A. equal equal

B. equal dierent

C. dierent equal

D. dierent dierent

25. A solid ball rolls down an inclined plane of length 

1.8 m in a time of 2.9 s. The ball starts from rest and 

rolls without slipping.

a. Calculate the linear acceleration of the ball.

b. Show that the linear acceleration satises the 

equation a =
5 

7
g sin θ, where θ is the angle that 

the inclined plane makes with the horizontal.

c. Calculate θ

26. A horizontal cylinder of 

radius R and moment of 

inertia I can rotate without 

friction around the central 

axis. Aweightless thread 

is wrapped around the 

cylinder and an object of 

mass M is suspended from 

the thread. The object is 

released so that the system accelerates from rest. The 

thread unwinds from the cylinder without slipping.

a.  State the force that provides the torque about the 

axis of rotation axis of the cylinder.

M

I, R
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Worked example 24

A solid cylinder rolls down an incline that makes an angle θ= 5.0° with the horizontal. The cylinder starts 

from rest and travels a distance of 1.0 m, measured along the plane.

a. Determine the final linear speed of the cylinder:

   i. by using the kinematic (suvat) equations for uniformly accelerated motion

   ii. by considering energy changes of the cylinder.

b. A solid sphere of the same mass as the cylinder in part a. rolls down the same inclined plane, starting 

from rest. Explain which of the objects has a greater rotational kinetic energy at the bottom of the plane.

Solutions

a.  i.  From worked example 23, the linear acceleration is a =
2   

3
 g sin θ. The final linear velocity can be 

calculated from v2
= 2as. 

v =  2 ×
2   

3
× 9.8 × sin 5.0° × 1.0 = 1.1 m s 1

 ii.  For rolling without slipping, the total kinetic energy is E
k
=

1   

2
 Mv2

+
1   

2
I(v

R)
2

=
1   

2(M +
I

R2)v2. In case of 

the cylinder, I =
1   

2
 MR2 and E

k
=

3   

4
Mv2. The increase in E

k
 is equal to the decrease in its gravitational 

potential energy, 
3   

4
Mv2

=Mgs sin θ, where s = 1.0 m is the distance travelled along the plane. v=√4    

3
×

9.8 × 1.0 × sin 5.0° = 1.1 m s 1, in full agreement with the answer in i.

b. The sphere had a greater linear acceleration so its final speed and the translational kinetic energy is greater 

than that of the cylinder. On the other hand, both objects have moved through the same vertical distance 

and their total kinetic energies are therefore equal. This means that the cylinder must have a greater 

rotational energy than the sphere.

 The total kinetic energy of each object is the same, but it is distributed in different proportions between 

translational and rotational components.
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b.  Show that the linear acceleration of the mass M is 

given by a =
g

1 +
I

MR2

 It is given that M = 0.400 kg, I = 0.0200 kg m2 and 

R = 0.100 m.

c. Calculate the linear acceleration of the mass M

d.  Determine the rotational kinetic energy of the 

cylinder aer 0.600 m of the thread has unwound 

from the cylinder.

27. A car of mass 1200 kg moves with a constant speed 

of 20 m s 1. Each of the four wheels of the car can be 

modelled as a solid disc of mass 25 kg and radius 0.31 m.

a.  Calculate the translational kinetic energy of thecar.

b.  Determine the ratio 

rotational kinetic energy of the wheels

total kinetic energy of the car
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• Tool 3: Select and manipulate equations.

• Tool 3: Derive relationships algebraically.

• Tool 3: Record uncertainties in measurements as a 

range (±) to an appropriate precision.

• Inquiry 3: Compare the outcomes of an investigation 

to the accepted scientic context.

For this experiment, you need a ramp and an object 

that will roll down it — for example, a sphere, a hollow 

cylinder or a solid cylinder (Figure21).

The ramp should be about 1 m long and at an angle of 

about 10° to the horizontal. A longer ramp means that the 

object takes more time to reach the bottom, which reduces 

the uncertainty in the measurement of the time taken.

• Mark a suitable start line on your ramp so that you roll 

the object from the same place each time. Measure 

the height of the object when it is on the start line. 

Be careful to measure the dierence in height of the 

object’s centre of mass between the top and bottom 

of the ramp — in practice, this may mean measuring 

the change in height of the bottom of the object.

• Allow the object to roll down the slope and measure 

the time it takes to do so. Repeat this measurement 

three times.

• With no rotation you would expect the time taken 

for the object to move down the ramp to be given 

by t2
=

2d2

gh
. Use your values to calculate this 

predicted time. 

• Compare your measured time with the time 

predicted by the equations.

• The time for the object to roll down the ramp should 

be given by t2
=

2d2

gh
(1 + α), where α =

I

MR2
. For a 

hollow cylinder α = 1, for a solid cylinder α =
1

2
 and

for a solid sphere α =
2

5
. 

• Use your measurements to determine α for each 

type of rolling object and see whether it agrees with 

the theory.

• Use the variation in your time measurements to nd 

the uncertainty. By considering this, and the other 

uncertainties in your experiment, nd the uncertainty 

in your measurements of α. Can your experiment 

distinguish between a sphere and a cylinder? If not, 

consider how you might improve your experiment to 

do so.

• Finally, use the conservation of energy to derive the 

equations given above. Do not forget that the energy 

at the end of the ramp depends on the nal velocity, 

while using your measured values of d and t will help 

you calculate the average velocity.

• This could be the basis for an internal assessment. 

How would you develop this experiment to answer a 

question about the design of a ball used in a sport?

Verifying equations of rotational motion

▴ Figure 21 The setup for the experiment. 
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• Tool 1: Understand how to measure mass, time and 

length to an appropriate level of precision.

• Tool 3: Derive relationships algebraically.

• Tool 3: Construct and interpret tables and graphs for 

raw and processed data including scatter graphs and 

line and curve graphs.

• Tool 3: Interpret features of graphs including 

gradient, changes in gradient, intercepts, maxima 

and minima, and areas under the graph.

It is possible to use the conservation of linear and rotational 

energies to estimate the moment of inertia of a ywheel. 

▴ Figure 22 Measuring the moment of inertia of a ywheel.

peg

view from front view from side

axis of rotation

h

flywheel

slotted masses

mass hanger

axle

axle
r

• Mount a ywheel on a horizontal axle so that it can 

rotate freely. (This experiment eliminates the eects 

of friction on the axle.) The total moment of inertia of 

both ywheel and axle is I. 

• Attach a mass hanger of total mass m, to a string and 

wind it around the axle. Do not overlap the string. 

Ensure that it falls away from the axle just as the 

object reaches the oor.

• Release the object from rest. As it falls, the gravitational 

potential energy of the object is converted into its own 

linear kinetic energy + rotational kinetic energy of the 

ywheel + work done against the frictional forces.

• Conservation of energy shows that, just as the object 

reaches the oor:

mgh =
1

2
mv2

+
1

2
Iω2

+ n
1
W. 

W is the work done against friction for each of the n
1

revolutions before the object reaches the oor.

• Once the string has disengaged, the axle will 

continue to turn and make n
2
 extra revolutions before 

it stops moving (n
2
 is determined by the friction 

acting on the axle). 

• Make the following measurements:

• the radius r of the axle

• the mass m of the falling object

• the initial height h of the falling object above the 

oor

• the time t for the falling object to reach the oor

• n
1

and n
2

• Adjust the mass hanging from the string and then 

measure t, n
1
 and n

2
 again.

• Repeat several times with dierent masses and 

calculate the mean values.

• These data can be used graphically to nd a value of I

The rotational kinetic energy of the ywheel is transferred 

to the surroundings while it turns through the nal n
2

revolutions, so 
1

2
Iω2

= n
2
W, leading to

W =
Iω2

2n
2

. 

Substituting this into the whole energy conservation 

energy gives

mgh =
1

2
mv2

+
1

2
Iω2

+ n
1

Iω2

2n
2

, 

or mgh =
1

2
mv2

+
1

2
Iω2 (1 +

n
1

n
2  

). 

As usual, v = rω and for the falling mass 
v

2
=

h

t
 so

that ω =
2h

rt

This equation reduces to:

gt2

2h
=

I

mr2 (1 +
n

1

n
2  

) + 1 =
I

mr2
×

n
1

n
2  

+ (1 +
I

mr2 )
• Compare this with y = mx + c. The variable you can 

alter is m. The dependent variables are t and n
2
. 

• Use this to plot a graph and determine I

Conserving energy — Determining the moment of inertia of a ywheel 
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In 1905, a far-reaching paradigm shift took place in 

physics when Albert Einstein published the first of a 

series of scientific papers dealing with the dynamics of 

moving bodies. His new theories and his conceptual 

understanding of spacetime became famous as the 

special and (later) the general theories of relativity. 

Einstein and fellow scientists such as Albert Michelson 

and Hendrik Lorentz had overturned 200 years of 

Newtonian classical mechanics. 

Isaac Newton based his theories of motion on an 

assumption of Galilean relativity. The term “relativity” 

has become associated with Einstein’s work, but the 

concept itself is far older and is rooted in the idea of 

simultaneity — the question of whether two events take 

place at the same time. Humans (who move slowly 

compared with the speed of electromagnetic waves) 

assume that intervals of time observed in different 

frames are identical. Compare person A standing in 

an athletics stadium who is timing person B, an athlete 

running a 100 m race. We all assume that when A’s 

stopwatch says 11.50 s, B’s watch will also indicate 

11.50 s. Special relativity overturns this. The fabric of 

space and time — spacetime — is more tightly knit than a 

simple equivalence of time intervals between different 

referenceframes.

There are other key names in the history of special 

relativity. Einstein based his work on some suggestions 

by the Dutchman Hendrik Lorentz. Later developments 

by Hermann Minkowski, three years after Einstein’s 

original papers, provided a visualization of reference 

frames. Minkowski (spacetime) diagrams owe their 

original existence to Minkowski’s appreciation of the 

four-dimensional nature of spacetime. Is there conflict 

between the algebraic approach of Lorentz and the 

visualizations of Minkowski?

How do observers in different reference frames describe events in terms of space and time?

How does special relativity change our understanding of motion compared to Galilean relativity?

How are spacetime diagrams used to represent relativistic motion?

160

A.5   Galilean and special relativity  

• reference frames and inertial reference frames

• Galilean relativity and the Galilean transformation 

equations 

• the two postulates of special relativity

• the Lorentz transformation equations 

• the relativistic velocity addition equation 

• invariant quantities such as the spacetime, the proper 

time interval and proper length

• time dilation and length contraction 

• simultaneity

• spacetime diagrams

• muon decay experiments and the evidence they 

provide.

In this additional higher level topic, you will learn about: 

▴ Figure 1 Albert Einstein pictured in 1905 — the year he 

published his theory of special relativity.
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Introduction
On 8 December 1864, James Clerk Maxwell read a scientic paper to the Royal 

Society of London. It was entitled A dynamical theory of the electromagnetic 

eld. In the paper, he presented four short equations that sum up the whole 

of electrical and magnetic theory. These had profound signicance for the 

development of physics during the remainder of the 19th century and beyond. 

Maxwell’s four equations provoked Albert Einstein to think how it could be 

possible for Maxwell’s conclusions to sit comfortably with the then agreed 

rules of classical physics. If Maxwell’s theory were correct, the speed of an 

electromagnetic wave would be the same to any observer whatever the 

observer’s motion relative to the source of the radiation. This ew in the face of 

the perceived wisdom of the day. Before Einstein it was believed that, when a 

moving observer approached a stationary light source, the speed of the light 

measured by the observer was the sum of the speed of the object and the speed 

of the light. Einstein showed that this could not be so and, in announcing his 

result, overturned 200 years of Newtonian mechanics — a mechanics based on 

simple assumptions about the independence of time and the existence of an 

absolute rest frame.

This topic introduces the physics of special relativity. The theory has profound 

implications for many aspects of life in the 21st century: magnetism, GPS, the 

properties of heavy metals, and the behaviour of light itself.

Spacetime

One concept underpins all the work in this topic: spacetime. Einstein realised 

that space and time together constituted a set of coordinates in just the same 

way that a 2D graph uses pairs of coordinates to display data. It is important not 

to regard space and time as separate when dealing with concepts in special 

relativity. A key element in understanding the special theory is the recognition 

that we move through the four dimensions of spacetime rather than the three 

dimensions of Euclidean space. 

Much of our work in this topic uses just two of these dimensions: x (for space) and 

t (for time). However, all the work in this topic can be generalized into the four 

dimensions (t, x, y, z).

We will also use the term event extensively: an event is simply one set of 

spacetime coordinates that identies a particular position in spacetime.

Reference frames 

A reference frame allows us to refer to the position of a particle. A frame consists 

of an origin position together with a set of axes. In IB Diploma Programme 

physics, the Cartesian reference frame is used most oen for this. Here, a position 

in space is dened using three distances measured along axes that are set at 90° 

to each other. For example, the axes of a three-dimensional graph make up what 

is known as a Cartesian reference frame (Figure 2). In this frame, the position of 

the point is specied by the three numbers (x
1
, y

1
, z

1
). 

Other frames are possible: 

• Figure 2 specifies the same particle position using one distance r and two 

angles θ and ϕ referenced to the frame. Sailors use such angles as latitude and 

longitude; and, together with the distance of an object from the centre of Earth, 

they constitute a different but equivalent alternative to the Cartesian coordinates. 

The development of Einstein’s 

ideas of relativity required a shi in 

the scientic view of the physical 

rules that govern the universe. 

How do scientists ensure that the 

need to shi perspectives is valid?

Theories — Validating 

a paradigm shi

z

z1

x1

(x1, y1, z1)

y1

x

(r, θ, ϕ)

θ

r

y

▴ Figure 2 A comparison between 

a Cartesian reference frame with three 

distances and a frame that uses spherical 

coordinates: two angles and a distance.
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• Astronomers use angles to define the position of a star or galaxy that is being 

observed. Only two angles are required because the distance to the star (for 

observational purposes) is irrelevant. 

For some frames of reference, one or more of Newton’s laws of motion do not 

hold. Our own everyday frame, on the surface of a rotating planet, shows this. 

Everything o-planet appears to be spinning around us. Ancient civilisations 

factored this spin into their world view. This rotating frame has further 

implications. An object that is at rest relative to us on planet Earth cannot be 

moving at a constant velocity. This has the consequence, as we saw in Topic A.2, 

that we need to invent the ctitious “centrifugal” force when we are observing 

from the rotating frame. Another invented force, the Coriolis force, is sometimes 

used to “explain” the movement of weather systems. 

Inertial frames of reference

It is inconvenient to have frames of reference in which forces need to be 

“invented” to explain physical eects. We dene a concept called an inertial 

frame of reference to overcome this. There are several ways in which to dene 

the inertial frame, but the one used here is that:

An inertial frame of reference frame is a frame that is not accelerated.

All inertial frames are, by denition, moving at constant velocity (constant speed 

in a straight line) with respect to each other. The requirement that an inertial frame 

does not accelerate has wide implications. The lack of acceleration in one inertial 

frame means that Newton’s rst law is valid in that frame. Because all inertial 

frames are related by a constant relative velocity, then Newton’s rst law holds in 

every inertial frame.

Do inertial frames exist? The best way to nd one is to take a spaceship out into 

deep space, far away from the gravitational eects of planets and stars, and then 

turn o the engines. No forces act from outside or inside the spacecra and this 

will be a true inertial frame of reference. 

Galilean relativity and Newton’s postulates

There are an innite number of inertial frames of reference in the universe and 

three ways to move between them (Figure 3): 

• Translation from one frame to another frame. Figure 3(a) shows two Cartesian 

frames (x, y) and (x′, y′) that are offset in the x-direction by a constant distance 

X. Translation is the movement between these two frames. 

• A rotation by a constant angle θ of one set of axes (x, y) to form another set 

(x′, y′) (Figure 3(b)). (Rotations are not discussed in IB Diploma Programme 

physics.)

• A boost from one frame (x, y) to another frame (x′, y′) that has a constant 

relative velocity (Figure 3(c)). 

When an object is moving with a constant velocity in one reference frame, then, 

under any of these three conditions, it will also have a constant (but possibly 

dierent) velocity in the other reference frame. 

You will see that the denition of 

an inertial frame excludes frames 

where, for example, a Coriolis 

force or a centrifugal force is 

required. Recall the discussion 

about a car turning in a circle on 

page 100 in Topic A.2. The car 

accelerates towards the centre 

of the circle even though it is 

travelling at constant speed (the 

velocity direction alone changes). 

The stationary helicopter above the 

car was in an inertial frame; the car 

itself was not. A passenger in the 

car needed to invoke a centrifugal 

force to explain the ctitious force 

that appeared to act. 

x = vt + x'

y'

x

x x'

x'

y

vt

t = 0
v

(c)

later time t

y'

x'

x
θ

y

y

x'

x

x

x'

y'

X

(a)

(b)

▴ Figure 3 Translations, rotations and 

boosts between reference frames.
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The principle of relativity tells us about the nature of our universe. 

• The translation rule is equivalent to saying that there is no special place in the 

universe; position is relative. 

• The boost rule says that there is no special velocity. Being at rest (stationary) is 

not an absolute condition. 

• The rotation rule says that there is no special direction; direction is relative. 

For the translation in Figure 3(a), to convert a position in (x, y) to one in (x′, y′) you 

need to subtract X (the oset between frames) from x for it to become x′ (x − X, y). 

A mathematical way to write this is as x′→x X. Here “→” means “transforms to”.

For a boost, when one inertial frame moves relative to the other by a constant 

relative velocity v along the x-axis, then the distance between the origins of the 

reference frames must be changing by v every second and this distance is v × t, 

where t is the time since the frames coincided. 

Imagine that the origins of the two reference frames S and S′ (Figure 3(c)) were 

at the same position (that is, they coincided) at time t = 0. We say that clocks in 

the frames were synchronised so that x = x′ = 0 when t = t′ = 0. At a later time T, 

the origins of the reference frames will be separated by vT where v is the velocity 

of frame (x′, y′) relative to frame (x, y). Therefore a position X in frame (x, y) will be 

related to position X’ in (x′, y′) by X → X′ + vT or, alternatively, X′ → X vT

The velocities of an object in the two inertial frames also transform in an obvious 

way. When the velocity of an object in (x, y) is u and the velocity in (x′, y′) is u′, 

then u′ → u v. When the velocities u and v are not in the same direction, then 

they must be subtracted as vectors. An alternative is to treat u and u′ as velocity 

components in the direction of the relative motion of the inertial frames.

These equations that link two reference frames by their relative velocity are known 

as the Galilean transformations (Figure 4).

In one sense, as physicists 

working in a laboratory and 

taking measurements, we are all 

observers. However, the meaning 

of “observer” in special relativity 

is dierent from this. The observer 

now becomes the reference frame 

in which objects or, more usually, 

events are measured. Observers in 

inertial frames of reference cannot 

accelerate and are xed within 

theframe.

The meaning of “observer” 

has continued to change in 

a subtle way throughout the 

development of special relativity. 

It is probably best to think not 

of a single observer, but of a 

team of observers each making 

observations in the local area. 

All members of the team have 

synchronized clocks so that they 

can report their ndings to each 

other (with corrections arising from 

the nite speed of light).

This meaning of observer  

becomes crucial later in the 

discussion of simultaneity on  

page 182. 

Observations  

in relativity

▴ Figure 4 The travelling walkways at airports are good examples of Galilean 

transformations. They typically move at speeds of about 0.7 m s−1. A passenger standing on 

one walkway will see a passenger standing on the other walkway coming towards them at 

1.4 m s−1. A stationary passenger by the side of the walkways will see each of the passengers 

moving at 0.7 m s−1 towards each other.

The principle of relativity is oen 

associated with Albert Einstein. In 

fact, Galileo was probably the rst 

person to discuss the principle. He 

describes how, in a large sailing 

ship, butteries in a cabin with no 

windows would be observed to y 

at random whether the ship was 

moving at constant velocity or not. 

An observer in the cabin could not 

deduce, by an observation of the 

butteries, any movement of the 

ship. The butteries would not, for 

example, be pinned against the 

back wall of the cabin by the ship’s 

forward motion! 

Observing relativity
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The equation set when applied to two reference frames, initially coincident at 

time t = 0, moving apart in the x direction at speed v is:

• x′ = x vt

• u′ = u v This is known as the velocity addition equation for the Galilean 

transformation.

The two postulates of special relativity 

Newton developed Galileo’s ideas further in his Principia Mathematica by 

suggesting two important postulates of special relativity. A postulate is an 

assertion or assumption that is not proved and acts as the starting point for a 

proof. 

• Newton treated space and time as fixed and absolute. This is implied in our 

use of t in the equations above (t′ does not appear, only t). A time interval 

between two events described in frame (x, y) is identical to the time interval 

between the same two events as described in frame(x′, y′). The evidence of 

our senses seems to confirm this (but remember that we do not travel close 

to the speed of light in everyday life). This leads to a further transformation for 

time changes Δt: Δt′ → Δt

• Newton recognized that two observers in separate inertial frames must make 

the same observations of the world. In other words, they will both arrive at the 

same physical laws that describe the universe. This is a direct consequence of 

Galilean relativity. 

This basic principle is important:

Galilean relativity means that Newton’s laws of motion are the same in all 

inertial reference frames.

Einstein’s great intellectual accomplishment was to recognize that, because 

Maxwell’s four electromagnetic equations are true in all inertial frames (which had 

to be the case), then some modications of Newton’s postulates were needed. 

Einstein’s two postulates of special relativity were: 

The laws of physics are the same in all inertial frames of reference.

(Newton’s second postulate is generalized to all scientic laws including those of 

optics and electromagnetism). 

The speed of light relative to any observer in an inertial frame is independent 

of the motion of the source of light relative to the inertial observer.

(This replaces the concept of absolute time and space in Newton’s rst postulate.)

Simultaneity

Do two events at dierent places occur at the same time? Are they simultaneous? 

This is the key issue in the concept of simultaneity. In Galilean relativity, Newton 

said that time was independent of the observer and simultaneity is absolute. So, if 

you synchronize two clocks in the same place and then move them into dierent 

frames, the clocks will keep time at the same rate as each other. 

However, in Einstein’s relativity the clocks will no longer measure identical time 

intervals for the same event as described by the observers in the dierent frames. 

Later in this Topic (page 168), you 

will see that the transformation of 

time intervals in Einstein relativity 

must include an extra factor that 

is related to the speed of the 

inertial frame. 

A dierent but equivalent version 

of Einstein’s second postulate 

was later re-phrased to give an 

alternative version that you will 

oen see:

The speed of light in free space 

(a vacuum) is the same in all 

inertial frames of reference.

Theories

These postulates in Galilean 

relativity were expressed 

by Newton in the Principia 

Mathematica — the book (in Latin) 

that he wrote to publish some of 

his discoveries. In translation his 

postulates were: 

“I. Absolute, true, and 

mathematical time, of itself, and 

from its own nature, ows equably 

without relation to anything 

external. 

II. Absolute space, in its own 

nature, without any relation to 

anything external, remains always 

similar and immovable.”

Hypotheses — The way 

Newton put it
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Worked example 1

A bus moves at a constant velocity of 8.0 m s−1 relative to the ground. A boy on the bus walks towards the rear 

of the bus at a constant velocity of 1.5 m s–1 relative to the bus.

a. Calculate the velocity of the boy relative to the ground.

The distance walked by the boy relative to the bus is 3.0 m.

b. Calculate the distance travelled during the same time by the boy relative to the ground.

Solutions

a.  Relative to the ground, the velocity of the boy is smaller than the velocity of the bus: 8.0 - 1.5 = 6.5 m s–1

b.  The time taken is 
3.0

1.5
= 2 s. During this time, the distance travelled relative to the ground is 6.5 × 2.0 = 13 m.

Worked example 2

A cyclist rides a bicycle along a straight road, in the direction of the positive x-axis of the reference frame of 

the road. The position of the cyclist at t = 0 is x = 0 and the position at t = 50 is x = 350 m. A car moving at a 

constant velocity of 12 m s−1 relative to the road overtakes the cyclist. Calculate, relative to a reference frame in 

which the car is at rest:

a. the displacement of the cyclist from t = 0 to t = 50 s

b. the average velocity of the cyclist.

Solutions

a. The displacement of the cyclist in the reference frame of the car can be found using the Galilean 

transformation: Δx′ =Δx vΔt, where Δx = 350 m is the displacement in the reference frame of the road, 

Δt = 50 s is the time taken and v = 12 m s–1 is the relative velocity of the reference frames.  

Δx′ = 350  12 × 50 = –250 m. A negative displacement means that in the car’s frame the  

cyclist moves towards the negative x′-axis.

b. average velocity =
displacement

time taken
=

250
50

= –5 m s–1

In Topic A.2, we began by describing Newton’s second law of motion as: force = mass × acceleration

Later, we showed that this was better expressed as: force = rate of change of momentum

A similar change of expression is possible here: Newton’s rst law is usually given as a variant of “Every object continues 

in its state of rest or uniform motion unless net external forces act on it” (and you should continue to use this or a similar 

wording in your own work). But this is not the only possibility. A succinct and interesting way to express Newton’s rst 

law is “Inertial frames exist.” 

To what extent do concise forms of scientic laws help or hinder our understanding?

Changing perspectives
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James Clerk Maxwell established four equations which are today recognized 

as “Maxwell’s equations”. An important result of his work was that the speed 

of light (an electromagnetic wave) travels at a speed c =
1

ε
0
μ

0

. (You will 

meet the constants ε
0
 and μ

0
 in Topics D.2 and D.3.)

This result tells us that observers in dierent inertial frames observe the same 

value for the speed of light when they agree about physical laws such as the 

values of ε
0
 and μ

0
. This is directly contrary to the assumption of absolute 

time and absolute space as postulated by Newton, and as embodied in the 

Galilean transformations.

In 1887, two US physicists, Albert Michelson and Edward Morley, used 

an interferometer to observe light as it passed through dierent reference 

frames. Their apparatus was highly sensitive. It could send a beam of light 

over a distance of 11 m measuring changes to about 10−8 m in this distance. 

They mounted their apparatus on a massive stone slab oated on mercury so 

that it could be rotated. They expected to see a dierence in the path of the 

light caused by the Earth’s rotation about the Sun. However, despite their 

experiment being sensitive enough to measure the predicted change, they 

could not nd any evidence for a dierence. The experiment is sometimes 

referred to as a null experiment since they found no evidence of the eect 

that they were trying to measure. However, the result was an important 

conrmation that the speed of light is the same in all inertial reference frames.

Today, interferometers are still used as sensitive detectors. In 2015, the LIGO 

experiment (Laser-Interferometer Gravitational-Wave Observatory) used 

an interferometer to conrm one of the predictions of Einstein’s theories: 

gravitational waves.

▴ Figure 5 Albert Einstein with Albert Michelson to his right during a visit to the  

Mt Wilson Observatory. Edwin Hubble is the second from the le of the picture.

Measurement
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Proper time interval 
Some of the most dramatic dierences between our everyday perceptions of 

space and time and the predictions made by special relativity concern the time 

and length dierences that arise between observations made in dierent inertial 

reference frames. 

Figure 6(a) shows a simple light clock that consists of two mirrors facing each 

other across a room. An observer is at rest in the room and watches light reect 

between the mirrors. The distance across the room is L and so the time interval 

taken for the light to return to the rst mirror is Δt
0
=

2L

c
. The symbol for the 

speed of light is c as usual.

(a) (b)

2L
L c

∆t0=

LD

mirror position 1 mirror position 2

D

v∆t

▴ Figure 6 A light clock. Because the two references frames move relative to each other, 

the trip taken by the light diers according to two observers, one in each frame: (a) is in the 

frame of the mirrors, (b) is the frame for an observer moving to the le.

Another observer (Figure 6(b)) is moving to the le, parallel to the mirrors, at 

constant velocity v relative to the mirrors, watching the reections. The diagram 

shows the bottom mirror at two positions as seen by this moving observer: 

• position 1 when the light leaves the bottom mirror

• position 2 when the light returns to it. 

In the frame of this moving observer, the light appears to travel to the right at 

an angle to the direction of motion (but, of course, at the same speed of light). 

The distance travelled by the light is now 2D and the time observed between 

reections at the same mirror is now Δt =
2D
c

. 

Einstein rst published his ideas of special relativity 

in 1905 in a paper whose title translates as “On the 

Electrodynamics of Moving Bodies”: A. Einstein, Zur 

Elektrodynamik bewegter Körper, Annalen der Physik 

17, 891 (1905). Unusually, his paper contained no 

formal references, even for the Lorentz transformations 

which had already been published. However, he did 

mention Lorentz along with four other scientists: Newton, 

Maxwell, Hertz and Doppler.

Scientic historians have questioned whether Einstein 

worked independently and was unaware of the work 

of Lorentz and Henri Poincaré, a French mathematician 

and physicist. Others have asserted that Poincaré or 

Lorentz are the true founders of relativity. It is more 

likely that Lorentz and Poincaré had contributed many 

of the ideas of length contraction, time dilation, the 

Lorentz transformations and some of the mathematical 

framework, but that Einstein was the rst to condense all 

these into the theory of special relativity.

Research skills ATL
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The distance travelled horizontally by the moving observer in time Δt is vΔt and, 

by an application of Pythagoras’ theorem: D2 = L2 +
v2(Δt)2

42 . We already know 

that D =
cΔt

2
 and rearranging for Δt gives Δt =

√√1 v2

c2

2L

c
; 

so Δt =

√√1 v2

c2

Δt
0

, which reduces to Δt = γΔt
0
, where γ =

√√1 v2

c2

1
. 

The time intervals in the two frames are very clearly dierent. The observer 

(clock) at rest in the inertial frame of the mirrors observes a time Δt
0
=

2L

c
 and the 

observer (a dierent clock) at rest in an inertial frame moving relative to the mirror 

(at constant speed v) observes a time Δt =
2L

c
 × 

√√1 v2

c2

1

Because γ =

√√1 v2

c2

1
 is always greater than 1, this shows that the time interval for 

the journey of the light observed by the observer moving relative to the mirror is 

greater than the time interval for the observer who is stationary in the mirror frame. 

This is a general result: the time measured in the frame in which the event takes 

place is the shortest time observable for two events that have a time-like interval.

The time interval Δt
0
 is known as the proper time interval (oen shortened to 

proper time).

The proper time interval between two events is the time interval measured  

by an inertial observer at the place where the events occur.

Time dilation occurs in any other frame, with the time interval observed to be 

longer than the proper time interval.

The meaning of the term “time-like 

interval” is explained on page 186. 

The kinematic equations and other equations that arise throughout this theme 

were developed in Topics A.1 to A.3 in terms of Newtonian mechanics. A 

great deal of emphasis was placed on the importance of acceleration there, 

both in terms of its use to predict changes in velocity and displacement, and 

in terms of its relationship to applied force.

The discussion of special relativity in IB Diploma Programme physics deals 

exclusively with frames moving with constant relative velocities to each 

other. The twin paradox (see page 193) shows the difficulties that arise when 

acceleration takes an observer from one frame to another.

The concept of proper acceleration deals with this. Just as time intervals 

require a new definition — that of proper time — in relativity, so relative speeds 

and accelerations also require a new definition. Proper velocities and proper 

accelerations are all carefully defined to specify the reference frame in which 

measurements of displacement and time are taken. This was not required for 

Newtonian mechanics.

How are equations of linear motion adapted in  

relativistic contexts?
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The factor γ that appears in the time-dilation equation Δt= γΔt
0
 was rst 

identied by Lorentz and is part of the Lorentz transformations that are the 

Einstein relativistic equivalents of the Galilean transformations. It is known as the 

Lorentzfactor

Figure 7 shows how the Lorentz factor changes with speed (or more properly 

the ratio 
v

c
). The graph shows us that, for speeds up to 20% of that of light, the 

Lorentz factor remains close to 1. If the Galilean transformations were true for all 

speeds, then the graph would show a horizontal line at value 1 for all values of 
v

c
. 

As v tends to c, γ tends to innity.

Initially, physicists tried to nd a way round Maxwell’s 

ideas within the context of classical physics. This 

led some to invent an “aether”, a medium that was 

responsible for the transmission of electromagnetic 

radiation. However, the crucial experiment by Michelson 

and Morely showed that there was no aether and that, 

essentially, electromagnetic radiation can move through 

empty space. Lorentz and Fitzgerald independently 

conjectured that there must be a mysterious length 

contraction to explain this result. Later, Lorentz and others 

realized that such a length change implied a time change 

too. This resulted in the Lorentz transformations. 

It was this work that sparked Einstein’s great discovery. 

He was able to work from his two postulates to the same 

algebraic transformation as Lorentz without invoking any 

need for an aether.

Patterns and trends — What Lorentz did

8

0

0 0.2 0.4 0.6 0.8 1 1.2

1

2

3

4

5

6

7

γ

v

c

▴ Figure 7 Variation of the Lorentz factor γ with 
v

c

Are laws such as conservation of energy helpful to scientists? On the one 

hand they allow the prediction of, as yet, untested cases, but on the other 

hand they may restrict the progress of science. This can happen when 

scientists are not prepared to challenge the status quo. 

In 2012, the results of an experiment suggested that neutrinos could 

travel faster than the speed of light in a vacuum. This ew in the face of 

the accepted science originally proposed by Einstein. Later investigations 

showed that small errors in the timings had occurred in the experiments. 

There was no evidence for faster-than-light travel. Were the scientists right to 

publish their results so that others could test the new proposals?

Evidence and falsication

Many aspects of physics can 

be described as intuitive — that 

applying a theory to a situation 

gives results that match our 

expectations. Intuition can be a 

helpful way of checking whether 

our answers are right. When they 

seem wrong, then it may be that 

we have made a mistake.

While our intuition oen works 

well for areas of physics such as 

Newtonian mechanics, it does 

not help us with special relativity. 

The concepts of time dilation and 

length contraction are non-intuitive 

and seem hard to understand.

Does this mean that intuition is 

unhelpful? Or can intuition be a 

valuable way of knowing?

Intuition
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In Topic E.1, you will meet the Bohr model for the atom. 

This model allows us to estimate the radius of electron 

orbitals in the hydrogen atom. The model predicts that 

the electron in the ground state of hydrogen is moving 

at 
1

137
 of the speed of light. At this speed, the Lorentz 

factor is γ = 1.00003. Despite this small correction, its 

eect on the spectrum of hydrogen was rst measured 

by Michelson and Morley in 1887. The ne structure

constant, α =
1

137
, has become an important quantity in 

atomic physics.

The electron orbitals of heavier elements are more 

complex as the outermost electrons are further from 

the nucleus. According to the Bohr model, the outer 

electrons move at a speed 
Zc

137
. For atoms such as silver 

and gold, with atomic numbers Z =47 and Z =78, this 

gives Lorentz factors of γ = 1.06 and γ = 1.22. Silver and 

gold both have similar electron structures (they are in the 

same column of the periodic table) but the larger Lorentz 

factor for gold means that the electrons experience time 

dilation and length contraction on a greater scale. These 

relativistic eects on the outer orbitals change the energy 

gaps between them. This changes the wavelengths of 

light that are absorbed and reected by gold. The result 

is that gold absorbs more blue light than silver. While 

silver reects most wavelengths equally, giving it a silvery 

colour, gold gains its colour thanks to special relativity.

Models

▴ Figure 8 Gold and silver have dierent colours 

because of special relativity.

Worked example 3

Leah is flying a plane at 0.9 c. The landing lights on the plane flash every 2 s as measured in the reference 

frame of the plane. Zosia watches the plane go by. Calculate the time between flashes as observed by Zosia.

Solution

When v= 0.9c, γ =
1 v

2

c
2

1
=

1

1  0.92
= 2.3.

The time between ashes for Leah is 2 s. Therefore, the time between ashes for Zosia = γt= 2.3 × 2 = 4.6 s.

Worked example 4

A spaceship travels at a constant speed from Earth to a space station. The space station is stationary 

relative to Earth. According to clocks on the spaceship, the journey takes 4.0 days and according to 

clocks on Earth and on the planet, it takes 5.0days.

a.  Outline which of these intervals is the proper time interval between the launch  

and the arrival of the spaceship.

b. Calculate the speed of the spaceship relative to Earth.

Solutions

a.  The proper time interval is measured in a reference frame in which the launch and the arrival occur at the 

same position, so it is the interval measured by spaceship clocks.

b.  5.0 days = γ × 4.0 days; hence γ =
5.0
4.0

= 1.25. The speed can be calculated

 from the Lorentz factor, 

√√1 v2

c2

1
= 1.25 ⇒ v

c
= √√1 – 1

1.252 = 0.6. 

 The speed of the spaceship is 0.6 c.
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The Lorentz transformation 

Hendrik Lorentz showed that the null result of Michelson and Morley  

(see page 166) could be avoided by using a set of transformation equations. 

Einstein proved that this Lorentz transformation could be derived assuming only 

Einstein’s own modications of Newton’s postulates of special relativity.

In the Galilean transformation, lengths measured within one frame transform 

without change into the same length in any other frame. When length Δx is the 

dierence between two positions in one frame and Δx′ is the dierence in the 

other, then (using the Galilean transformations from earlier):

Δx′= x
1
′ x

2
′ = (x

1
vt)  (x

2
vt) = x

1
x

2
=Δx

In Einstein relativity, this equality of Δx and Δx′ is no longer true and Lorentz 

proposed that the transformation must become Δx′ = γ(Δx vΔt). 

It is more useful to deal with a position x′ in an inertial reference frame rather than 

two position determinations to give a length Δx, and therefore

x′ = γ(x vt)

gives the position x′ of the object as observed in a reference frame moving at 

speed v relative to it. 

The Lorentz transformation tells us about position measurements when one 

inertial reference frame is moving at a constant velocity relative to another. 

Imagine two observers, one in each frame, both making measurements of the 

same distance. The observer in one frame will not agree with the measurement 

made by the other observer. Space is no longer absolute. 

Similarly, Lorentz realised that the transformation for time is: t′ = γ (t vx

c2 )
With this transformation, time, like space, loses its Galilean property of being 

absolute. Time as measured in dierent reference frames diers when there is 

relative velocity between the frames. Also, terms in x now appear in the time 

equations and terms in t appear in the equations for x. 

We have assumed so far that there is no relative motion between the frames in 

the y or z directions. When this applies, then there will be no relativistic changes 

in these directions either (this can be proved formally). The assumption of no 

motion in directions y and z along with the previous expressions lead to the 

complete set of Lorentz one-dimensional transformations which are compared in 

Table 1 with their Galilean equivalents. 

The Lorentz transformations in Table 1 have been modied further so that the 

expression of time uses ct rather than t alone (this gives the time equation the 

dimensions of distance). A second change is to include the speed of light c twice 

in the distance equations. These changes make the equations appear more 

symmetrical and help to explain why later in this topic we use axes of ct and x to 

draw our spacetime diagrams.

Lorentz Galilean

x′ = γ (x v
ct

c ) x′ = x vt

y′ = y

z′ = z

y′ = y

z′ = z

ct′ = γ (ct v

c
x) t′ = t

The links between the x and t

transformations mean that the 

coordinates for position and 

time have become entangled. 

The time interval between two 

events depends on the spatial 

separation of the events, and vice 

versa. This is another aspect of 

the paradigm shi that occurred 

when the special theory of relativity 

wasaccepted.

Theories

◂ Table 1 Lorentz 

one-dimensional 

transformations 

and their Galilean 

equivalents.

The transformations given here 

allow you to transform from 

(x, ct) to (x′, ct′). Sometimes the 

reverse change from the primed (′) 

frame to the non-primed frame is 

required.

This is straightforward algebra. 

The Lorentz transformation for time 

gives ct′ = γ (ct+ vx

c
), which can 

be re-written with t as the subject:  
ct′

γ
= ct

vx

c
, so that ct= ct′

γ
+

vx

c
. 

Substituting for x using 

x′ = γ (x – v

c
ct), which is equivalent 

to x =
x′

γ
+

v

c
ct, gives ct =

ct′

γ
+

v

c

(x′

γ
+

v

c
× ct). 

This expression can be simplied 

to ct = γ (ct′ + vx′

c
), remembering 

that 1 (v
c

)
2
=

1

γ2

The equivalent inverse

transformation from x′ to x is 

x = γ (x′ +
v

c
ct′)

These are known as the inverse 

Lorentz transformations.

Inverse Lorentz  

transformations
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In each case, when v << c, then γ≈ 1 and the Lorentz equations reduce to the 

Galilean equations. 

The result from the thought experiment where light travels between mirrors 

(Figure 6) follows directly from the Lorentz transformations: the two events (the 

light leaving from, and then returning to, the bottom mirror) occur at t
1
 and t

2
. 

These events occur at the same place (the mirror), so we do not need to include 

the x terms in our proof (because x
1
= x

2
= x). The time interval between these 

events is Δt = t
2

t
1
. Therefore, in the observer frame,

Δt′ = t
2
′ t

1
′ = γ (t2

vx

c2 (t1

vx

c2 )) = γΔt and

time interval in the observer frame = γ × time interval in the mirror frame

which is written Δt = γΔt
0
, as before.

This result shows that time measured in a frame moving relative to a clock is always

longer than the time measured in a frame that is stationary relative to the clock. The 

eect is known as time dilation (“dilated” means “expanded”). When the moving 

observer in our example also has a clock, then an observer stationary with respect 

to the mirror frame observes the moving clock running slower than the mirror clock. 

The situation is symmetrical. We will discuss this later in this topic on page 187.

What does “observation” mean 

in special relativity? Are relativistic 

observations the same as the 

observations that we make in 

everyday life?

When we say “an observer 

observes a moving clock to be 

running slower”, it does not mean 

that the observer can see this eect 

visually. The tick rate of the clock 

is revealed by measuring time 

and space coordinates within the 

reference frame of the observer.

Observations

In Topic C.5, you will study the Doppler effect for both sound and electromagnetic radiation. There are essential 

differences between them. In this topic, you see the importance of the relative difference in velocity between two 

observers in different inertial frames. Light does not require a medium for propagation and c is a limiting constant speed for 

the universe. 

In the propagation of sound, movement of both source and observer relative to the medium is important and this leads 

to the difference between the two effects. There is a relativistic treatment of the Doppler effect for sound and this is 

discussed in more detail in Topic C.5.

There are limits on our knowledge. Sometimes these are technical limits. A measurement cannot be taken with sufficient 

precision at a particular time in scientific history. But these limits may be overcome in time or better methods may be 

developed. 

There are philosophical limits to physics too. Science is built around the presumption of repeatability — do the same 

experiment twice and the same thing happens. When a reviewing scientist cannot replicate the result from another 

laboratory, problems arise in accepting the result. There is no obvious reason why the universe has to work in this way. 

Finally, there are fundamental limits. The Heisenberg uncertainty principle predicts that we cannot know the precise 

position x and momentum p of a particle at the same time. Werner Heisenberg concluded, early in the history of 

quantum mechanics (Topic E.2), that Δx ×Δp ≥
h

4π
, where Δ stands for the “uncertainty in”. This is just one of the 

fundamental limits that prevents us from knowing the exact state of the universe at any instant.

As you reflect on this course, what other limits to our knowledge can you identify? Are these limits shared with other 

areas of knowledge?

Why is the equation for the Doppler effect for light so different from that for sound?

Special relativity places a limit on the speed of light. What other limits exist in physics? (NOS)
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Worked example 5

A reference frame S′ is moving at a velocity of 2.7 × 108 m s–1 relative to a reference frame S, in the direction 

of the positive x-axis of S. The Lorentz factor γ for the relative speed of frames S and S′ is 2.29. Spacetime 

coordinates of events A and B are measured in frames S and S′. 

According to measurements in frame S, event A occurs at x
A
= 50 m, y

A
= z

A
= 0, t

A
= 0.30 μs,  

and event B occurs at x
B
= 80 m, y

B
= z

B
= 0, t

B
= 0.40 μs.  

Calculate, as measured in S′:

a. the distance between events A and B

b. the time interval between events A and B.

Solutions

a. Δx′ = x
B
′ x

A
′ = γ((x

B
x

A
) v(t

B
t

A
))

Substituting gives Δx′ = 2.29((80  50)  2.7 × 108(0.40  0.30) × 10–6) = 6.9 m

b. Δt′ = t
B
′ t

A
′ = γ ((tB

t
A
) 

v

c

(x
B

x
A
)

c
)= 2.29((0.40  0.30) × 10–6  0.9 ×

80  50

3 × 108 )= 23 ns

This is a dierent time interval from that measured in S: Δt= 0.1 × 10–6 s = 100 ns. Time intervals are not 

absolute and depend on the relative motion of the observers!

Worked example 6

A rescue spaceship is sent from Earth to the site of a space accident. The spaceship moves in the direction 

of the positive x-axis of the reference frame of Earth, at a relative speed of 0.75c. The clocks on Earth and 

in the spaceship are synchronized so that the launch of the spaceship occurs at t= t′ = 0 and x= x′ = 0. 

When the spaceship arrives at the site of the accident, the clock in the spaceship reads 8.0 s.

a. Explain why, according to Earth observers, the journey of the spaceship takes longer than 8.0 s.

b. Calculate, in the reference frame of Earth, the spacetime coordinates of the arrival of the spaceship at 

the site of the accident.

Solutions

a. 8.0 s is the proper time interval between the start and the end of the spaceship’s journey, because it is 

measured in the rest frame of the spaceship. Earth is moving relative to the spaceship, so observers on 

Earth will measure a dilated (longer) time.

b. In the reference frame of the spaceship, the coordinates are x′ = 0 (because the spaceship is now at the 

site of the accident) and t′ = 8.0 s. To find the coordinates (x, t) in the reference frame of Earth, we use 

the inverse Lorentz transformation:

γ=
1

1  0.752
= 1.51

x= γ(x′ + vt′) = 1.51(0 + 0.75 × 3 × 108 × 8.0) = 2.7 × 109 m

t= γ (t′ + v

c

x′

c
)= 1.51(8.0 + 0.75 ×

0

3 × 108)= 12 s

 According to observers on Earth, the spaceship has travelled a distance of 2.7×109 m to the site of the 

accident, and the journey took 12 s.
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Practice questions

1. Clocks in two reference frames S and S′ are synchronized so that t = t′ = 0 

when x = x′ = 0. Frame S′ has a speed of 0.300c relative to S. A lightning 

strike occurs at x = 25.0 km and t = 0.150 ms, as measured in S. Calculate 

the space and time coordinates of the lightning strike according to S′, 

assuming that S′ is moving:

a. in the direction of the positive x-axis of S

b. in the direction of the negative x-axis of S

2. A space probe moves at a speed of 0.60c relative to the surface a planet. 

Clocks are synchronized so that t = t′ = 0 when x = x′ = 0. 

y

x

planet

space probe
0.60c

y'

x'

Event P has coordinates x′ = 250 m and ct′ = 400 m in the reference frame 

of the space probe.

Calculate the spacetime coordinates (x,ct) of P in the reference frame of the 

planet.
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Proper length 
The length of an object also changes when observed in frames that are moving 

relative to the object. When measuring a proper time interval, care is needed 

to specify that the position at which the times are measured is the same for both 

measurements (in the light clock on page 167 it was the position at which the 

light leaves the rst mirror and to which it returns in the reference frame of the 

mirror). The proper length of an object (where the length is x
2

x
1
) must have x

1

and x
2
 measured at the same time. 

In reference frame S, x
1
 and x

2
 represent the ends of an object of length L

0
. S is the 

frame in which the object is at rest. Frame S′ is an inertial frame moving at speed v

relative to S. In S′, the positions become x
1
′ and x

2
′ with a length L′. 

In S, L
0
= x

2
x

1
, which in S’, using the Lorentz transformations, is equal to 

γ(x ′
2
+ vt′

2
) γ(x ′

1
+ vt′

1
). 

The ends of the rod are measured at the same time and so t
1
′ and t

2
′ are equal. 

Therefore L
0
=

√√1 v2

c2

L′
 and L

0
= γL′. L

0
 is the proper length. 

Proper length is dened as the length of an object measured by an  

observer at rest relative to the object.

Both measurement events must be made at the same time. The proper length can 

also be regarded as the longest measured length that can be determined for an 

object. All other determinations of length made in a frame moving relative to the 

object frame will be shorter and are said to have undergone length contraction 

with a contracted length L′ =
L

0

γ
.
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Practice questions

3. A rod of proper length 1.5 m moves at a speed of 

0.8c relative to a laboratory. In the reference frame of 

the laboratory, the velocity of the rod is parallel to the 

rod. The rod passes through a light gate that is at rest 

relative to the laboratory.

Calculate, in the reference frame of the laboratory:

a. the length of the rod

b.  the time taken for the rod to pass through the 

lightgate.

4. Suppose that another spaceship is to be sent to 

the Alpha Centauri system, but it must reach the 

destination after 5.0 years, according to its own 

clocks.

a.  Show, using the data in Worked Example 8, that 

the speed v of the spaceship relative to Earth 

satisfies the equation 

√√1 –
v

2

c
2

v

c
= 0.88.

b.  Hence, calculate v. Give the answer in terms of the 

speed of light.
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Worked example 7

Priya and Orhan fly identical spacecraft that are 16 m long in their own frame of reference.  

Priya’s spacecraft is travelling at a speed of 0.5 c relative to Orhan’s. Calculate the length of:

a. Priya’s aircraft according to Orhan

b. Orhan’s aircraft according to Priya.

Solutions

γ = 1.15 for this relative speed.

a. The length of Priya’s aircraft is 
16

1.15
 m according to Orhan. This is 13.9 m.

b. Because the situation is symmetrical, Priya will also think that Orhan’s aircraft is 13.9 m long.

Worked example 8

Alpha Centauri is a nearby stellar system located at a distance of 4.4 light years (ly) from Earth, as 

measured in a reference frame in which Earth is at rest. A spaceship is sent from Earth to Alpha Centauri at 

a constant speed of 0.40c. 

a. In the reference frame of the spaceship, calculate:

 i. the distance between Earth and Alpha Centauri

 ii. the time taken for the travel.

Immediately after the spaceship reaches the Alpha Centauri system, a radio message is sent to Earth.

b.  Calculate, according to clocks on Earth, how long after the departure of the spaceship the radio 

message is received.

Solutions

a. i. For v= 0.40c, γ = 1.1. 

  The distance according to the spaceship is contracted and equals to 
4.4

1.1
= 4.0 ly

ii.  The journey to Alpha Centauri would take 
4.0 ly

0.40 c
= 10 years, according to clocks on the spaceship.

b. According to Earth observers, the journey takes 
4.4 ly

0.40 c
= 11 years. The radio message travels at the 

speed of light and needs another 4.4 years to reach Earth. The message will be received 11 + 4.4 = 15.4 

years after the departure of the spaceship.
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Velocity addition 

A spaceship is moving in frame A with a constant velocity u
A
. Frame B is moving 

with a constant velocity v with respect to frame A. What do the Lorentz equations 

tell us about the velocity u
B
 of the spaceship when it is viewed by an observer in 

frame B?

v

frame Bframe A

uA

▴ Figure 9 Relativistic velocity addition. The spaceship is moving in frame A. Frame B is 

moving relative to frame A. What is the speed of the spaceship in frame B?

Galilean relativity has no problem with this. The answer is simple: u
B
= u

A
v. This 

cannot be correct for Einstein relativity, however. Suppose the rocket in frame A is 

moving at the speed of light. When the observer in frame B and the spaceship are 

moving in opposite directions relative to frame A, then v is negative and u
B
 will 

exceed c. This is not allowed by Einstein’s second postulate. 

We need to use the Lorentz equations. The speed u
A
 is equal to 

x

t
 when viewed in 

frame A. Here, x is the distance moved from the origin in A together with the time 

t taken for the movement from the origin in A. Similarly, u
B
 is equal to 

x′

t′
 when 

measured in frame B.

So u
B
=

x′

t′
=

γ (x  vt)

γ (t vx

c2 )
 using the Lorentz transformations. 

You should satisfy yourself that substituting x = u
A
t into this expression gives: 

u
B
=

u
A

 v

1 
u

A
v

c2

This is the relativistic velocity addition equation.

One way to get the signs correct 

for a particular combination of 

frame velocities is to begin with 

the Galilean transformation (that 

is, when v << c) and work out what 

sign you expect. Then remember 

that the signs match at the top and 

bottom of the equation.

Correct signs

Worked example 9

Jean and Phillipe are in separate frames of reference, neither of which 

is accelerating. Jean observes a spacecraft moving to his right at 0.8c. 

Phillippe observes the same spacecraft moving to his left at 0.9c. Calculate 

the velocity of Phillippe’s frame of reference relative to Jean’s.
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Practice questions

5. A probe moves at a speed of 0.15c away from a space 

station. A beam of electrons is emitted from the space 

station towards the probe, at a speed of 0.40 c relative 

to the space station.

Calculate, in the reference frame of the probe, the 

speed of the electrons according to:

a. the Galilean transformation

b. the Lorentz transformation.

6. Two spaceships A and B travel in opposite directions 

away from Earth. Relative to Earth, spaceship A moves 

at 0.40c and spaceship B moves at 0.60c. Calculate, 

in the reference frame of spaceship A, the speed of:

a. Earth

b. spaceship B.
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Solutions

Relative to the spacecra, Phillippe is moving at 0.9c to the right. The diagram 

shows the situation from the point of view of Jean’s frame:

Jean’s frame spacecra's frame

v = 0.8c

relative to Jean

u = 0.9c

relative to the spacecra

Phillippe’s frame

If the velocities were non-relativistic, we would expect Phillippe’s velocity 

relative to Jean’s frame to be u+ v. Therefore, we use the “plus” sign in the 

relativistic velocity addition equation.

The velocity of Phillippe’s frame relative to Jean’s is 
0.9 + 0.8

1 + 0.9 × 0.8
c= 0.988c

Invariant quantities and the spacetime interval

Einstein recognized that absolute time and absolute space are not invariant 

(unchanging) properties when moving from one inertial reference frame to 

another. However, there are some quantities that do not change between inertial 

frames. These quantities are said to be invariant

Invariant quantities include the proper time interval and the proper length. 

A third invariant quantity is the spacetime interval. This arises because of the 

deduction from Einstein’s second postulate that the speed of light is universal. 

In Galilean relativity, time intervals are invariant and cannot change between 

reference frames. In Einstein relativity, it is no longer true that Δt′ =Δt. The time 

interval must be replaced by the spacetime interval to reect the unication of 

space and time as four coordinates. 

We expressed time in the table of Lorentz transformations not as plain t but as 

the product of the speed of light and time, ct. This quantity has the dimensions 

of length and leads to the spacetime interval Δs that is dened for motion in the 

x-direction as 

Δs
2 = (cΔt)2 – Δx

2
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Another name used for Δs is the invariant interval. (You may see Δs dened in 

some books as Δx2  (cΔt)2, in other words, as the negative of our denition.) 

The spacetime interval is invariant because comparing two dierent frames of 

reference and using the ct formulation of the Lorentz transformations, 

cΔt= c(t
2

t
1
) = γ (ct2

′+
v

c
x

2
′) γ (ct1

′ +
v

c
x

1
′)= γ (cΔt′+

v

c
Δx′)

and

Δx= (x
2

x
2
) = γ (x2

′+
v

c
ct

2
′) γ (x1

′ +
v

c
ct

1
′)= γ (Δx′+

v

c
cΔt′)

Therefore

Δs2 = (cΔt)2 – Δx2 = γ
2 (cΔt′+

v

c
Δx′)

2
γ

2(Δx′+ vΔt′)2

= γ
2(c2 v2) Δt′2

γ
2 (1 

v2

c2)Δx′
2
= γ

2 (1 
v2

c2) c2Δt′2
γ

2 (1 
v2

c2) Δx′2

So Δs2 = (cΔt′)2 – Δx′2 =Δs′2 because, as γ2 =
1

(1 v2

c2 )
, the terms in γ cancel.

This is obviously identical to the original denition using the same quantities (and 

no others) but is measured in the other reference frame.

In three dimensions, the spacetime interval becomes Δs2= (cΔt)2 –Δx2 –Δy2 –Δz2

Worked example 10

Events A and B are two lightning strikes. In the reference frame of a ground 

observer, A and B have coordinates x
A
= 2.5 × 103 m, t

A
= 0 and  

x
B
= 8.0 × 103 m, t

B
= 1.2 × 10–5 s. A rocket flies above theground at a speed 

of 0.75c towards the positive x-axis of the ground observer.

a.  Calculate the spacetime interval between events A and B, using the 

coordinates of:

 i. the frame of reference of the ground observer

 ii. the frame of reference of the rocket.

b.  Discuss whether it is possible that A and B occur at:

 i. the same position

 ii. the same time relative to some other inertial reference frame.

Solutions

a. i.  Relative to the ground, time and space differences between A and B 

are Δt= 1.2 × 10 5 s and Δx= 5.5 × 103 m. The spacetime interval is 

therefore (Δs)2 = (3 × 108 × 1.2 × 10 5)2  (5.5 × 103)2 = –1.73 × 107 m2

ii.  Time and space differences relative to the rocket can be calculated 

using the Lorentz transformation. For v= 0.75c, γ= 1.51.

Δx′= 1.51(5.5 × 103  0.75 × 3 × 108 × 1.2 × 10 5) = 4.23 × 103 m

Δt′= 1.51 (1.2 × 10 5  0.75 ×
5.5 × 103

3 × 108 )= –2.65 × 10 6 s

When the terms are written as 

(ct)2 x2 = constant2, the equation 

is known as the invariant 

hyperbola (the equation here 

assumes that one pair of x and t

are zero). The importance and 

use of this curve are discussed on 

page 184.
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  (Δs′)2 = (3 × 108 × ( 2.65 × 10 6))2  (4.23 × 103)2 = –1.73 × 107 m2. 

This is the same value as in part i., demonstrating that the spacetime 

interval is invariant. Note that Δt′ < 0, and hence in the frame of the 

rocket, lightning B struck before lightning A!

b. i.  In a reference frame in which the lightning strikes are at the same 

position, Δx =0 and the spacetime interval between A and B would 

have to be greater than zero, because, in this case, (Δs)2 = (cΔt)2. But 

we know from part a.i. that the interval is negative. Hence, no such 

frame exists. This is an example of a space-like interval (see page 185). 

A and B are spatially separated in every inertial frame of reference, 

regardless of its relative velocity.

ii.  The negative value of the spacetime interval between A and B implies 

that there is a reference frame in which the events happen at the same 

time. In this particular frame, Δt = 0 and (Δs)2 = 02  (Δx)2 = – (Δx)2

which is a negative quantity as required by a.i. Note that the separation 

Δx in this equation is the proper distance between the lightning strikes, 

which is greater than that measured in any other reference frame.

Muon decay in the upper atmosphere

There is direct experimental evidence for both time dilation and length 

contraction (which are two sides of the same coin). 

Muons are particles that can be created either in high-energy accelerators or in 

the upper atmosphere when cosmic rays strike air molecules. These muons have 

short mean lifetimes of about 2.2 µs. When travelling at 0.98c, the distance the 

muon will travel in one mean lifetime is roughly 660 m. This distance is far less 

than the height of 10 km above Earth’s surface where the muons are created. 

Based on Newtonian physics, very few muons would be expected to reach 

the surface as the time to reach it is about 15 mean lifetimes. Nevertheless, a 

considerable number of muons are detected at the surface. Many more than 

would be expected.

The presence of muons at the surface is due to time dilation (or length 

contraction, whichever viewpoint you choose). At a speed of 0.98c,  

γ =
1

1 v2

c2√√
=

1

1  0.982
= 5.0. So, in the reference frame of Earth, the mean 

lifetime becomes 11 µs. The time to travel 10 km at 0.98c is 33 µs, so a signicant 

number of muons remain undecayed at the surface.

In the frame of reference of the muon, the 10 km from atmosphere to Earth’s 

surface (as measured by an observer on the Earth) is only 
10

γ
 km (as far as the 

muon is concerned). This is 2.0 km in the muon’s rest frame corresponding to a 

travel time of about 3 mean lifetimes, which allows many more muons to reach 

the surface than Galilean relativity would suggest. 

Thus, depending on the viewpoint of the observer, either time dilation or 

lengthcontraction can be used to explain the observed large number of muons 

at the surface.
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Practice questions

7. An unstable particle is produced in a high-energy 

collision in a particle accelerator. The particle travels 

a distance of 2.4 cm at a speed of 0.85 c, both 

measured relative to the accelerator, before it decays. 

Calculate the proper lifetime of the particle.

8. Charged pions are particles present in cosmic ray 

bursts in Earth’s atmosphere. The mean lifetime of a 

charged pion is 2.60 × 10–8 s, in a reference frame in 

which the pion is at rest. The mean lifetime ofcharged 

pions in a particular cosmic ray burst is estimated as 

1.00 × 10–7 s in the reference frame of Earth.

Calculate:

a.  the speed of the charged pions in the cosmic ray 

burst

b.  the mean distance travelled by the charged pions 

relative to Earth.
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In 1940, B. Rossi and D. Hall measured the decay of 

atmospheric muons. Their experiments were improved in 

1963 by D. Frisch and J. Smith who detected muons both 

in Cambridge, Massachusetts and on Mount Washington 

which is 1907 m higher in altitude than Cambridge. Their 

results are shown in the table.

Run Number of muons detected in one hour

on Mt Washington at Cambridge

1 568 412

2 554 403

3 582 436

4 527 395

5 588 393

6 559

Data taken from D. H Frisch, J. H. Smith, Measurement 

of the Relativistic Time Dilation using μ-mesons, Physical

Review 64 (7 8), 199 201 (1963).

• Calculate the average number of muons detected in 

each location and give an uncertainty with your value.

• The muons were measured to have a speed of 

0.9952c

 º Calculate the time taken, in Earth’s rest frame for 

a muon to travel 1907 m.

 º Calculate the value of γ for a speed of 0.9952c

 º Hence calculate the time taken in the muon’s rest 

frame to travel this distance.

• λ = 4.55 × 105 s 1 is the decay constant of muons. 

Use the equation N = N
0
e λt (see TopicE.3) 

(where N
0
 is the number of muons detected on Mt 

Washington) to calculate the number of muons (N) 

that are expected to be detected at Cambridge:

 º without time dilation

 º when the effects of time dilation are included.

• Calculate an uncertainty in your two answers.

• Compare the measured value of the number of 

muons at Cambridge with your predicted values.

Data-based questions

Satellite navigation units (satnavs) in cars and other 

devices use global positioning systems to pinpoint a 

position on Earth’s surface to within a few metres. Several 

satellites are always above the horizon anywhere on 

Earth. Inside each satellite is an atomic clock, accurate to 

about ±1 ns, which controls the transmission of a signal to 

the receivers on Earth. 

These receivers triangulate the signals from satellites 

above the local horizon to arrive at a positional x to 

within metres in a few seconds. Wait a little longer with 

some special GPS receivers and this precision can rise to 

orders of millimetres. A satnav in a moving vehicle can 

show the speed and heading in real time. 

The design of both the satellite transmitters and the GPS 

receivers need to take account of relativity. The atomic 

clocks are adjusted so that once in orbit they run at the 

same rate as Earth-bound clocks. The GPSs contain 

computers that carry out the calculations required to 

make the relativistic corrections. 

Special relativity predicts that the clocks on the satellites 

fall behind ground clocks by about 7 µs in every 

24hours due to their relative motion with respect to 

Global impact of science — GPS
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the surface. General relativity, Einstein’s later theory that 

links gravitational eects and spacetime, predicts that 

the satellite clocks should advance compared with the 

surface clocks by about 45 µs every day. 

The net result of the two relativistic corrections is that 

the clocks in the GPS satellite gain on clocks back on 

Earth by about 1.6 µs every hour. This factor swamps the 

20 ns accuracy required of Earth-bound GPS receivers. 

When relativistic eects are not considered, then the 

position errors become serious aer about 100 s and 

accumulate at a rate of tens of kilometres every day. This 

is unacceptable for navigation. The GPS receivers in our 

cars and on our mobile phones are constantly carrying 

out relativistic corrections to adjust for the unavoidable 

time changes due to relativistic eects. 

Spacetime diagrams and worldlines 

In 1908, Hermann Minkowski introduced a way to visualize the concept of 

spacetime. Minkowski represented the four-dimensional nature of spacetime 

using a graph known as a spacetime diagram (sometimes known as a Minkowski 

diagram).

R'

R

speed = c

x

t

(a) (b) (c)

P'

P
x

t
worldline of Q

t/s

x/m

3

2

1

0 4 8 12

▴ Figure 10 Spacetime diagrams. (a) P is stationary in the inertial frame of the diagram. 

(b)Q is moving at a constant velocity relative to the diagram frame. (c) R is accelerating 

relative to the diagram frame.

Spacetime diagrams (Figure 10) show the position of an object in one dimension 

(x) at a time (t) in an inertial frame. The axes themselves constitute the inertial 

frame. The diagram resembles (but should not be confused with) the ordinary 

distance time graphs which are familiar from Topic A.1. One dierence is that 

time is plotted on the y-axis and position on the x-axis. 

Figure 10(a) shows the spacetime diagram for a particle that is stationary with 

respect to the inertial frame represented by the diagram. At t = 0, the particle 

Pis on the x-axis. As time increases, because the object is stationary, it does not 

change its position (x) in the reference frame. Line PP’ shows the trajectory of the 

particle through spacetime and is known as the worldline of the particle. 

Figure 10(b) shows a dierent particle Q moving at a constant velocity in the 

reference frame of the same spacetime diagram. At t = 0, Q is at the origin of the 

diagram (x = 0) and it is moving at 4 m s−1 to the right. Each second aer t = 0, 

Q is 4 m further to the right and so its worldline in the spacetime diagram is a line 

at an angle to the axes. When another particle R is accelerating relative to the 

reference frame of the diagram, then the worldline of R is a curve (Figure 10(c)). 

There must be a limit to the gradient of the R worldline because nothing can 

exceed the speed of light in free space. The gradient of the dashed line on 

Figure 10(c) shows the maximum limiting speed of R. This dashed line also 

represents the worldline of a photon in the diagram (the minimum gradient of RR’). 

We can combine two separate spacetime diagrams for dierent inertial frames 

moving at constant speed relative to each other. This combination of axes is 

The algebraic approach of the 

Lorentz transformations and the 

geometric approach devised by 

Minkowski are complementary. 

They describe the same 

phenomena, one in a visual way, 

one using algebra. They give the 

same results and yield the same 

conclusions. 

Neither approach is more 

fundamental than the other. 

Indeed, it was the geometry of 

the Minkowski diagram that led 

Einstein, who had earlier been 

Minkowski’s student, to extend 

his work from special to general 

relativity.

Models
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of help later in this topic when we resolve some of the paradoxes that special 

relativity appears to create. 

Figure 11 shows spacetime diagram for particle Q which is again moving at 

constant velocity relative to the frame of P (P is not shown). Q is displaced from 

the origin of its own reference frame and remains there. Notice also how the time 

axes have changed. They are now not t but have been changed to ct. This is how 

you will see the axes written from now on. It is a convenient convention because 

it means that:

• both x- and ct-axes have the dimensions of length

• the worldline of a photon must be at 45° to both x- and ct-axes.

In Figure 11, the Q axes (x′ ct′) are the rest frame for Q. They have rotated away 

from ct and x and become closer together. The x′-axis is now at the same angle as 

the previous Q worldline in the P reference frame. Q is moving along a worldline 

parallel to the time axis of its own reference frame. In other words, Q is at a 

constant position along its own x′-axis.

An additional convention is that sometimes physicists dene c to be equal to 1 

so that, in calculations, large values for the answers do not trouble them. Equally, 

expect to see speeds quoted as, for example, 0.95c meaning 95% of the speed 

of light in free space (2.85 × 108 m s−1).

Some simple geometry (Figure 12) shows that when we are using (x ct) axes, 

then the angle θ between the particle worldline and the ct-axis is given by:

tan θ =
opposite

adjacent
=

X

cT
=

1

c
 × 

X

T
=

v

c

or

θ = tan–1(
v

c
)

When v= c, then θ= 45° (because tan 45° = 1) and 

the worldline for a photon starting at the origin of the spacetime diagram  

is a line at 45° to both ct- and x-axes.

Simultaneity

Simultaneity in Galilean relativity is absolute. All frames in Galilean relativity share 

a universal, or absolute, time. Newton assumed that both time and place were 

absolute and independent. For Newton, time was independent of the observer, 

so that direct comparisons between dierent frames were possible because the 

“ow” of time proceeded at the same rate in every frame. An alternative way 

to imagine this is to think of a series of clocks that can be synchronized across 

all frames. Aer being brought together for synchronization, the clocks can be 

moved to dierent frames. Under Galilean relativity, the clocks in their dierent 

frames will keep time at the same rate as each other. This is because every time 

interval Δt transforms (in the Galilean invariance) into Δt′, where Δt=Δt′

An important axiom of Einstein’s relativity is that the clocks, aer moving to 

dierent reference frames, will no longer measure identical time intervals for the 

same event as described by the observers in the dierent frames. 

There are signicant changes to our ideas about the order in which things 

happen or whether two events happen simultaneously under Einstein’s relativity 

compared with Galilean relativity. This is because the speed of light is always 

observed to have the same value by observers in dierent frames. 

▴ Figure 11 The spacetime diagram 

can show the inertial frame for Q.

x

x'

ct'
ct

worldline of Q

▴ Figure 12 The angle θ between the 

worldline and the ct-axis is a measure of the 

velocity of the particle. 

x

c

ct X

cT

particle 

worldline 

θ
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The classic “thought” experiment to illustrate this is the example of a train 

carriage moving at constant velocity past an observer standing on a station 

platform (Figure 13). A person in the carriage (Jack) switches on a lamp that hangs 

from the centre of the ceiling. Jack observes that the light from the lamp reaches 

the two end walls of the carriage (R and L) at the same moment.

simultaneous

L LR R

not simultaneous

Jack’s frame(a) (b) Jill’s frame (ct' x')

ct'

ct

x'

x x

L R

lamp

Jack

Jill

platform

railway carriage

▴ Figure 13 The lamp in the carriage is switched on as Jack, in the train, passes Jill who is on 

the platform. (a) Jack thinks the light reaches each end of the carriage simultaneously. (b)Jill 

thinks that the light reaches the le-hand end of the carriage rst.

Jill, who is on the platform, does not agree with this observation. The light from 

the lamp moves to both ends of the carriage at the same speed c. However, 

while the light is moving to the ends, the le-hand end of the carriage moves 

towards the light and the right-hand end moves away. The consequence is that 

the light (according to Jill) hits the le-hand end rst (event L) before the right 

(event R). 

This result becomes clear in a spacetime diagram. In the reference frame of Jack 

(x–ct), the events R and L occur at the same instant because they are on a line 

parallel to the x-axis and are at the same ct-coordinate (Figure 13(a). In Jill’s frame 

(x′–ct′), plotted on Figure 13(b), L occurs before R when you consider these 

events in terms of the ct’-axis. 

It is possible to misunderstand and to think that the loss of simultaneity is to do 

with the transmission of the information. In other words, that this dierence of 

opinion between Jack and Jill arises because the light travels through dierent 

distances from the ends of the carriage to their eyes. That is not the explanation 

of what is happening. The lack of simultaneity arises because the speed of light 

is always constant even when a particular observer is moving relative to the light 

source. As far as Jack is concerned, he is always midway between the carriage 

end walls. As far as Jill is concerned, once the photons have le the lamp, 
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then they travel at c and the carriage will continue to move while the photons 

themselves are in transit. 

As mentioned earlier in this topic, one of the reasons for this confusion is the use 

of the term “observer”, which is universal in books and articles about relativity. 

We oen think of an observer as being located at one point in the inertial 

reference frame. This is not the true meaning. It is better to think of the observer 

as being in overall charge of an (innitely) large number of clocks and rulers that 

are located throughout the observer’s frame. Jack (the stationary observer in 

this case) can take a reading at the instant when the light hits the end wall of the 

carriage without having to worry about the time taken for this information to travel 

from the carriage to his position. Another way to think about the observer is as a 

whole team of observers with each one able to make measurements of his or her 

immediate region of the reference frame. 

The distinction between Jack’s and Jill’s observations can also be explained in 

terms of the Lorentz transformations. Imagine that two events are simultaneous in 

one frame of reference so that Δt = 0. The full transformation for the time interval 

between the events is is Δt′ = γ (Δt − 
vΔx

c2 ), with the usual notation. When Δt =

0, then Δt′ can only be zero when Δx = 0. Two events can only be simultaneous 

in both frames when they occur at the same position (so, essentially, they must be 

the same event). 

The invariant hyperbola

Earlier we wrote the equation for the spacetime interval as (ct)2 x2 =±(constant)2

by taking one of the values of t in Δt = (t
2

t
1
) to be 0. This equation has a 

geometric meaning in terms of the spacetime diagram.

Time-like intervals

Begin with the equation with a positive right-hand side:

(ct)2 x2 =+(constant)2

Figure 14 shows two frames (x, ct) and (x′, ct′) where the observer in the second 

frame is moving at 0.5c relative to the rst. For convenience, we will call (x, ct) 

the laboratory frame and (x′, ct′) the moving frame (relative to the lab). Added 

to the diagram are three lines that correspond to the upper branches of the 

invariant hyperbolas where the constant in the equation is equal to +1, +2, or +3. 

(Hyperbolas below the x-axis are equivalent but relate to events in the past, that 

is, before ct = 0; these are not shown on the diagram.)

0 224 4 6
x

ct

ct' ct'

x' x'

2

4

6

0 2 4 6
x/m

ct

2

4

6

6

P
Q

U

T

R
S

(a) (b)

▴ Figure 14 The invariant hyperbola gives information about (a) time-like and (b) space-like 

intervals.
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When the sign on the right-hand side of the equation is positive, then it is possible 

for x to be equal to 0 but c(Δt), and therefore Δt, cannot equal zero. The events 

represented by the set of hyperbolas are separated by a non-zero time intervals (three 

intervals are shown on Figure 14(a)). These are therefore known as time-like intervals

Imagine that a rst event occurs at the origin of the spacetime diagram. This 

occurs at the same point in both frames and so both observers will agree about its 

position and time. A second event P then occurs at the position x = 0 and at the 

time ct = 1 in the lab frame (the red curve in Figure 14(a)). The invariant hyperbola 

that intersects P shows what happens in the moving frame. P has the same time 

coordinate in frame S as Q has in frame S’. In other words, intersections of the 

hyperbola with the ct′ axis sets the scale for the axis. Another event at R in the lab 

frame is similarly related to S in the moving frame. The observer in the lab frame 

sees P and R as occurring in the same place but at ct = 3 (the green curve), which 

is not true for the moving observer.

The invariant hyperbolas allow another question to be answered: is a succession 

of events separated in the lab frame by equal times also separated by equal times 

in the moving frames? In other words, can the moving-frame axes be calibrated? 

The red, blue and green hyperbolas cross the lab ct-axis at equal times (ct = 1, 

2 and 3). From the perspective of the lab frame, this is not true for the moving 

frame because the distances along the ct′-axis decrease with increasing ct′. An 

additional question is: are these crossing times spaced equal distances apart in 

the moving frame of the observer?

To answer this, look at the red dashed line on Figure 14(a); it is parallel to the x′-axis. 

This line passes through event R (x= 0, ct= 3). It intersects the ct′-axis at (x′= 0, cT′), 

where (using the Lorentz time transformation) cT′= γ (ct
vx

c
). We know that this 

intersection is simultaneous with R in the moving frame and so cT′= γ (3 v × 0

c
), 

leading to cT′= 3γ. As ct has the value 3 this means that the ct’-axis must be scaled 

by the factor γ. As γ itself depends only on v and c, we can infer that the scaling on 

the ct’-axis is uniform and does not change with time.

Space-like intervals

Similar arguments apply for the set of hyperbolas shown in Figure 14(b). These are 

the curves for (ct)2 x2 = –(constant)2. Again, the rst event is at the origin (0, 0) for 

both frames, but we focus on the position, not the timing, of subsequent events.

For this set of curves, Δx cannot be zero (but Δt can). The intervals in this case are 

space-like. Events that are space-like can be observed to take place at the same 

time although never at the same position. 

Again, a rst event happens at the origin of the frames and both observers agree 

about the time and the position. Events also occur simultaneously in the lab frame 

at distances 1 m, 2 m, and 3 m from the origin. The intersections of the hyperbolas 

with the x’-axis indicate the position and time at which the moving observer 

thinks that these other events occur. Again, the scaling on the x′-axis is not the 

same as that on the x-axis.

The red dashed line on Figure 14(b) is parallel to the ct′-axis and passes through 

the event T at ct = 0 for X = 3 m. The intersection at U on the x′-axis is at ct′ = 0 

(because U lies on the x′-axis) and so X′= γ (x v

c
ct). Cancelling c gives x′ = (x vt). 

As x = 3, X′= 3γ. Once again, the factor γ acts as a scaling factor between the 

x-axes for the two frames.

The reason why ct cannot be 

zero is that, if it is, then x must be 

imaginary (a complex number) 

as opposed to a real value. 

Complex numbers are treated 

in some parts of the IB Diploma 

Programme mathematics, so you 

may meet them there. A complex 

number contains both a real and 

an imaginary part. The imaginary 

part arises from the solution of an 

equation such as x2 = −1. You will 

recognize that when c(Δt) = 0, 

then this must be the case here for 

–x2 = + (constant)2.
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The spacetime interval has a bearing on the 

cause-and-eect relationship between two objects or 

events. Intervals can be classied as space-like, time-like, 

or light-like depending on the value of Δs2 for the two 

events that make up the interval. 

Figure 15 shows space-like and time-like regions for the 

invariant hyperbolas. These regions are separated by 

the photon worldlines. A time interval on the photon 

worldlines is light-like.

Light-like intervals

When Δs2 is zero, the spatial distance and the time 

interval are the same because (cΔt)2 =Δx2. Such events 

are linked by a photon travelling at the speed of light. 

Suppose event S is the eruption of a solar are on 

the Sun and W is the event of an astronomer on Earth 

witnessing the eruption. The photons from the eruption 

travel directly from event S to event W (along the photon 

worldline) and because this world line is common to both 

reference frames (Sun and astronomer), both observers 

will agree about the order of the events and their light-

like separation.

On the invariant hyperbola (in this case a straight line) 

the information about the event moves along the photon 

world line.

Space-like intervals 

For an interval to be space-like, Δs2 must be < 0 (that 

is, negative). This corresponds to (cΔt)2 – Δx2 = –

(constant)2, so Δx2 > (cΔt)2. This means that the distance 

between the events is too great for light from one event 

(or anything travelling slower) to have any eect on the 

other event. They do not occur in each other’s past or 

future. Although there is a reference frame in which they 

occur at the same time, there is no reference frame in 

which the events can occur at the same place. 

Suppose the Earth-bound astronomer turns on a light 

5minutes aer the are occurs on the Sun. Call this event 

L. (The distance from the Sun to Earth is 8 light minutes.) L 

occurs 3 minutes before the astronomer sees the are. To 

get from event S to event L, it will be necessary to travel 

faster than the speed of light. There is a space-like interval 

between event S and event L.

Time-like intervals 

Finally, when Δs2 is > 0 (that is, positive), then 

(cΔt)2 > Δx2. There can be a cause-and-eect 

relationship between the events because the time 

part of the spacetime interval is greater than the spatial 

separation. Time-like intervals lie in the regions dened 

by photon worldlines that include the ct-axis.

Event L and event W occur at the same place (the 

astronomer turns on the light and sees the solar are 

without moving). These events are time-like. They would 

also be time-like if they occurred at dierent places if the 

astronomer was moving because the astronomer cannot 

travel faster than c

Another observer travelling in a dierent reference frame 

from either the Sun or the astronomer (an astronaut, say) 

will disagree with the astronomer about the times and 

positions at which the events occur. The astronaut may 

well disagree about the order in which events L and S 

occur because these are space-like separated. However, 

both astronaut and astronomer will agree about the 

spacetime intervals so that, for example, the interval Δs2

between events S and W is zero for all observers.

Time travel has always been a fascination of science-

ction authors. The spacetime interval can tell us the 

extent to which two events in space and time can aect 

each other. 

To what extent do ctional works that you know mirror 

scientic truth?

What about time travel? 

▴ Figure 15 A set of invariant hyperbolas together with  

photon worldlines. 

photon worldlines

space-like

intervals

space-like

intervals

time-like
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time-like
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Time dilation and length contraction re-visited

The eect of time dilation can be visualized in spacetime diagrams.

Figure 16(a) shows two frames, S (x, ct) and S′ (x′, ct′), in the usual way. A clock 

is at rest in S′ and ticks once at the origin (ct′ = 0) and later at event E. The green 

curve in Figure 16 is the invariant hyperbola for this event. Event G in frame S and 

event E in frame S′ both lie on the invariant hyperbola and so have the same time 

coordinate. This means that an identical clock placed in S would also tick at the 

origin and G. The dashed line represents simultaneity in frame S. Hence, according 

to S, events F and E have the same time coordinate. F is later than G according to 

S, so the time of event E is greater (dilated) than the time observed in S′

ct'

x'

0
x

ct

E
F

G

ct'

x'

0
x

ct

E

G

H

▴ Figure 16 Space diagrams with invariant hyperbolas can be used to explain time dilation 

when (a) a clock is at rest in frame S’ and (b) the clock is at rest in frame S.

In Figure 16(b), a dierent clock is at rest in S and ticks at H. This time, the dashed 

line shows simultaneity in frame S′. The events H and E have the same time 

coordinate in frame S′ because they lie on the same line parallel to the x′ axis. 

This time coordinate is the same as the time coordinate of event G in frame S 

(because E and G remain joined by the invariant hyperbola). G is later than H, so 

S′ measures a longer time for event H than observer S. The time dilation eect is 

symmetrical between the two frames.

Length contraction can also be visualized in spacetime.

ct'

x'

O N M

x

ct

M'

ct'

x'

O M

x

ct

M'

1.0 m

N'

ends of the rod

▴ Figure 17 Using the invariant hyperbola to explain length contraction when a rod is at 

rest in (a) frame S′  and (b) in frame S.

Figure 17(a) shows a rod at rest in S′. The length of the rod in S′ is OM′. An 

identical rod in S has the length OM. M and M’ therefore both lie on the same 

(green) spacelike invariant. However, the length of the moving rod according to 

S is ON, because the position of both ends of the rod must be measured at the 

same time in S. ON is less than OM and so the measurement in S shows a length 

contraction.

(a) (b)

(a) (b)
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Figure 17(b) shows the spacetime diagram for a rod of length 1.0 m (the spacelike 

hyperbola is labelled with this value). This time, the rod is at rest in S with the 

end labelled M as before. The argument is le to you to show that there is length 

contraction according to frame S′ when the observer compares a 1.0 m rod with 

the frame S rod.

Remember that OM′ is a scaled length and does not indicate the true calibration 

of the x′-axis from the point of view of the S′ observer.

Worked example 11

In the distant future a network of four warning beacons W, X, Y, 

and Z is set up to warn spaceship commanders of the approach 

lanes for planet Earth. The beacons flash in sequence. The 

spacetime diagram shows the reference frame in which the 

beacons are at rest and one cycle of the sequence. The worldline 

for a spaceship is also shown.

a.  Determine the order in which the four beacons flash  

according to:

 i.  an observer stationary in the frame of the beacons

 ii. an observer on the spaceship.

b.  Determine the order in which the observer on the spaceship 

sees the beacons flash.

Solutions

a. i.  The spacetime diagram in the frame of the beacons 

indicates the chronological order in which the beacons 

flash: W and Z simultaneously, then X, andthen Y.

ii.  The order of the flashes in the spaceship frame has to be 

obtained from constructing lines parallel to the x’-axis. In 

this frame, Z is observed to flash first, then W and X flash 

simultaneously. Finally, Y flashes.

b. To decide on the arrival of the light from the beacon, it is 

necessary to add the photon worldlines to the diagram. These 

are lines that begin at the beacon flash and travel at 45° to the 

axis. The intersection of the photon worldline with the ct’-axis 

gives the arrival time at the spacecraft. The order is Z, Y, X, W.

ct

x

light 

from X

light from

Y

light 

from Z

light 

from W

ct

x

W X Y Z

worldline of 

spaceship
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frame

ct' 

W

X

Y

Z
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Worked example 12

A train moves at a constant velocity relative to a station. When the 

train passes the station, the train’s front and rear lights are switched on 

simultaneously in the train’s reference frame. Event F is the train’s front lights 

switched on and event R is the train’s rear lights switched on. The spacetime 

diagram shows event F and the worldlines of the front and rear of the train 

in the frame of reference of the station. 

a. i.  Calculate the speed of the train relative to the station.

 ii.  Construct event R on the spacetime diagram.

 iii.  Explain which event, F or R, happened first according to an 

observer at rest relative to the station.

The proper length of the train is 100 m. 

b.  Calculate, in the frame of reference of the station:

 i. the length of the train

 ii.  the time elapsed between events F and R.

Solutions

a. i.  The ratio 
v

c
 is equal to the tangent of the angle θ between either of 

theworldlines of the train and the ct-axis and can be estimated from 

thediagram.

v

c
= tan θ=

opposite

adjacent
=

2

5
= 0.4

  The speed of the train is 0.4c

 ii.  R and F are simultaneous in the train’s frame, and all events 

simultaneous with F are represented by a line through F that makes 

an angle θ to the x-axis. The diagram shows how this simultaneity line 

for F can be constructed. R is at the intersection of the simultaneity 

line and the worldline of the rear of the train.

iii.  From the diagram, the ct-coordinate of event R in the reference 

frame of the station is less than the ct-coordinate of event F. 

Hence, R happens before F according to measurements done 

in this frame.

b. i.  The Lorentz factor for the speed is 0.4c is γ=
1

1  0.42
= 1.09. 

The length of the train in the frame of the station is shorter than 

the proper length by this factor. 

L=
100

1.09
= 91.7 m.

 ii.  The time difference between R and F in the frame of the station 

can be calculated using the inverse Lorentz transformation:  

t
F

t
R
= γ ((tF

′ t
R
′ ) +

v

c2
 (x

F
′ x

R
′)). From the simultaneity of  

R and F in the train’s frame, we have  

t
F
′ t

R
′ = 0 and x

F
′ x

R
′ = L

0
. Hence t

F
t

R
= 1.09 × 

0.4

3 × 108
 × 100 = 1.45 × 10–7 s = 145 ns.

x

ct

F

x

ct

F

θ

x

ct

F

in the train’s frameR
θO
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Worked example 13

A rod of proper length 2.0 m is moving at a constant velocity relative to a laboratory reference frame (x, ct). In the 

laboratory frame, the velocity of the rod is parallel to the rod and directed towards the positive x-axis. The ct′-axis in 

the spacetime diagram represents the worldline of the left-hand end of the rod.

0
0 1 2 3

1

2

3

x/m

ct/m ct'/m

x'/m

1

1

2

2

a.  Construct, on the spacetime diagram, the worldline of the right-hand end of the rod.

b.  Estimate the length of the rod in the laboratory reference frame:

 i.  by making an appropriate coordinate measurement on the diagram

 ii. by using the length contraction equation.

Solutions

a. The worldline of the right end of the rod is parallel to the ct′-axis and crosses the x′-axis at x' = 2 m.

0
0 1 2 3

1

2

3

x/ m

ct/ m ct'/ m

x'/ m

1

1

2

2

worldline of the
right-hand end

L

b. i.  The measurement of the length of the rod in the laboratory frame involves subtracting the x-coordinates of the 

ends of the rod measured simultaneously at the same value of ct. When ct = 0, the rod extends from the origin 

of the coordinate system to the point labelled L on the diagram. Hence, the length of the rod in the laboratory 

frame is equal to the x-coordinate of L, which is approximately 1.4 m.

 ii.  To use the length contraction equation, we need to estimate the speed of the rod relative to the laboratory.  

The method explained in worked example 12.a.i. gives v = 0.7c. The length of the rod in the laboratory frame  

is therefore  

2.0
γ

= 2.0 × 1 – 0.72
= 1.4 m. This is, of course, consistent with the answer to part b.i.!
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Practice questions

9. The spacetime diagrams show coordinate axes of 

reference frames S(x, ct) and S′(x′, ct′). For each 

diagram, state which event is simultaneous with 

event P, according to measurements done in the 

reference frame:

i. S

ii. S′

a)

b)

ct'

x'

x

ct

A P

B

C
D

ct'

x'

x

ct

A

P
B

C
D

10. The spacetime diagram shows events P, Q and R 

in coordinate axes of reference frames S(x, ct) and 

S′(x′, ct′).

ct'

x'

x

ct

P

Q

R

 What is the order of these events, from earliest to 

latest, according to an observer at rest with respect to 

frame S’?

A. P, Q, R B. P, R, Q

C. R, Q, P D. Q, R, P

11. A space probe moves at a constant velocity. Two 

photons are emitted in opposite directions towards 

the probe and arrive at the probe simultaneously. The 

diagram shows the emission event and the worldline 

of each photon and the event of their common arrival 

at the probe. ct′ is the worldline of the probe and x′ is 

the space axis of its reference frame.

ct'

x'

x

ct

arrival of

the photons

photon 2

photon 1

 Which statement is correct in the reference frame of 

the space probe?

A.  Photon 1 travels a longer distance than photon2.

B.  Photon 1 travels for a longer time than photon2.

C.  Photon 2 travels at a higher speed than photon1.

D. Both photons travel an equal distance.

12. A spaceship moves away from Earth at a constant 

velocity. On the spacetime diagram, the ct-axis is the 

worldline of Earth and the ct′-axis is the worldline of 

the spaceship.

a.  Calculate the speed of the spaceship relative  

to Earth.

0

0 1 2 3 4 5 6

1

2

3

4

5

6

ct/106m

x/106m

ct'

x'
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A radio pulse is emitted from the spaceship towards Earth. 

In the reference frame of Earth, the emission occurs at a 

distance of 2.00 × 106 m from Earth. The emission of the 

pulse is event P and its detection is eventQ.

b.  Construct events P and Q on the spacetime 

diagram.

c. Calculate:

 i.  the proper time interval between the launch of 

the spaceship and event P

 ii.  the coordinates (ct′, x′) of event Q in the 

reference frame of the spaceship.

d.  State the distance travelled by the radio pulse 

according to:

 i. a spaceship observer

 ii. an observer on Earth.

13. A spaceship is sent from Earth towards a distant 

planet. The diagram shows the spacetime axes (x, ct) 

of the reference frame of Earth and the worldline ct′

of the spaceship. The spaceship leaves Earth at t = 0 

and moves at a constant velocity relative to Earth, in 

the direction of the negative x-axis. Coordinate axes 

are scaled in light years (ly). When t = 2.00 years, a 

communication signal travelling at the speed of light is 

sent from Earth towards the spaceship.

a. Copy the spacetime diagram and draw on it:

 i.  the space axis x′ for the reference frame of the 

spaceship

 ii. the worldline of the communication signal.

b.  Estimate, using the diagram, the time at which the 

communication signal is received:

 i. according to the clock in the spaceship

 ii. according to the clock on Earth.

c.  The speed of the spaceship is 0.500 c. Determine, 

using the Lorentz transformation, the spacetime 

coordinates in the reference frame of the spaceship 

of the event when the communication signal is 

received.

ct/ lyct'/ ly

0 1 2 3 4 5

11

2

3

4

2

3

4

5

x/ ly
12345

1

2

3

4

5
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Many ideas in this topic lead to paradoxes in which 

deductions using special relativity are at odds with 

everyday existence. The twin paradox is the most famous 

of these and is simply stated: 

Malik and Maha are twins. Malik journeys to a distant star 

at a high speed (Lorentz factor equal to γ ) taking a time T

in Maha’s frame of reference, Malik returns and his return 

journey also takes time T (according to Maha). Maha has 

aged 2T in her frame but, to her, Malik has only aged  

by 
2T

γ
. 

This is time dilation — so where does the paradox arise? 

Malik sits in his spacecra and watches Maha move away 

at the same high speed so why is Maha not younger than 

him on his return? We expect symmetry between the 

frames. 

In fact, there is no symmetry between the two cases. 

Maha remains in an inertial frame throughout Malik’s 

journey. He accelerated four times: at the start of the 

trip, when slowing down at the star, when accelerating 

back to top speed towards Maha, and, nally, when he 

decelerates to arrive home. Leaving an inertial reference 

frame even once breaks the symmetry. This is why Malik 

and Maha age at dierent rates relative to each other. 

Figure 18(a) shows what happens. Maha’s frame is (x,ct), 

Malik’s is (x′, ct′). Maha remains at the origin of her 

frame moving along the ct-axis. Malik moves along his 

worldline at his origin x′ = 0 or at x = vt in Maha’s frame 

(v is Malik’s speed relative to Maha). Malik reaches the 

star at event P and lines of simultaneity are given for Malik 

and Maha. Maha thinks that Malik arrives at the star at Q. 

R is when Malik thinks that Maha observes his arrival at 

the star. They disagree about the simultaneity of Q and R 

as we expect. At this stage, both Malik and Maha think 

that the other is younger by a factor of γ  — as predicted 

by symmetrical time dilation. 

Malik must change velocity to return. This is not 

necessary if, when he reaches the star, he synchronizes 

his clock with another clock on a spacecra carrying Jay. 

Jay is already on his way to Earth (and therefore Maha) 

with the Lorentz factor γ. Figure 18(b) includes the 

worldline for Jay. When Jay leaves the star, he thinks that 

Maha is at S. Were Malik to decelerate, turn round, and 

go back to Earth, the acceleration would make Maha 

appear to age rapidly from R to S.

This prediction has been used as a test of the special 

theory of relativity using high-speed aircra. This was just 

one of a number of tests that have been used to conrm 

the theory and to justify the paradigm shi it involved.

Theories — The twin paradox

▴ Figure 18 A spacetime view of the twin paradox for (a) up 

to the instant at which Malik arrives at the star and (b) the whole 

journey as Malik/Jay return to Earth.

ct

x

Q
P

R

Malik worldline

Malik arrives

at star

Maha worldline

ct' 

x' 

(a)

ct

x

Jay worldline

Q

S

R

Malik worldline

Malik arrives
at star

Maha worldline
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Theme A      End-of-theme questions

Theme A — End-of-theme questions
1. A student strikes a tennis ball that is initially at rest so that 

it leaves the racquet at a speed of 64 m s–1. The ball has a 

mass of 0.058 kg and the contact between the ball and 

the racquet lasts for 25 ms.

a. Calculate:

 i. the average force exerted by the racquet on 

the ball

 ii. the average power delivered to the ball during 

the impact.

b. The student strikes the tennis ball at point P. The 

tennis ball is initially directed at an angle of 7.00° to 

the horizontal.

2.80 m 64 ms 1

0.910 m
ground

not to scale

net

11.9 m

7.00°

P

 i. Calculate the time it takes the tennis ball to 

reach the net.

 ii. Show that the tennis ball passes over the net.

 iii. Determine the speed of the ball as it strikes 

the ground.

2. A company designs a spring system for loading 

ice blocks onto a truck. The ice block is placed in a 

holder H in front of the spring and an electric motor 

compresses the spring by pushing H to the le. When 

the spring is released, the ice block is accelerated 

towards a ramp ABC. When the spring is fully 

decompressed, the ice block loses contact with the 

spring at A. The mass of the ice block is 55 kg.

1.2 m
spring ice block

A B

C

H

 Assume that the surface of the ramp is frictionless 

and that the masses of the spring and the holder are 

negligible compared to the mass of the ice block.

a. i. The block arrives at C with a speed of 

0.90 m s−1. Show that the elastic energy stored 

in the spring is 670 J.

 ii. Calculate the speed of the block at A.

b. Describe the motion of the block:

 i. from A to B with reference to Newton’s rst law

 ii. from B to C with reference to Newton’s 

second law.

c. Sketch a graph to show how the displacement of 

the block varies with time from A to C. (You do not 

have to put numbers on the axes.)

d. The spring decompression takes 0.42 s. Determine 

the average force that the spring exerts on the block.

3. A company delivers packages to customers using a 

small unmanned aircra. Rotating horizontal blades 

exert a force on the surrounding air. The air above the 

aircra is initially stationary.

ground

package

aircra¦

The air is propelled vertically downwards with speed 

v. The aircra hovers motionless above the ground. A 

package is suspended from the aircra on a string. The 

mass of the aircra is 0.95 kg and the combined mass of 

the package and string is 0.45 kg. The mass of air pushed 

downwards by the blades in one second is 1.7 kg.

a. i. State the value of the resultant force on the 

aircra when hovering.

 ii. Outline, with reference to Newton’s third 

law, how the upward li force on the aircra 

is achieved.

 iii. Determine v. State your answer to an 

appropriate number of signicant gures.

b. The package and string are now released and fall 

to the ground. The li force on the aircra remains 

unchanged. Calculate the initial acceleration of 

the aircra.
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4. A small ball of mass m is moving in a horizontal circle 

on the inside surface of a frictionless hemispherical 

bowl.

bowl

N

ball

 The normal reaction force N makes an angle θ to  

the horizontal.

a. i. State the direction of the resultant force on 

the ball.

 ii. On the diagram, construct an arrow of the 

correct length to represent the weight of 

the ball.

N

 iii. Show that the magnitude of the net force F on 

the ball is given by the equation F = 
mg

tan θ

b. The radius of the bowl is 8.0 m and θ = 22°. 

Determine the speed of the ball. 

c. Outline whether this ball can move on a horizontal 

circular path of radius equal to the radius of 

the bowl.

d. A second identical ball is placed at the bottom of 

the bowl and the rst ball is displaced so that its 

height from the horizontal is equal to 8.0 m. 

second ball

first ball

8.0 m

   The rst ball is released and eventually strikes 

the second ball. The two balls remain in contact. 

Determine, in m, the maximum height reached by 

the two balls.

5. A constant force of 50.0 N is applied tangentially to the 

outer edge of a merry-go-round. The following diagram 

shows the view from above.

4.00m

50.0N

 The merry-go-round has a moment of inertia of 

450 kg m2 about a vertical axis. The merry-go-round has 

a diameter of 4.00 m.

a. Show that the angular acceleration of the merry-go-

round is 0.2 rad s–2.

b. The merry-go-round starts from rest and the force is 

applied for one complete revolution. Calculate, for 

the merry-go-round aer one revolution:

 i. the angular speed

 ii. the angular momentum.

A child of mass 30.0 kg is now placed onto the edge of the 

merry-go-round. No external torque acts on the system.

c. Calculate the new angular speed of the 

rotating system.

d. The child now moves towards the centre.

 i. Explain why the angular speed will increase.

 ii. Calculate the work done by the child in moving 

from the edge to the centre.

6. a.  Explain what is meant by the statement that the 

spacetime interval is an invariant quantity.

b. Observer A detects the creation (event 1) and 

decay (event 2) of a nuclear particle. Aer creation, 

the particle moves at a constant speed relative to 

A. As measured by A, the distance between the 

events is 15 m and the time between the events is 

9.0 × 10–8 s. Observer B moves with the particle.

For event 1 and event 2:

 i. Calculate the spacetime interval.

 ii. Determine the time between them according 

to observer B.

c. Outline why the observed times are dierent for 

A and B.
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Introduction

Look at a polished stone, an electron microscope 

image of a plastic, or an X-ray diffraction pattern. The 

structure of matter and its intrinsic beauty springs out 

at you immediately. Matter does not have the uniform, 

homogeneous nature that we assumed in Theme A. In 

this theme we recognise the differences between solids, 

liquids, and gases – and we acknowledge the different 

descriptions needed to explain their observed properties. 

These explanations range from simple models for the flow 

of electric charge through to a complex multi-factorial 

description of the origin of the weather.

One concept that links these descriptions is that of the 

particle. In Theme B a particle is taken to be an atom, 

molecule or – in the case of electric current in Topic B.5 

– an electron. The very name “atom” itself comes from 

the Greek language of 400 BCE where the word ατομος

(atomos) was coined by Democritus for something that 

could not be subdivided further. Atoms and molecules can 

be combined in different ways to form the four phases of 

matter. These combinations and their consequences are 

discussed in Topic B.1.

The particle concept becomes apparent as we alternate 

between macroscopic and microscopic views of matter. 

This is of particular importance in Topics B.3 and B.4 

where the observable macroscopic properties of gases 

are explained using microscopic descriptions of the 

interacting particles of the gas. In Topic B.5, electric current 

is described through the collisions between electrons 

and positive ions in a conductor – both entities treated as 

particle-like.

Our over-arching concept of force has its part to play 

too. The link between the macroscopic and particulate 

descriptions of a gas is provided by the momentum 

conservation at the walls of the gas container and the force, 

and hence pressure, to which it leads.

The concept of particle merges with our over-arching 

theme of energy too. In Topic B.2, the impact of particle 

behaviour on the Earth’s climate is considered. Topic B.4 

discusses the impact of energy change within the context of 

individual particle behaviour on a thermodynamic system. 

Throughout the theme we model phenomena. Establishing 

a theory is an essential part of the Nature of Science. 

This modelling is backed up by that other essential of the 

subject: empirical (experimental) results. As you study this 

theme you will become aware of the importance within 

this area of physics of shared endeavour effort by many 

scientists and engineers. Work undertaken over decades 

and centuries that provides us with useful and accurate 

models of the behaviour of the everyday material world.
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The transfer of energy between systems aects the 

behaviour of the particles which make up the systems. 

At the simplest level, transferring energy into a system 

increases the kinetic energy of the particles that make up 

the system. They will move faster, and one could say that 

the material is “hotter”. There are also issues of energy 

transfer throughout the system. Interactions between 

the particles govern this. Our models must provide a 

mechanism for energy transfer between systems. These 

models must also provide mechanisms to explain how this 

energy can spread through a whole system of particles. 

Above all, macroscopic observations and microscopic 

properties must align so that changes to one give the 

observed response in the other. This link between 

observation and explanation is an important aspect of 

21st-century science.

How do the systems of particles respond to the transfer 

of energy into them? What are the links between the 

observed macroscopic eects and the energy changes at 

the microscopic level? The quantitative thermal properties 

of materials have been well studied since the 1700s, but 

qualitative explanations for the properties are more recent 

and are underpinned by our knowledge of the nature of 

the microscopic particles that make up our world.

How do macroscopic observations provide a model of the microscopic properties of a substance?

How is energy transferred within and between systems?

How can observations of one physical quantity be used to determine the other properties of a system?

B.1  Thermal energy transfers

In this topic, you will learn about:

• molecular theory for solids, liquids and gases

• density

• the Celsius temperature scale

• the Kelvin temperature scale as a measure of the 

average kinetic energy of particles 

• the internal energy of a system 

• phase changes

• specific heat capacity of a substance

• specific latent heat of fusion and vaporization 

ofsubstances 

• conduction, convection and thermal radiation as 

energy transfer mechanisms

• thermal conductivity

• the Stefan–Boltzmann law 

• apparent brightness and luminosity 

• the emission spectrum of a black body 

• Wien’s displacement law.

▴ Figure 1 The energy transferred from the Sun, and the 

subsequent energy transfers as it heats the oceans and the land, 

form an important environmental system on Earth.
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Introduction
In Topic B.1, you will meet types of matter that have different structures: solids, 

liquids and gases. Some materials conduct energy well; others do not. Materials 

transfer thermal energy at different rates and in different ways. Models are used to 

explain these differences in terms of the microscopic and macroscopic changes 

that occur when energy is transferred to and from materials. 

Particles 

Describing material structure requires a new technical language. One important 

concept is that of the particle. Two hundred years ago, particles were taken to 

be individual minute point objects. We now understand that materials consist of 

atoms. For some purposes, we still describe them as small impenetrable objects. 

We use further descriptions of ions and free electrons when, for example, we 

deal with electrical conduction. These atoms (or molecules when chemically 

combined) interact with each other to yield the macroscopic behaviour that we 

see in our everyday objects. 

Phases of matter

You will probably be familiar with the three phases of matter: solid, liquid and 

gas. Each state is modelled as an arrangement of particles and as the movement 

of the particles relative to each other. The movement arises because, at any 

temperature above the lowest, each particle has kinetic energy and therefore 

some degree of random motion. 

The three states are:

• Solid. Solids have a xed shape, meaning they must have a xed volume. 

Each particle vibrates about a given xed position. The arrangement of these 

xed positions may determine other features of the solid too: for example, 

whether it is a crystal or a more amorphous material such as a plastic. Solids 

tend to have higher densities than gases.

• Liquid. Liquids do not have a xed shape, but they do have a xed volume 

at a particular temperature. The particles also vibrate relative to each other 

as in a solid, but this time the particles of the liquid have more freedom. 

They can move around relative to their nearest-neighbour particles, perhaps 

exchanging positions with a neighbour from time to time. Liquids and solids 

have similar densities and nearest-neighbour distances.

• Gas. A gas has neither a xed shape nor a xed volume. It completely lls 

its container. For most of the time the gas particles move in straight lines 

until they collide with another particle or with the container wall. Gases 

typically have a low density but they can be compressed over a wide range 

of pressures to give variable densities.

Water, like many substances, moves between the three phases (ice, water and 

steam) depending on the amount of kinetic energy available to its particles and 

the external conditions. When there are large amounts of kinetic energy, then 

particles can break apart from each other and behave as a gas. 

Temperature, energy transfer and internal energy 

Before atoms were discovered, scientists did not describe solids, liquids and 

gases in terms of particle vibration and movement. What they observed were 

transitions between phases as energy is transferred to and from the substance.

You will use the concept of a point 

particle when you model the 

behaviour of gases as a series of 

particle interactions in Topic B.2.

The models in this topic describe 

materials in either macroscopic or 

microscopic terms.

• Macroscopic means that 

weview the materials and 

objects largely, ignoring 

internal structure, much as 

inTheme A. 

• Microscopic means that the 

objects are modelled at the 

atomic or molecular level and 

that the interactions between 

the basic building blocks 

become the focus of attention.

There was a paradigm shi 

when scientists realized that 

matter consists of atoms. Later it 

was recognized that the atoms 

themselves have a structure with 

even smaller particles whose 

properties determine behaviour. 

This internal structure to the atom is 

the focus of Theme E.

Models — Macroscopic 

and microscopic

There is a further phase  

known as a plasma, which is a  

high-temperature phase where the 

atoms are completely ionized and 

act as an ensemble of high-speed 

charged particles. This phase is 

not discussed in the IB Diploma 

Programme physics course.

A fourth phaseO
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From the 17th century onwards, scientists thought that a substance called 

phlogiston (or sometimes caloric) flowed from hot objects to cold objects 

rather like water being poured from one container to a lower one. Even today, a 

common (though not SI) unit of the energy transferred by food is the “calorie”.

Another concept that scientists developed gradually, and that we still use 

today, is the description of the “degree of hotness” of an object using the term 

temperature or, more properly, a temperature scale. 

▴ Figure 2 All four states of matter are 

visible in this picture. The air is transparent, 

but its presence can be seen in the colour of 

the sky. (The Sun is a plasma – the fourth state 

of matter.)

▴ Figure 3 Motion of molecules in three of 

the four phases of matter.

gas

liquid

solid

A temperature scale has two xed points. The choice of xed points and the 

number of degrees between them denes the scale. Temperature scales used 

today are the Celsius, Kelvin and the Fahrenheit scales.

The Celsius (formerly called Centigrade) and Kelvin scales are compared in 

Figure 4. In the Kelvin scale, the lower temperature is absolute zero (0 K), a 

theoretical temperature which is the lowest attainable. The upper xed point 

is the triple point of water: a unique temperature at which ice, water and 

water vapour all co-exist at a pressure of 611 Pa and a temperature of 273.16 K. 

This pressure is about 0.6% of atmospheric pressure. Small changes in the 

conditions will make the substance change into one of the three phases.

Celsius

fixed points 100° C

boiling point
of water

1000 ° C

500 ° C

00 ° C

400 ° C
500 ° C
780 ° C

1000 ° C

1500 ° C

2000 ° C

2500 ° C

2730 ° C

400 K
Kelvin (until 201

fixed points

2731 K triple
point of water

0 K bsolute ero
1 K is 12731

of te teperature
of te triple point

of water

water
boils

water
freees

dr ie
(solid C2

liuid
air boils

absolute
ero

373 K

273 K

15 K

350 K

250 K

200 K

150 K

50 K

0 K

100 K
7 K

300 K

0 ° C freeing point
of water

1 ° C is 1100 of 
te teperature

differene
between te
freeing and

boiling points
of water

▴ Figure 4 Two temperature scales, Celsius and Kelvin, compared.

Figure 5 shows how a mercury-in-glass thermometer can be calibrated by 

marking the lengths reached by the mercury when the thermometer is in an 

ice-water mixture and in steam at 100 °C. The distance between the two 

lengths is divided into 100 divisions to give the degree Celsius intervals.

Measurements — Comparing temperature scales

0 mark

100 mark

divided into 100

divisions

–1
00

2
0 103
0

4
0

5
0

6
0

7
0

8
0

9
0

10
0

11
0

°C

◂ Figure 5 A mercury-in-glass 

thermometer is made by marking 

the 100 °C and the 0 °C point and 

dividing the length between the 

marks into 100 divisions.
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• Tool 1: Understand how to accurately measure 

temperature and electric potential difference to an 

appropriate level of precision.

• Tool 3: Construct and interpret tables and graphs for 

raw and processed data including scatter graphs and 

line and curve graphs.

• Inquiry 2: Assess accuracy, precision, reliability 

and validity.

A thermocouple is a temperature sensor that uses the 

potential dierence between two dierent metals that 

are joined together. This pd varies with the temperature 

dierence between the metals.

• You need a voltmeter sensitive enough to measure 

to the nearest 0.1 mV. The most sensitive scale on a 

multimeter is usually sucient. Two lengths of wire 

made of copper with crocodile clips attached and 

one length of another type of wire are also required. 

Nichrome wire (a nickel–chromium alloy) is suitable 

for the single length.

• One of the junctions must be at a reference 

temperature. A mixture of ice and water can give a 

reference of 0 °C.

• Attach the nichrome wire to the other copper wires 

that lead to the voltmeter with the clips (Figure 6). Put 

one junction in the ice water and the other in a beaker 

of warm water. Use a mercury-in-glass thermometer to 

measure the temperature of the warm water and record 

this temperature as well as the reading on the voltmeter.

• Vary the temperature of the warm water and record 

your voltmeter readings. Plot a calibration graph of 

your results to show the recorded voltage against 

thermometer temperature.

voltmeter

copper

wires

ice water warm water

nichrome or

other different

wire

thermometer

000 m

▴ Figure 6 The Seebeck eect allows two metal junctions to 

act as a thermometer.

• Use your calibrated thermocouple to measure the 

temperature of another object — perhaps a freezer 

compartment or something recently removed 

from the freezer. How accurate do you think your 

thermocouple is?

• This may be a temperature measurement technique 

that you will need in your IA. How would the 

thermometer calibration t into your inquiry cycle  

(page 702)?

Calibrating a thermocouple

Temperature and temperature conversions

Temperature is measured in units of kelvin (K) or degrees Celsius (°C). Note 

that there is no degree symbol for the K of kelvin but the symbol must be used 

for the Celsius measure.

Temperature dierence is measured in units of kelvin or “degrees” (deg). 

Technically, Celsius, Fahrenheit and any other scale (other than the Kelvin 

scale) cannot be used to specify a temperature change in SI.

Only Celsius and Kelvin scales are regularly used in scientic work. A change 

in temperature is the same in Kelvin and Celsius so that the conversion 

between them is straightforward.

To go from a Celsius temperature to a Kelvin temperature, add 273. Thus,  

T/K = θ / °C + 273.

To go from Kelvin to Celsius, subtract 273. Remember that expressions such 

as θ / °C in this context mean: θ “measured in” degrees C.

Communication skills — Using terminology ATL

Worked example 1

The temperature of a metal 

sample is increased from 100 °C to 

500 °C. Calculate, in K:

a. the initial absolute 

temperature of the sample

b. the temperature change of  

the sample.

Solutions

a. 100 + 273 = 373 K

b. 400 K. The temperature change 

is the same expressed in kelvin 

as in degrees Celsius.
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When a cold object is in contact with a hot object with no other energy supplied, 

the two will eventually come to a common “degree of hotness”. At this point they 

are said to be in thermal equilibrium. 

All objects (at a temperature above absolute zero) possess internal kinetic energy 

due to the motion of their particles. The higher the temperature of the object, the 

greater the internal energy associated with the particles. 

Internal energy
The phase of a substance determines the freedom of movement of its particles. 

As energy is transferred to the particles, two processes can take place: 

• Particles can move further apart from each other, increasing the stored 

potential energy of the system of the particles.

• Particles can move faster, increasing the kinetic energy of the system. 

Taken together, this means that for a substance:

The internal energy of the system is the sum of the total intermolecular 

potential energy arising from the forces between the molecules and the total 

kinetic energy of the molecules arising from their random motion.

The particles of a gas are, on average, far apart and the stored potential energy 

must be small, meaning that, for a gas, the internal energy is almost completely 

made up of kinetic energy. For a solid, the sizes of the stored potential energy 

and the kinetic energy are about the same. The internal energy of a gas is an 

important quantity and is discussed further in Topic B.3.

The choice of the unattainable 0 K 

(absolute zero) for a temperature 

scale seems odd. The point is that 

it is never required in a practical 

way to calibrate the thermometers. 

In fact, the thermometer used 

for these purposes is a gas 

thermometer which requires only 

one calibration measurement at the 

ice or triple point. 

This occurs elsewhere in physics. 

In eld theory (Theme D), a point 

called “innity” is imagined as a 

point so far away that no force acts.

How can readings or positions that 

cannot be attained be useful?

Absolute zero

It may seem to be a contradiction that, as energy is transferred to a substance, 

its intermolecular potential energy can increase but the gas phase (when 

most energy has been accumulated) has eectively zero intermolecular 

potential energy.

This is because the stored potential energy for solids and liquids is negative. 

These are similar ideas to those of binding energy in nuclear physics (ThemeE) 

and the negative gravitational potential energies of bound planet–satellite 

systems in Theme D.

The solid atoms and molecules are said to be in a potential well, the bottom of 

which is a negative energy. As energy is transferred to the system, the potential 

energy increases, getting nearer and nearer to the zero value for a gas. The 

stored potential energy is a measure of the strength of the links between atoms. 

As atoms get further and further apart, these links become weaker and weaker.

Patterns and trends — Changes in stored  

potential energy

Given the opportunity, energy 

always transfers spontaneously 

from a high-temperature region to 

one at a low temperature. “Heat”, 

we say rather loosely, “ows from 

hot to cold”. On pages 214–224, 

we will look at the ways in which 

energy can transfer between and 

within objects due to temperature 

dierences.

Practice questions

1. Several physical properties vary with temperature.

a. State an example of a physical property that varies with temperature.

b. Outline how this property can be used to measure temperature.
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Regarding the internal energy as made up of two parts helps to explain phase 

change. As energy is transferred to a solid, both the random kinetic part and 

the intermolecular potential part increase. The former increases the vibrational 

speed, the latter the distance between the molecules. But, as the molecules 

move apart, the force of attraction between two molecules is reduced enough for 

the inter-particle bonds to be broken. Eventually, groups of molecules become 

free. We say that the solid has melted. During this phase of energy transfer, the 

intermolecular potential energy has been rising, but the kinetic energy has stayed 

the same. This means that the temperature is constant. The solid is melting at 

constant temperature (it is at the melting point). As more energy is supplied, 

the bulk of the energy now begins to increase the random kinetic energy of the 

molecules with only a fraction going to intermolecular potential energy. The 

temperature is increasing again.

Eventually, the molecules have so much random kinetic energy that they begin to 

break apart (to overcome the intermolecular forces) and become unbound from 

their nearest neighbours. They are now free and act as a gas. Again, while this 

occurs, the incoming energy is transferred to the potential form not the kinetic. 

When all molecules are free, then the temperature begins to increase again, and 

other parameters of the gas can also change (pressure, density, volume).

Average kinetic energy and the Boltzmann factor

Increased temperatures are linked to increases in the internal energy for a substance. 

However, we have not made this idea quantitative. The quantity, now known as the 

Boltzmann constant, was first introduced by Max Planck in a theory that described 

black-body radiation (you will meet this theory in Topic B.2). However, Planck also 

linked the Kelvin temperature T of a gas to the average translational kinetic energy 

Ek of a gas particle by

Ek =
3

2
kBT

The value of kB is 1.381 × 10 23 J K 1. 

One way to think of the Boltzmann constant is as the conversion factor between 

Kelvin temperature and average kinetic energy of a gas. It reminds us that 

temperature is the macroscopic measure that we use to assess the amount of 

kinetic energy in a substance.

Heat and heat transfer are the 

terms used for the energy being 

transferred into or away from 

a system through mechanisms 

such as radiation, conduction 

or convection. The transfer 

must involve the surroundings. 

Therefore, heat is not a property of 

a single system.

Internal energy can be regarded 

as the energy difference between 

the present state of a system and 

a reference state. The reference 

state we assume is absolute zero 

(0 K). With this assumption, the 

internal energy of a system is the 

total of the kinetic energies of the 

entities in the system (the atoms 

and molecules) and the potential 

energies of the entities.

Thermal energy is a loose term 

that is generally taken to relate 

to the movements of the atoms 

or molecules within an object 

or system. These movements 

can be translational, vibrational 

orrotational.

Energy terminology

The Boltzmann factor kB provides a vital link — both 

numerical and conceptual — between the average kinetic 

energy of the particles and temperature. Observing one 

quantity determines the other.

The factor kB itself is relatively recent and was introduced 

by Max Planck in 1900. The ideal gas constant R (which 

you meet in Topic B.3) was all that could be used to link 

the macroscopic quantities used to describe a gas.

If you study Topic B.4, you will nd another interpretation 

for kB which follows the link that Boltzmann himself made 

(even though he never used a fundamental constant in his 

ideas). The link here is between entropy and probability. 

So, again, kB provides the means to determine the value of 

one quantity when another has been measured.

How can observations of one physical quantity allow for the determination of another? (NOS)
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Worked example 2

A sample of a gas is heated from an initial temperature of 20 °C. The average kinetic energy of the molecules of the 

sample is doubled during this heating. Calculate, in °C, the nal temperature of the sample.

Solution

The average kinetic energy is directly proportional to the absolute temperature; hence the absolute temperature must 

have doubled during the heating. The initial absolute temperature is 273 + 20 = 293 K and the nal temperature is  

2 × 293 = 586 K. This is equivalent to 586  273 = 313 °C.

Worked example 3

Samples of two gases A and B are kept at the same temperature. Molecules of gas A have a greater mass than 

molecules of gas B. Compare the average speed of the molecules of gas A with that of gas B.

Solution

The average kinetic energy of the molecules depends on the temperature only; hence it is equal for both samples.  

From E
k
= 1

2
mv2, molecules of sample B are moving at a greater average speed.

Measuring energy transfers in temperature and  
phase changes

When identical amounts of energy are transferred to equal masses of two 

different solids it is unlikely that the same temperature change will occur in both.

To measure these energy transfers we use two quantities:

• Specic heat capacity when a substance changes its temperature but not  

its phase.

• Specic latent heat when a substance changes its phase at constant 

temperature. Specic latent heat is itself divided by the type of phase change:

• Specic latent heat of fusion (melting) when the substance is changing 

between a liquid and a solid. 

• Specic latent heat of vaporization, when the substance is changing 

between a liquid and a gas.

Practice questions

2. A sample of a gas is kept at a temperature of 100 °C. 

The average kinetic energy of the particles of the 

sample is E. The temperature of the sample is 

increased to 470 °C. Which is the best estimate of the 

change in the average kinetic energy of the particles?

A. E   B. 2E   C. 4E D. 5E

3. Air is a mixture of molecular oxygen (O2) and molecular 

nitrogen (N2). The ratio of molecular masses of O2 to 

N2 is approximately 
8

7

 What is 
average velocity of O2 molecules

average velocity of N2 molecules
 at a given 

temperature?

A. 
7

8
B. √7

8
C. √8

7
D. 

8

7
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Some of the terms used in this area of physics come from the English language of two centuries ago and need some 

explanation. “Specific” has an exact meaning in science that is not now used in everyday language. It means “per unit 

mass”. So “specific heat capacity” means the heat capacity of an object that has a mass of one kilogramme. It makes 

sense to refer the energy transfer to a standard mass for a particular material. 

In the same way, the specific energy of a fuel is the energy transferred per unit mass of fuel. 

“Latent” is another old word that means “hidden”. The energy transfer to a substance as it changes phase is hidden 

because it does not appear as a temperature change.

The term “heat capacity” is used in this course, but some authors prefer to use the term “thermal capacity”. This makes a 

more direct link between energy transfer and changing temperature. You can expect to see either “specific heat capacity” or 

“specific thermal capacity” used in books. They mean the same thing.

Historical terminology

Specic heat capacity

Transfer 1000 J of energy to 1 kg of water and the temperature will rise by about 

1

4
K. Transfer the same amount of energy to 2 kg of copper and the temperature 

increase will be roughly 1.3 K. These two materials have different heat capacities.

When the masses are the same (at 1 kg each), then the temperature change for 

copper will be about 2.5 K. To make the comparison easily:

The specific heat capacity of a substance is defined as the energy transfer 

required to raise the temperature of 1 kg of the substance by 1 K.

Algebraically, c =
Q

m × ΔT
, where Q is the energy transferred, m is the mass of 

the substance, ΔT is the temperature change and c is the specific heat capacity. 

The units of c are J kg 1 K 1 or J kg 1 deg 1. 

This equation is commonly written as Q = mc∆T

Using copper and water as examples, the energy, mass and temperature change 

above mean that the specific heat capacity for water cwater is about 
1000

1 × 0.25
, which 

is 4000Jkg 1 K 1 and the value for copper ccopper is 
1000

2 × 1.3
, which is 380Jkg 1 K 1

Table 1 shows typical values of specific heat capacity for some solids and liquids.

You should avoid writing J kg 1 °C—1

because a Celsius temperature is 

a point on the temperature scale 

not a temperature difference. 

Determinations of specific 

heat capacity always involve 

temperature change.

Units

Substance
Specic heat 

capacity / J kg−1 K−1

copper 380

iron 410

diamond 510

glass 840

wood ~2000

ethanol 2400

water 4200

▴ Table 1 Typical values of the specic 

heat capacity of some substances.

Water has one of the highest specific heat capacities of all common liquids 

and solids (ammonia is another notable anomaly). This has a significant 

impact on the water-based life forms of Earth. A large specific heat capacity 

implies that a large energy is required to change the temperature of the 

organism by a small amount. This large value helps animals to maintain a 

more-or-less constant temperature to survive.

In a similar way, the large quantities of water in liquid that exist in the 

atmosphere can buffer temperature changes because large amounts of 

energy are required to change the air temperature significantly.

The value of c for water is large due to an unusual bonding between a 

hydrogen atom in one water molecule and the oxygen atom in another 

molecule. This linking is known as a hydrogen bond.

Patterns and trends — Water

▴ Figure 7 Despite being almost in the 

Arctic Circle, Iceland has a relatively mild 

climate due to it being surrounded by ocean 

water with a high specic heat capacity.
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• Inquiry 1: Appreciate when and how to maintain 

constant environmental conditions of systems.

• Inquiry 2: Collect and record sucient relevant 

quantitative data.

▴ Figure 8 Measuring the specic heat capacity of an 

aluminium block.

immersion heater

aluminium block

0−100 °C thermometer

insulating board

to immersion

heater circuit

Energy is transferred to a metal block (in this case, 

aluminium) from a coil of resistance wire (an immersion 

heater) inserted into it. When the current in the wire is I

and potential difference across the wire is V, the energy 

supplied every second to the wire (the power) is VI

Energy is supplied to the coil for a time t and this causes 

the temperature of the block to rise. This temperature 

change Δθ is measured with a thermometer. This is shown 

as a mercury-in-glass thermometer inserted into the block 

here, but it could also be a data-logging temperature 

sensor.

The analysis is straightforward:

• Energy transferred to the block (and the thermometer 

and heater) = VIt

• Energy absorbed by block =mcΔθ, where c is the 

specic heat capacity of the aluminium.

• Therefore, c=
VIt

mΔ휃

There are some errors and assumptions to think about. 

• The energy does not spread instantly from heater 

to block. It is important to wait until the recorded 

temperature is at its greatest. (You can tell when the 

value starts to drop.) 

• The block is placed on an insulating board to prevent 

energy loss to the surface below the block.

• You can insulate the sides of the block to prevent 

energy transfer to the air surrounding the block.

• If you know the specic heat capacity and the mass 

of the thermometer and the heater, then you can 

allow for the energy transfer to them too. Normally, 

however, these are ignored with this apparatus.

Measuring the specic heat capacity of a solid

When energy is transferred to water, rst its temperature increases and then 

it changes into the vapour phase. The steam can do useful work by rotating a 

turbine linked to an electrical generator (see Topics B.3 and B.4). The use of 

steam was historically important both as a stimulus to scientists and engineers 

investigating steam engines and also as a driver of societal change.

How can the phase change of water be used in the process 

of electricity generation?
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• Tool 1: Understand how to accurately measure mass 

and temperature to an appropriate level of precision.

• Inquiry 1: Pilot methodologies.

• Inquiry 3: Identify and discuss sources and impacts of 

random and systematic errors.

You can use a technique called the method of mixtures

to measure heat capacities, as shown in Figure 9. Two 

substances both of known mass but at different initial 

temperatures are mixed. The final temperature after the 

mixing is determined. When the specific heat capacity 

of one substance is known, the energy transferred to the 

other substance can be determined. 

A known mass of water is placed in a container together 

with a thermometer. A block of metal of known mass mm

and specific heat capacity cm is placed in boiling water for 

long enough to ensure that the entire block is at 100 °C. 

The metal is then removed from the boiling water, quickly 

dried on paper tissue to remove droplets of water and then 

immediately transferred to the water in the container. The 

thermometer is read when the temperature of the mixture 

has reached its maximum.

The calculation is straightforward:

energy transferred from
=

energy transferred to
the block the water

mm × cm × (100 Tfinal ) =mw × cw × (Tfinal Tinitial )

leading to cw =
mm × cm × (100 Tfinal )

mw × (Tfinal Tinitial )

where Tinitial is the starting temperature of the water before 

the addition of the block and Tfinal is the final temperature 

of the water and block together.

However, the estimation of Tfinal is not so easy because, 

in practice, energy is transferred to the surroundings 

and the container. One way to allow for this is to 

design the experiment so that Tinitial begins as far below 

room temperature as it ends above it. Then, to a fair 

approximation, the energy transferred into the mixture 

in the first half of the experiment is equal to the energy 

transferred out in the second half. A preliminary run is 

normally required to estimate what mw needs to be.

Measuring the specic heat capacity of a liquid

• Tool 1: Understand how to accurately measure 

mass, time, temperature, electric current and 

electric potential dierence to an appropriate 

level of precision.

• Tool 3: Select and manipulate equations.

• Inquiry 2: Collect and record sucient relevant 

quantitative data.

You need a mains power meter that can measure the 

current and that attaches to a plug socket and an electric 

kettle (or a portable electric hob and a saucepan).

• Measure the mass of a quantity of water (about 1 kg 

would be suitable) and put it in the kettle. 

• Use a thermometer to measure the initial temperature 

of the water. 

• Switch the kettle on until the water boils. Measure the 

time that this takes. While the water is boiling, note 

the energy being transferred to the kettle. 

• Once the water has boiled, measure the nal 

temperature of the water. 

• Determine the energy supplied from the mains. Use 

the temperature dierence, the mass of water and the 

specic heat capacity of water (c= 4200 J kg 1 K 1) 

calculate the thermal energy transferred to the water. 

Hence calculate the eciency of the kettle.

Note: This experiment could also be carried out using a 

microwave and a bowl of water. The microwave should 

have a power rating (there may be different settings 

with different powers). Compare this rated power to the 

measured heating of the water.

Measuring the eciency of a kettle

Tinitial
mw

mm

metal

Tfinal

step 1 step 2

▴ Figure 9 The method of mixtures with a solid and a liquid.
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Worked example 4

In the following examples take the specific 

heat capacity of water to be 4200 J kg 1 K 1

1.  Energy is transferred from an electric 

heater to a metal sample of mass 1.2 kg. 

The graph shows how the temperature 

change ΔT of the sample varies with the 

energy Q absorbed by the sample.

 a.  Determine the specific heat 

capacity of the sample.

  When the metal sample reaches the 

temperature of 100 °C, it is transferred 

to a thermally insulated container filled with 5.0 kg of water at an initial temperature of20 °C.

 b.  Determine the final equilibrium temperature of the system.

Solutions

a. From Q = mcΔT, the gradient of the line is 
ΔT

Q
=

1

mc
. The value of the gradient can be obtained directly 

from the graph, 
ΔT

Q
=

32

20 × 103
= 1.6 × 10 3 K J 1

1

mc
= 1.6 × 10 3 K J 1 ⇒ c =

1

1.2 × 1.6 × 10 3
= 520 J kg 1 K 1

b. Energy lost by the metal is equal to energy gained by the water.

 1.2 × 520 × ΔTmetal = 5.0 × 4200 × ΔTwater ⇒ ΔTmetal = 33.6 × ΔTwater.  

On the other hand, ΔTmetal + ΔTwater = 80 K. Combining the equations gives 33.6ΔTwater + ΔTwater = 80 K 

⇒ ΔTwater =
80

34.6
= 2.3 K. The temperature of the water has increased by 2.3 K, so the final equilibrium 

temperature is 22.3 °C.

0 2 4 6 8 10 12 14 16 18 20

Q/ 103 J

Δ
T

/
K

30

40

20

10

0

Worked example 5

 Energy is supplied to a mass of 300 g of water at a constant rate of 600 W. The temperature of the water 

increases by 25 K in 1.0 minute. 

Calculate:

a. the increase in internal energy of the water

b. the average power transferred by the water to the surroundings.

Solutions

a. The increase in internal energy is proportional to the increase in temperature.  

Q = mcΔT = 0.300 × 4200 × 25 = 31.5 kJ

b. The power required to increase the internal energy of the water is 
31.5 × 103

60
= 525 W. This is less than the 

total power supplied to the water, and the remaining power is transferred to the surroundings: 

600 – 525 = 75 W.
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Practice questions

4. a.  Discuss, with reference to molecular behaviour, 

the process of mixing two liquids of dierent initial 

temperatures.

 b.  A piece of metal of mass 100 g at a temperature of 

90 °C is dropped into a thermally insulated ask 

containing 150 g of a liquid at a temperature of 

20 °C. The liquid is stirred until it reaches the nal 

temperature of 30 °C.  

What is 
specic heat capacity of the liquid

specic heat capacity of the metal
?

A. 2  B. 4  C. 6  D. 9

5. Two samples of the same material are allowed to reach 

thermal equilibrium without exchanging thermal energy 

with the surroundings. The graph shows how the 

temperature of each sample varies with time.

time

te
m

p
e

ra
tu

re
/

°C

30

40
sample 1

sample 220

10

 The mass of sample 2 is 600 g. What is the mass of 

sample 1?

A. 200 g  B. 300 g  C. 900 g  D. 1200 g

6. A block of metal of mass 300 g transfers 8.3 kJ of thermal 

energy to the surroundings. The temperature of the 

block decreases by 60 K. Calculate the specic heat 

capacity of the block.

7. Two metal samples A and B of equal masses in contact 

are allowed to reach thermal equilibrium. The following 

data are given:

Specic heat capacity of sample A = 920 J kg 1 K 1

Initial temperature of sample A = 20 °C

Initial temperature of sample B = 250 °C

Final equilibrium temperature of the system = 87 °C

Thermal energy losses to the surroundings  

are negligible.

Calculate the specic heat capacity of sample B.

8. 640 J of thermal energy is transferred to a lead ball of mass 

80.0 g at an initial temperature 22.0 °C. The specic heat 

capacity of lead is 127 J kg 1 K 1

a. Calculate the nal temperature of the lead ball.

 The ball is now transferred to a thermally insulated 

container lled with 160 g of cold water. The ball and 

the water reach thermal equilibrium.

9. An electric kettle contains 0.90 kg of water at an initial 

temperature of 20 °C. The kettle supplies a power of 

2.2 kW to the water. 

a. Calculate the time required to increase the 

temperature of the water to 95 °C. Ignore any 

thermal energy losses.

b. The actual time taken to increase the temperature 

of the water to 95 °C is 150 s. Calculate the power 

transferred by the water to the surroundings.

10. Hot water enters a wall-mounted radiator at a 

temperature 65 °C and leaves it at a temperature 

30 °C. The mass of water owing through the radiator 

each minute is 0.50 kg. Determine the power that the 

radiator transfers to the room.

b. Estimate the ratio 
temperature change of the water

temperature change of the lead ball

B. The particulate nature of matter
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Energy is being transferred to the water at a constant rate, so the x-axis could also 
be “energy supplied”. There would be no change in the shape of the graph.

The horizontal parts of the graph correspond to the temperatures at which 
latent heat (phase) changes occur. Even though energy is being supplied, the 

temperature is constant:

• from the instant the ice begins to form water until it is all completely melted

• from the instant the water begins to boil until it is completely vaporized.

The relative lengths of these sections give you an indication of the comparative 
sizes of the specific latent heats of fusion and vaporization. 

The sections of the graph that have positive gradients correspond to heat-capacity 
changes where temperature is increasing without change of state. Again, the 

value of the gradient gives a relative sense of the values of the three specific heat 
capacities. Study the graph and link the data to the various parts of the graph.

▴ Figure 10 How the temperature of a block of ice changes with time.

Specic latent heat 

The specific latent heat L for a phase change is the amount of energy Q

transferred when changing one kilogramme of the substance from one phase to 
another. Algebraically:

L =
Q

m

where m is the mass of the substance. 

The units of specific latent heat are J kg 1. Notice that there is no reference to K in 
the unit because there is no temperature change.

This equation can also be written as Q = mL

To help you to think about all these energy-transfer quantities, imagine a small 
block of ice removed from a freezer. Energy is transferred to the block at a 

constant rate until the ice has changed first into liquid water and then into water 
vapour. Figure 10 shows how the temperature of the block changes with time.

Specific heat capacity of…

…ice / kJ kg−1 K−1 2.1

…water / kJ kg−1 K−1 4.2

… water vapour / kJ kg−1 K−1 2.0

Specific latent heat of…

…fusion of ice / kJ kg−1 330

…vaporization of water / kJ kg−1 2300
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This is another method-of-mixtures where a substance 

with an unknown specic latent heat (ice, in this case) is 

added to a substance with a known specic heat capacity 

(here, water). The basic procedure is shown in Figure 11:

• Step 1. A known mass of ice at 0 °C is added to a 

known mass of water at a higher temperature.

• Step 2. The ice melts at a temperature of 0 °C. The 

energy required to melt the ice is transferred from the 

original water, the temperature of which decreases.

• Step 3. The original water then continues to transfer 

energy to the melted ice until all the water (original 

and melted ice) in the container is at the same 

temperature. This will be somewhere between the 

initial water temperature and 0 °C.

The water is placed in a container and its initial 

temperature is measured. The container should have a 

small mass so as not to absorb too much energy itself. A 

paper cup is ideal. The ice is dried (on a paper tissue) and 

added to the container, stirring the original water all the 

time. The mass of the ice is determined at the end of the 

experiment by knowing the dierence between the initial 

mass of water and the nal mass of water plus melted ice. 

This time the algebra is more complicated as there are 

two contributions for the ice:

• The energy transferred to the ice to melt it, mice × L

• The energy transferred to heat the ice from 0 °C to the 

nal temperature, Tnal =mice × cwater × (Tnal  0).

• The original water has energy transferred from it equal 

to mwater × cwater × (Tinitial Tnal) as it cools from Tinitial to Tnal

Equating the energy transfers gives 

mice × L+mice × cwater × (Tnal  0) =mwater × cwater × (Tinitial Tnal)

This leads to L=
mwater

mice

× cwater (Tinitial Tnal ) cwaterTnal, 

although it is easier to evaluate the energy contributions 

separately rather than use this equation.

Measuring the specic latent heat of the fusion of ice

Tinitial
mwater

step 1 step 2

ice water

ice

0° C

step 3

mice +

mwater

Tfinal

0° C

▴ Figure 11 Using the method of mixtures to measure a specic latent heat.

In physics the word “system” is applied to any self-contained group of interacting objects. In this theme, “system” 

often applies to a body of gas sealed in a container. The properties of this group of gas particles can be predicted by 

assuming that they obey the ideal-gas equation (Topic B.3).

We talk about the Solar System, meaning the group of objects that constitute the Sun and all its satellites. There are 

gravitational interactions between these objects the effects of which can be predicted using Newton’s laws of motion 

and his law of gravitation and the Keplerian laws, as outlined in Topic D.1.

One interpretation of “system” is of a complete entity that self-interacts but that has only limited interaction with the 

environment beyond it. An example in Topic B.4 is the distinction made between the system under consideration, the 

surroundings and the universe. 

How is the understanding of systems applied to other areas of physics?

• Tool 3: Use basic arithmetic and algebraic 

calculations to solve problems.

• Tool 3: Select and manipulate equations.

• Inquiry 2: Collect and record sucient relevant 

quantitative data.
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Worked example 6

In an experiment to determine the specific latent heat of fusion of ice, an ice cube of mass 15 g at a temperature 0 °C is 

dropped into an insulated container filled with 210 g of water at a temperature of 25 °C. The ice melts completely and 

the final temperature of the system is 18 °C. 

a. Calculate the thermal energy:

  i. transferred from the original water as it cools from 25 °C to 18 °C

  ii. transferred to the molten ice to heat it from 0 °C to 18 °C.

b. Hence, determine the specic latent heat of fusion of ice.

Solutions

a. i. 0.210 × 4200 × (25  18) = 6.17 k J

 ii. 0.015 × 4200 × (18  0) = 1.13 k J

b.  The energy transferred to melt all the ice is equal to the dierence between the energies calculated in part a.

L=
Q

m
=

6.17  1.13

0.015
= 340 kJ kg—1

Worked example 7

A piece of ice of mass 40.0 g and temperature −10.0 °C is dropped into 300 g of water at a temperature 18.0 °C.

Specic heat capacity of ice = 2100 J kg 1 K 1

Specic latent heat of fusion of ice = 334 kJ kg 1

Predict the nal equilibrium temperature of the system, ignoring any energy transfers to or from the surroundings.

Solution

The energy required to increase the temperature of the ice to 0 °C and melt it completely is 2100 × 0.040 × 10.0 + 334 

× 103 × 0.040 = 14.2 kJ

The temperature change of the original water resulting from this energy transfer is ΔT=
14.2 × 103

0.300 × 4200
= 11.3 K. Once 

the ice has melted, the system can be thought of as consisting of 300 g of water at a temperature 18.0  11.3 = 6.7 °C 

and 40 g of water at a temperature 0 °C. The original water will still transfer energy to water that was originally ice, until 

equilibrium is reached. Energy lost by the original water is equal to energy gained by the original ice,  

so 40(Tnal  0) = 300(6.7 Tnal). From this, the nal temperature is Tnal =
300 × 6.7

300 + 40
= 5.9 °C.

Worked example 8

Energy is supplied at a constant rate of 

750 W to a sample of ammonia of mass 

0.51 kg that is initially in liquid phase. 

The graph shows how the temperature of 

the sample varies with time. The sample 

begins to boil during heating.

a. State, in K, the boiling temperature 

ofammonia.

b. Determine the specic heat capacity 

ofammonia in its liquid phase.

c.  The specic latent heat of vaporization of ammonia is 1400 kJ kg 1. Determine the mass of the sample that remains 

in the liquid phase at a time of 200 s.

time/s

te
m
p
e
ra
tu
re

/
K

240

260

220

200

0 20 40 60 80 100 120 140 160 180 200
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Practice questions

11. In cold climates, the decrease of air temperature 

during the winter is oen slower near lakes and other 

large bodies of water. Discuss this phenomenon.

12. A mass of 50 g of crushed ice at an initial temperature 

0 °C is added to a thermos ask containing water at a 

temperature of 20 °C.

a. Calculate the energy required to melt the ice.

b. Determine the minimum mass of water that must 

be present in the ask to melt the ice completely.

c. Describe the nal state of the system if the ask 

initially contains less water than the value you 

have calculated in b.

13. A thermally insulated container has 0.50 kg of water 

at a temperature 30 °C. Determine the mass of ice 

that must be added to the container to decrease the 

temperature to 10 °C, when the ice is initially at:

a. 0 °C

b. −18 °C.

14. Tin–lead alloy used for soldering has the following 

properties:

  Melting temperature = 190 °C

  Specic heat capacity = 210 J kg 1 K 1

  Specic latent heat of fusion = 52 × 103 J kg 1

 A soldering iron has a power of 45 W. Calculate the 

minimum time required to melt a 5.0 g sample of  

tin–lead solder that is initially at 20 °C.

15. A metal sample is heated in a furnace. The graph shows 

how the temperature of the sample varies with time t. The 

sample starts melting at t= 10s.

t/s

te
m
p
e
ra
tu
re
/
K

300

600

900

1200

1500

1800

0
0 5 10 15 20

The following data are given:

 Power of the furnace = 1000 W

 Melting temperature of the metal = 1340 K

 Specic heat capacity of the metal = 126 J kg 1 K 1

a. Estimate the mass of the metal in the furnace.

b. The sample melts completely when t= 15 s. 

 Calculate the specic latent heat of fusion of 

themetal.

c. The heating of the sample continues. The specic 

heat capacity of the metal in the liquid phase 

is greater than the specic heat capacity of the 

metal in the solid phase.

 Outline how the temperature of the sample is 

changing for t> 15 s.

Solutions

a. 240 K

b.  Thermal energy delivered to the sample during the rst 120 s is 750 × 120 = 90 kJ and the temperature change  

is 40 K.

 90 × 103
= 0.51 × c × 40 ⇒ c=

90 × 103

0.51 × 40
= 4400 J kg 1 K 1

c.  Aer 120 s, the sample is at the boiling point and a further 750 × (200  120) = 60 kJ of thermal energy is delivered  

to it. The mass of the sample that has boiled away is 
60 × 103

1400 × 103
= 0.04 kg. The mass remaining in the liquid phase is 

0.51  0.04 = 0.47 kg.

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



Topic B.1 Thermal energy transfers 

214

This is a term that needs care. 

Throughout this discussion of 

specic heat capacity and specic 

latent heat there is a careful 

distinction between temperature 

change (heat capacity) and 

constant temperature conditions 

(phase change). The term 

“cooling” only has the meaning of 

a temperature decrease in physics. 

In everyday life we are less careful 

in using the term. On a hot day 

you might say that you need to 

“cool down” but what you mean 

is that you need to transfer more 

energy from your body to maintain 

the correct temperature even 

though you feel “hot”. This is a 

physiological, not a physical, eect.

When water is in the process of 

freezing to ice, it is not cooling. Its 

temperature is constant (at 273 K) 

and energy is being transferred 

from it. 

Should language vary between 

scientic practice and everyday life?

Cooling 

▴ Figure 12 Ice is oen put into drinks. When the ice starts at a temperature of less than 

0 °C, then adding more ice to a drink will result in less ice melting.

Thermal energy transfer 

Earlier in this topic you saw that an object with a temperature above absolute 

zero possesses internal energy that is due to two contributions: 

• the random motion of its atoms and molecules

• their intermolecular potential energy. 

The higher the temperature of the object, the greater the internal energy 

associated with the molecules. 

Energy spontaneously transfers from a region at a high temperature to a region at 

a low temperature. 

There are three ways in which this thermal energy transfer can be achieved: 

• conduction 

• convection

• thermal radiation.

All are important to us on both an individual level and in global terms.

Absolute temperature is equivalent 

to the average translational kinetic 

energy of the molecules of a gas 

using the conversion

Ek =
3

2
kB T

Absolute temperature

Thermal conduction 

Conduction can occur in a thermal sense (thermal conduction) and in an electrical 

sense (electrical conduction), but it is normally just shortened to ‘conduction’.

Everyone has experienced practical conduction in some way. Burning a hand 

on a camping stove, plunging a hot metal into cold water which then boils, or 

melting ice in the hand all give the experience of energy moving by conduction 

from a hot source to a cold sink.

You study electrical conduction in 

Topic B.5.O
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Metals are excellent thermal conductors, just as they are also good electrical 

conductors. Poor thermal conductors such as glass or some plastics also 

conduct electricity poorly. This suggests similarities between the mechanisms 

that lead to both types of conduction. However, you should note that there 

are still considerable differences in scale between the best metal conductors 

(copper, gold) and the worst metals (brass, aluminium). There are many 

laboratory experiments that you can carry out to determine the different 

thermal properties of good and poor conductors. Figure 13 shows just two 

demonstrations of conduction.

In conduction processes, energy transfers through the bulk of the material 

without any large-scale relative movement of the atoms that make up the 

solid. Thermal conduction and electrical conduction are collectively known as 

transport phenomena. 

▴ Figure 14 A good conductor heated to a high temperature at one end soon transfers 

energy along its length.

hot cold

vibrating ions transfer

energy to free electrons

free electrons transfer 

energy through the metal

▴ Figure 13 Examples of conduction.  

(a) A good conductor is able to transfer 

energy from a hot object to a cold one.  

(b) Ice held in the hand soon chills  

the ngers.

warm

water

good

conductor

cool water

ice

(a)

(b)

Atomic vibration occurs in all solids, both metals and non-metals. At all 

temperatures above 0 K, the ions in the solid have an internal energy. They 

are vibrating about their average fixed position in the solid. The higher the 

temperature, the greater is their average kinetic energy, and therefore the  

higher their mean speed. 

Imagine a metal rod heated at one end and cooled at the other (see Figure 14). 

At the high-temperature end, the ions have a larger average kinetic energy than 

at the low-temperature end. The ions transfer energy to the free electrons, which 

re-distribute this energy along the rod. The ion with the smaller energy tends to 

gain energy, and the other one loses energy in the electron collisions. There is a 

transfer of internal energy along the metal rod until the whole of the metal rod is 

at the same temperature.

Conduction can occur in gases and liquids as well as solids. However, the  

inter-atomic connections are weaker and the gas atoms are about ten times 

further apart than in solids and liquids. Thus, conduction is much less  

important than convection in many fluids.

The use of the words “source” and 

“sink” link to the same usage in 

Topic B.4 where they have distinct 

meanings: source means a provider 

of energy capable of transferring 

energy to an absorber (sink) of the 

energy at a lower temperature.
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Since free electrons have a role in thermal conductivity, 

it should not surprise you that thermal conductivity is 

related to electrical conductivity. The table below gives 

the thermal conductivity k and resistivity ρ of some metals.

You will meet resistivity in Topic B.5. For this question, you 

only need to appreciate that a lower resistivity means that 

the metal is a better electrical conductor.

Metal ρ / 10−8 Ω m k / W m−1 K−1

aluminium 2.7 240

copper 1.7 400

gold 2.2 320

lead 21 35

magnesium 4.4 160

platinum 11 72

silver 1.6 430

titanium 42 22

• It is suggested that ρ∝ k 1. Plot a suitable graph to 

verify whether metals obey this relationship. 

• The values given in the table are to the nearest 10%. 

Add appropriate error bars to your graph.

• Use your graph to determine the constant of 

proportionality. Include an uncertainty with your 

constant.

Note that this relationship only applies to metals. 

Diamond, for example, not only has a very high thermal 

conductivity (k≈ 2000 W m 1 K 1) but a high resistivity as 

well (ρ≥ 1013Ωm).

Data-based questions

Although thermal conduction by atomic vibration is universal in solids, there 

are other conduction processes that vary in importance depending on the 

type of solid. This is one example of a physical model that occurs in several 

areas of physics. We use the atoms and ions of the substance in discussing 

thermal conduction. The agent for electrical conduction is different but the 

ideas lying behind the model are the same.

Electrical conductors have a covalent (or metallic) bonding that releases free 

electrons to form what is essentially an electron gas filling the whole of the 

interior of the solid. These free electrons are in thermal equilibrium with the 

positive ions that make up the atomic lattice of the solid. The electrons can 

interact with each other and the energy from the high-temperature end of 

the solid “diffuses” along the solid by interactions between these electrons. 

When an electron interacts with an atom, energy is transferred back into 

the atomic lattice to alter the vibrational state of the atom. This free-electron 

mechanism for conduction depends critically on the numbers of free 

electrons available to the solid. Good electrical conductors, where there are 

many charge carriers (free electrons) available per unit volume, are likely also 

to be good thermal conductors. For example, in copper there is one free 

electron per atom. You should be able to use Avogadro’s number, the density 

of copper and its relative atomic mass, to show that there are 8.4 × 1028

electrons in one cubic metre of copper. 

Analogies are often used in science to aid our understanding of phenomena. 

Electrical and thermal conduction are also closely linked in terms of their 

mathematical descriptions. You can read more about this in Topic B.5 on 

page 300.

What role does the molecular model play in understanding 
other areas of physics? (NOS)

This section on conduction 

moves between microscopic 

and macroscopic descriptions of 

the phenomenon. Both sets of 

descriptions are equally valid. The 

concept of energy transfer and the 

idea of thermal equilibrium with a 

balance of incoming and outgoing 

energy is shared by both models.

Models
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Thermal conductivity

Conduction is an important factor in the design of many engineering projects. 

It is important to minimize the transfer of energy from buildings in parts of the 

world with cold winters. Equally, a good design will maximize the transfer of 

energy in heat exchangers for power stations of all types. Engineers must be 

able to quantify the amount of energy conducted through different materials. 

This is done by defining a quantity known as thermal conductivity which is a 

measure of how good a thermal conductor is at transferring energy through 

itself when in steady state. Steady state is when the temperature at any point 

in the slab does not change with time. The defining word equation is

thermal conductivity =
rate of energy transfer

area of material × temperature gradient across conductor

or rate of energy transfer = thermal conductivity × area of material × temperature 

gradient across conductor, which in symbols (see Figure 15(a)) is

ΔQ

Δt
= k × A ×

ΔT

Δx
where: 

• an energy ΔQ is transferred across the material in a time Δt

• through an area A

• when there is a temperature dierence ΔT = T1 T2 across the conductor that 

has a length Δx

▴ Figure 15 Energy ow through a conductor of area A and length Δx. The energy transfer is ΔQ in time Δt and leads to a temperature 

dierence of ΔT

energy

transfer

energy

transfer

energy

transfer

energy

transfer

high temperature low temperature

temperature T2temperature T1

T1 T2 T3

ΔQ ΔQ ΔQ
ΔQ

Δx Δx Δx

temperature T1

area A area A

(a) (b)

It can be seen intuitively that this equation makes sense because, if you:

• double the area of the conductor, there will be twice the energy transferred 

in time t for the same temperature dierence ΔT and Δx

• double the time for the transfer, then the total energy transfer will double 

(everything else remains unchanged).

Imagine one slab joined to another identical slab (Figure 15(b)) with the same 

energy transfer through both. Then the temperature difference ΔT is the same 

individually across each slab, which leads to a temperature difference of 2ΔT

across a width of 2Δx. In other words, T1 − T2 = T2 − T3
.
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ΔQ

Δt
 is the rate of energy transfer, in other 

words, the power input to the slab. For a steady state, this is also the power output 
from the slab. This means that there must be no energy transfer out of the sides 

of the slab. (This has important implications for experiments involving thermal-
conductivity measurements later.)

Re-writing the definition leads to

k =
ΔQ

Δt
 ×

Δx

AΔT

The units of k are therefore W m 1 K 1 (W comes from J s 1 as usual). 

Thermal conductivity values vary widely as you might expect given the range of 
behaviour from the best conductors to the worst insulators. Table 2 gives you an 

idea of the range involved.

Substance k / W m 1 K 1

silver 430

copper 400

iron 80

glass 0.5–0.8

water
0.55–0.7 over 

range 0–100 °C

air 0.026

▴ Table 2 Thermal conductivity values for 

a range of substances. These are measured 

at room temperature, except where specied.

Worked example 9

A glass window of surface area 1.2 m2 is made of a single glass pane of 

thickness 5.0 mm and thermal conductivity 0.50 W m 1 K 1. The outside 

temperature is +5 °C and the inside temperature is +20 °C. 

a.  Calculate the rate of energy transfer through the window.

b.  In cold climates, windows are usually made of two or more glass panes 

separated by an air space. Outline what eect the air space has on the 

rate of energy transfer through the window.

Solutions

a.  The temperature dierence is 15 K. 
ΔQ

t
= 0.50 × 1.2 ×

15
5.0 × 10 3

= 1.8 kW

b  Air has a much lower thermal conductivity than glass. Therefore, the air 
space between the glass panes greatly reduces the rate of energy loss 

through the window.

Worked example 10

A layer of ice of a uniform thickness 7.0 cm has formed 

on the surface of a lake. The temperature of the air above 

the ice is −12 °C and that of the water below the ice is 

0 °C. 

a.  Calculate the rate of thermal energy transfer per unit 

area through the ice. The thermal conductivity of ice 

is 2.1 W m 1 K 1

b.  Calculate the mass of water that freezes during one 

hour below one square metre of the ice. The specic 

latent heat of fusion of ice is 334 kJ kg 1

c.  Hence calculate, in mm per hour, the rate of 

change of thickness of the ice. The density of ice is 

920 kg m 3

Solutions

a. 
ΔQ

Δt
= 2.1 ×

12
7.0 × 10 2

= 360 W m 2

b.  The energy transferred from the water through one 
square metre of the ice in one hour is 360 × 60 × 60 

= 1.3 × 106 J. This loss of thermal energy causes water 

to freeze, and the mass frozen in one hour can be 
calculated using the equation Q = mL

m =
Q

L
=

1.3 × 106

334 × 103
= 3.9 kg

c.  Let d be the thickness of the additional ice that forms 
during one hour and A = 1.0 m2, the surface area under 
consideration.

  density =
mass
A × d

⇒ d =
mass

A × density
=

3.9
1.0 × 920

=

4.2 × 10 3 m. The ice is being formed at a rate of 

4.2 mm per hour.

Note that, assuming constant air temperature, the rate of ice 
formation decreases with time, because as the thickness of 
the ice grows, the temperature gradient through it decreases.

• Tool 3: Work with fundamental 

units. 

Take care when writing the units of 
thermal conductivity. Writing W/

mK with a solidus and the m close 
to the K means something quite 

different. 

Units for k
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Practice questions

16. On a winter day, the outside temperature is −5 °C and 

the temperature inside a house is 20 °C. Calculate the 

rate of thermal energy loss per unit area of a window, 

when the window is made of:

a. a single glass pane of thickness 4.0 mm and 

thermal conductivity 0.50 W m 1 K 1

b. two parallel panes separated by 1.0 cm of air of 

thermal conductivity 0.023 W m 1 K 1

   Assume that conduction is the only energy transfer 

mechanism and that the glass surfaces in contact 

with the air have temperatures −5 °C and 20 °C.

17. One end of a thin cylindrical rod made of pure aluminium 

is kept in a mixture of water and ice at 0 °C and the other 

end is maintained at a constant temperature of 300 °C. 

The length of the rod is 60 cm and its diameter is 2.0 cm. 

The rod is insulated and energy losses through its 

cylindrical surface are negligible.

a. Calculate the rate at which thermal energy 

is transferred through the rod. The thermal 

conductivity of aluminium is 240 W m 1 K 1

b. Calculate the mass of the ice that melts during 

oneminute.

• Tool 3: Determine rates of change.

• Inquiry 1: Appreciate when and how to insulate 

against heat loss or gain.

The way in which k is measured for a material depends on 

whether the material is a good or poor conductor. k must 

be measured when the material is in a steady state. The 

energy transfer rate (
ΔQ

Δt ) and the temperature gradient 

(
ΔT

Δx ) need to be measured with as small a fractional 

uncertainty as possible. 

For a good conductor, the temperature gradient across it 

is likely to be small. This means that, to be able to measure 

a reasonable temperature dierence, x must be large. It 

also helps when A is small (because k =
ΔQ

Δt
×

Δx

AΔT
). The 

optimum shape for the conductor is therefore a long, thin 

cylinder. This shape has a large surface area, which means 

that energy will transfer easily through the sides of the 

cylinder unless this is prevented. This leads to a method 

rst developed by Searle and known as the Searle’s bar 

experiment.

The criteria are dierent for a poor conductor. Here the 

power transfer will be small, and is maximized by having 

a large area for the conductor. Even a thin specimen has 

a large temperature change across it, but a thin poor 

conductor will not be prone to energy loss from the 

sides. This leads to a method for measuring k for a poor 

conductor developed by Lee and known as the Lee’s disc 

experiment. 

Notice how both scientists used good experimental 

design to arrive at dierent solutions that were matched 

to the experiments they were trying toperform.

Measuring thermal conductivity — A study in experimental design

• Tool 3: Calculate areas and volumes for simple shapes.

• Tool 3: Carry out calculations involving fractions.

• Inquiry 2: Collect and record sucient relevant 
quantitative data.

• Inquiry 3: Discuss the impact of uncertainties on 

the conclusions.

The energy owing through the bar is estimated by 

knowing the power supplied to the water-cooled coil at 

the right-hand end. This is m’cwater (T3 T4) where m’ is 

the mass of water entering the cooled coil every second.

The temperature gradient of the material is estimated from 

the dierence between the thermometers. 

This is 
(T1 T2)

L

L

T4

T3

T2
T1

water

in

lagging

metal bar

heater

▴ Figure 16 Searle’s bar apparatus.

Searle’s bar — k for a good conductor
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• Tool 3: Determine rates of change.

• Tool 3: Construct and interpret tables and graphs for 

raw and processed data including scatter graphs and 

line and curve graphs.

• Inquiry 2: Carry out relevant and accurate data 

processing.

T1

T2

Ax

held by

strings

steam in

specimen

steam chest

base plate

▴ Figure 17 Lee’s disc method for a poor conductor.

The specimen has a disc shape of thickness x and area 

A. The energy transfer through the poor conductor is 

hard to estimate and is usually evaluated graphically.

Steam is passed through a steam chest at 100 °C. The 

whole apparatus is allowed to reach a steady state, 

shown by unchanging thermometer readings, to give 

the temperature difference across the specimen and the 

temperature gradient of  
(T1 T2)

x
. 

The specimen is then removed so that the steam chest 

sits on top of the base plate with nothing between them. 

The temperature of the base plate is then allowed to rise 

well above T2. The steam chest is removed and replaced 

by an insulating felt pad that prevents energy loss from the 

upper surface of the plate. A graph of temperature against 

time is recorded from just above to just below the original 

temperature T2 of the base plate. This enables the rate of 

temperature change 
ΔT

Δt
 to be calculated at T2 and hence 

(using its specific heat capacity) the energy transfer rate 

through the disc.

The thermal conductivity equation becomes

mcplate

ΔT

Δt
= kA

(T1 T2)

x

leading to

k=
x

(T1 T2)
×
mcplate

A
×
ΔT

Δt

Lee’s disc — k for a poor conductor

You should be able to show that

k=m' cwater (T3 T4) ×
1

A
×

L

(T1 T2)
 where A is the area of the bar.

The apparatus is set up and allowed to reach steady 

state. Take all the readings when they have reached 

constant values.

Energy is lost from cylindrical sides of the bar is reduced 

by lagging the bar. 

• The bar diameter should be measured carefully using 

vernier callipers.

• m' should be measured over a long time period to 

reduce its fractional uncertainty.

Practice questions

18. The thermal conductivity of a metal bar is investigated 

using the apparatus shown in Figure 16. Water ows 

through the cooling coil at a steady rate of 0.300 kg 

per minute. Water enters the coil at a temperature of 

11.0 °C and leaves it at a temperature of 17.2 °C. 

a. Calculate, in W, the rate of energy transfer from the 

metal bar to the water.

 The cross-sectional area of the bar is 1.25 × 10 3 m2. The 

steady-state temperatures of the bar, measured at two 

points separated by 0.100 m, are 76.5 °C and 49.2 °C.

b. Calculate the thermal conductivity of the metal bar.
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Convection 

Convection is the movement of groups of atoms or molecules within fluids 

(liquids and gases) because of variations in density. Unlike conduction, which 

involves the microscopic transfer of energy, convection is a bulk property and 

is described in macroscopic ways. Convection cannot take place in solids. An 

understanding of convection is important in many areas of physics, astrophysics 

and geology. In some hot countries, houses are designed to take advantage of 

natural convection to cool them down in hot weather.

Examples of convection 

Figure 18 shows three experiments that involve convection. In all three cases, 

energy is supplied to a fluid. In Figure 18(a), a candle heats the air underneath 

a tube (a chimney) that leads vertically out of the box. The air molecules 

immediately above the flame move further apart decreasing the air density in 

this region. With a reduced density compared with the surrounding air, these 

molecules experience an upthrust and move up through the left-hand chimney. 

This upward air movement reduces the pressure in the box slightly and causes 

cooler air to be pulled down the right-hand chimney. Further heating of the air 

above the flame leads to a continuous current of cold air down the right-hand 

chimney and hot air up the left-hand tube. This is a convection current

Similar currents can be demonstrated in liquids. Figure 18(b) shows a small crystal 

of a soluble dye (potassium permanganate, KMnO4) placed at the bottom of a 

beaker of water. When the base of the beaker is heated gently near to the crystal, 

water at the base heats, expands becoming less dense, and rises. 

There is also a convection current in Figure 18(c) where a glass tube, in the shape 

of a rectangle, again with a small soluble coloured crystal in the tube, can sustain 

a convection current that moves all around the tube. 

A convection current is the mechanism through which all the water heated in a 

saucepan eventually reaches a uniform temperature. There are many examples of 

convection in action. Figure 19 shows examples from the natural world. There are 

many others.

▴ Figure 18 Convection in a gas and 

a liquid.

water

potassium

permanganate

crystal(c)

glass fronted box

(a)

candle

(b)

potassium

permanganate

19. Consider the apparatus shown in Figure 17. A thin 

specimen of cardboard is placed between the metal 

plates. In a steady state, the plates reach temperatures 

T1 = 91 °C and T2 = 70 °C. When the cardboard is 

removed, the temperature of the base plate quickly 

rises above the steady-state value. The steam chest is 

then removed and the base plate is allowed to cool. 

The graph shows how the temperature of the base 

plate varies with time.

 a.  Estimate the gradient of the temperature–time 

graph, at the instant when the temperature of the 

base plate is 70 °C.

b. Hence, calculate the rate at which the thermal 

energy is removed from the base plate. The mass 

of the base plate is 0.55 kg and its specic heat 

capacity is 380 J kg 1 K 1

c. Determine the thermal conductivity of the 

specimen of cardboard. The specimen has 

thickness 2.0 mm and surface area 8.0 × 10 3 m2
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Sea breezes 

The direction of the breeze near an ocean changes during a 24-hour period. 

During the day, breezes blow on-shore from the ocean to the land. At night, the 

direction is reversed, and the breeze blows off-shore. 

Convection effects explain this (Figure 19(a) and (b)). During the day, the land is 

warmer than the sea. The air above the land expands so that the fluid density of the 

air decreases compared with that of the cooler air above the ocean. This warm air 

rises over the land mass, pulling in cooler air from above the ocean. At night, the 

land cools down much more quickly than the sea (the variation in sea temperature 

over one day is less). Now the warmer air rises from the sea, so the wind blows off-

shore. (You might like to use your knowledge of specific heat capacity to explain 

why the sea temperature varies much less than that of the land.) 

Convection in Earth 

At the bottom of the Atlantic Ocean, and in other places on the planet, new crust 

is being created (Figure 19(c)). This is due to convection effects that occur below 

the surface. Earth’s core is at a high temperature and drives convection effects 

in the upper mantle just below the surface. Two convection currents operate 

and drive material in the same direction. Material is upwelling at the top of these 

currents to reach the surface of Earth at the bottom of the ocean. This creates 

new land that is forcing the Americas, Europe and Africa apart at the rate of a 

few centimetres every year. In other parts of the world, convection currents are 

pulling material back down below the surface (subduction). These convection 

currents, over time, have produced the continental drift that has shaped the 

continents that we know today.

Why winds blow 

Winds are driven by uneven heating of Earth’s surface by the Sun. This differential 

heating can be due to many causes including geographical factors and the 

presence of cloud. However, where the land or the sea heat up, the air just above 

them rises and creates an area of low pressure. Conversely, where the air is falling, 

a high-pressure zone is set up. The air moves from the high- to the low-pressure 

area and this is what we call a wind. The wind velocity also interacts with the 

rotation of Earth (through an effect known as the Coriolis force — another fictitious 

force like those in Topic A.2). This leads to rotation of the air masses such that air 

circulates clockwise around a high-pressure region in the northern hemisphere 

but counter-clockwise around a high-pressure area in the southern hemisphere.

▴ Figure 19 (a) and (b) Changes in land 

and sea temperatures account for on- and 

o-shore convected breezes at dierent 

times. (c) Convection currents in  

Earth’s mantle.

warm
air

day time

cool
air

(a)

night time

warm
air

cool
air

(b)

subduction

mid-ocean ridge

convectionconvection

subduction

(c)

Faced with a hot cup of morning coffee and little time to drink it, most of us 

blow across the liquid surface to cool it more quickly. This increases the rate at 

which energy is transferred from the liquid and the temperature of the liquid 

drops more quickly too. This is an example of forced convection — when the 

convection cooling is aided by a draught of air. 

Theories — Modelling convection
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Worked example 11

Explain the role played by convection in the ight of a hot-air balloon.

Solution

The air in the gas canopy is heated from below and as a result of convection currents its temperature increases. The 

hot air in the balloon expands and its density decreases below that of the cold air outside the gas envelope. There is 

therefore an upwards force on the balloon. If this exceeds the weight of the balloon (plus basket and occupants), then 

the balloon will accelerate upwards.

Worked example 12

Suggest two reason why covering the liquid surface of a cup of hot chocolate with marshmallows will slow down the 

loss of energy from the hot chocolate.

Solution

The marshmallows, having air trapped in them, are poor conductors, so they allow only a small ow of energy through 

them. The upper surface of marshmallows will be at a lower temperature than the lower surface. This reduces the amount 

of convection occurring at the surface, as the convection currents that are set up will not be so strongly driven because 

the density dierential will not be as great.

▴ Figure 20 This is a picture of the Sun’s 

surface taken by the Inouye Solar Telescope. 

The Sun’s surface is divided into regions, 

an eect called granulation. Each of these 

regions is a convective cell. Hotter plasma 

rises to the surface in the centre of each cell. 

At the edges, the cooler plasma sinks back 

into the Sun. 

Thermal radiation 

Thermal radiation is the transfer of energy by means of electromagnetic radiation. 

This radiation travels as a wave but does not need a medium in which to move 

(propagate). We receive energy from the Sun even though it has passed 

through about 150 million km of vacuum to reach us. Radiation is different from 

conduction and convection, which require a bulk material to carry the energy 

from place to place. 

Thermal radiation has its origins in the random thermal motion of atoms. These 

contain charged particles and when these charges are accelerated, they emit 

electromagnetic radiation. There is more information on page 401.

Newton stated an empirical law for cooling under conditions of forced 

convection. He suggested that the rate of change of the temperature of the 

cooling body 
dθ

dt
 was proportional to the temperature difference between the 

temperature of the cooling body θ and the temperature of the surroundings θs. 

In symbols, 
dθ

dt
∝ (θ θs).

Newton’s law of cooling leads to a half-life behaviour in just the same way that 

radioactive half-life (Topic E.3) follows from the radioactive equation 
dN

dt
∝ N, 

where N is the number of radioactive atoms in a sample. 

We can use the mathematics of radioactivity for cooling too. The cooling  

half-life is the time for the temperature excess over the surroundings to halve, 

and this is always the same for a particular situation of hot object and its 

surroundings. 

Two scientists Shigenao Maruyama and Shuichi Moriya repeated Newton’s 

1692–3 experiments involving forced convection in 2020. They allowed for 

effects that Newton could not have begun to imagine and found that, even 

so, his measurements were “quite accurate”.

Electromagnetic radiation acting 

in a wave-like way is described in 

more detail in Topic C.2.

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



▴ Figure 22 A radiator, used circulate hot 

water to heat a room.
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• Inquiry 1: Justify the range and quantity of 

measurements.

• Inquiry 1: Demonstrate independent thinking, 

initiative, or insight.

• Inquiry 2: Collect and record sucient relevant 

quantitative data.

• Tool 3: Construct and interpret tables and graphs for 

raw and processed data including scatter graphs and 

line and curve graphs.

Use this method or something similar to investigate the 

impact of black and white surfaces on cooling. 

• Take two identical tin cans and cut out a lid for each 

one from thick card. Make a hole in each lid for a 

thermometer. Paint one can completely with matt 

black paint. Paint the other shiny white. 

• Fill both cans with the same volume of hot water at 

the same temperature. Replace the lids and place the 

thermometers in the water. 

• Position the cans so that radiation from one cannot be 

incident on the other. 

• Collect data to enable you to plot a graph to show 

how the temperature of the water in each can varies 

with time. This is called a cooling curve. 

• You could also consider doing the experiment in 

reverse, beginning with cold water and using a radiant 

heater to provide energy for the cans. In this case, you 

must make sure that the heater is the same distance 

from the surface of each can and that the shiny can is 

unable to reect radiation to the black one. 

• Experiments such as this suggest that matt black 

surfaces are good at both radiating and absorbing 

energy. The opposite is true for white or shiny surfaces. 

These reect rather than absorb energy, and are poor 

at radiating energy. Containers used to store or heat 

hot drinks are oen shiny — it helps them to retain 

the energy.

wood block wood block

thermometer

b ack can white can

▴ Figure 21 The black can transfers more energy in a 

given time to the environment than the white can.

Black and white surfaces 

In many parts of the world, buildings need to be heated during all or part 

of the year. One way to achieve this is to circulate hot water from a boiler 

through a thin hollow panel oen known as a “radiator” (Figure 22). But is this 

the appropriate term? 

The outside metal surface of the panel becomes hot because energy is 

conducted from the hot water through the metal. 

The air near the surface of the panel becomes hotter and less dense. It rises, 

setting up a convection current in the room. 

There is some thermal radiation from the surface but, as its temperature is 

close to that of the room, the net radiation is low — certainly lower than the 

contributions from convection. 

Should the radiator be called a radiator? How important is the accurate use of 

scientific language in everyday life?

What’s in a name — Radiator or not? 
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Pans are needed for cooking across the world. What is the 

best strategy for designing a saucepan? 

The pan will be placed on a at hot surface heated either 

by ame, through solar energy, or radiant energy from an 

electrically heated lament or plate. The energy conducts 

through the base and heats the contents of the pan. The 

base of the pan needs to be a good conductor to allow a 

large rate of energy transfer into the pan. The walls of the 

saucepan need to withstand the maximum temperature 

at which the pan will be used but should not lose energy 

if possible. Giving them a shiny silver nish reduces this 

energy loss. 

The handle of the pan needs to be a poor conductor 

or a good insulator so that the pan can be lied easily 

and safely. Make the handle strong and easy to hold 

but as thin as possible (giving a small A in the thermal 

conductivity equation). 

Conclusion: a good pan will have a thick copper base (a 

good conductor), handle and sides made from stainless 

steel (a relatively poor conductor for a metal) and the 

overall nish will be polished and silvery.

Global impact — Making a saucepan 

Black-body radiation 

The observation that black surfaces are poor reflectors of thermal energy leads 

to an important idea in the theory of thermal radiation: that of the black-body 

radiator. A black body is one that absorbs all the wavelengths of electromagnetic 

radiation that fall on it. Equally, a black body is a perfect emitter of radiation. Like 

some other concepts developed in physics, the black body is an idealization that 

cannot be realized in practice – although there are radiators and emitters that are 

close to the ideal. 

One way to produce a good approximation to a black body is to make a small 

hole in the wall of an enclosed container (known as a cavity) and to paint the 

interior of the container matt black. The interior of the container when viewed 

through the hole will look very black inside.

Some of the first experiments into the physics of the black body were made by 

Lummer and Pringsheim in 1899 using a porcelain enclosure made from fired 

clay. When such enclosures are heated to high temperatures, radiation emerges 

from the cavity. The radiation appears coloured depending on the temperature 

of the enclosure. At low temperatures the radiation is in the infrared region, but 

as the temperature rises, the colour emitted is first red, then yellow, eventually 

becoming white when the temperature is high enough. 

• The intensity of the radiation coming from the hole or cavity is higher when 

the cavity is at a higher temperature. 

• The radiation emitted from the hole is not dependent on the material from 

which the cavity is made. 

This can be seen in the picture of the interior of a steel furnace (see Figure 23). In 

the centre of the furnace at its very hottest point, the colour appears white. At the 

edges the colour is yellow. At the entrance to the furnace where the temperature 

is very much lower, the colour is a dull red. The scale in the figure will allow you to 

estimate the temperatures inside the furnace.

▴ Figure 23 The interior of a furnace and 

a temperature scale to allow the furnace 

temperature to be estimated.
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The emission spectrum from a black body 

Although there is a predominant colour to the radiation emitted from a black-

body radiator, this does not mean that only one wavelength emerges. To study 

the whole of the radiation that the black body emits, an instrument called a 

spectrometer is used. It measures the intensity of the radiation at a particular 

wavelength across a range of wavelengths. 

Intensity is the power emitted per square metre. As an equation, this is

I=
P

A

where I is the intensity, P is the power emitted and A is the area on which the 
power is incident. The units of intensity are W m 2 or J s 1 m 2. 

A typical intensity–wavelength graph is shown in Figure 24 for a black body at 

the temperature of the visible surface of the Sun, about 5800 K. The Sun can 

be considered as a near-perfect black-body radiator. The graph shows how the 

relative intensity of the radiation varies with the wavelength of the radiation at 

which the intensity is measured. No scale is given on either axis. The graph shows 

relative values of intensity.

▴ Figure 24 The spectrum of the Sun assuming that it is a black-body radiator.
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Important features of this graph: 

• There is a peak value at about 500 nm (somewhere between green and blue 

light to our eyes). Is it a coincidence that the human eye has a maximum 

sensitivity in this region or is this biological evolution at work? 

• There are signicant radiations at all visible wavelengths. 

• There is a steep rise from zero intensity. Notice that the line does not quite go 

through the origin. 

• At large wavelengths, beyond the peak of the curve, the intensity falls to low 

levels and approaches zero asymptotically. Figure 25 shows the graph when 

curves at other temperatures are added. This gives some further perspectives 

on the emission curves.

As before, the units are arbitrary, meaning that the graph shows relative and not 

absolute changes between the curves at the four temperatures.

Fabrication of ceramic objects was 

an early technology developed by 

humans. 

A potter needs to know the 

temperature of the inside of a kiln 

while the clay is being “red” to 

transform it into porcelain. Some 

potters simply view the interior of 

the kiln through a small hole. They 

can tell by experience what the 

temperature is from the emitted 

colour of the pots inside. Other 

potters use an instrument called a 

pyrometer. A tungsten lament is 

placed at the entrance to the kiln 

between the kiln interior and the 

potter’s eye. An electric current 

is supplied to the lament, and 

this is increased until the lament 

disappears by merging into the 

background. At this point the 

lament is at the same temperature 

as the interior of the kiln. The 

lament system will have previously 

been calibrated so that the 

current required for the lament to 

disappear can be equated to the 

lament temperature.

Global impact 

of science — The 

potter’s kiln 

▴ Figure 25 Black-body spectra for  

other temperatures.
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This family of curves tells us that, as temperature increases: 

• at each wavelength, the overall intensity increases (because the curve is higher) 

• the total power emitted per square metre increases (because the total area 

under the curve is greater) 

• the curves skew towards shorter wavelengths (higher frequencies) 

• the peak of the curve moves to shorter wavelengths. 

The next step is to focus on the exact changes between these curves.

Wien’s displacement law 

In 1893, Wilhelm Wien was able to deduce the way in which the shape of the 

black-body emission graph depends on temperature. He showed that the height 

of the curve and the overall width depends on temperature alone. His full law 

allows predictions about the height of any point on the curve, but you will only 

use it to predict the peak of the intensity curve. 

Wien’s displacement law states that the wavelength at which the intensity is a 

maximum λmax is related to the absolute temperature of the black body T by:

λmaxT = b

where b is known as Wien’s displacement constant which has the value  

2.9 × 10 3 m K.

Stefan–Boltzmann law 

The scientists Stefan and Boltzmann independently derived an equation that 

predicts the total power radiated from a black body at a particular temperature. 

The law applies across all the wavelengths that are radiated by the black body. 

Stefan derived the law empirically in 1879 and Boltzmann produced the same law 

theoretically five years later. 

The Stefan–Boltzmann law states that the total power (luminosity) L radiated by a 

black body is given by the equation 

L = σAT4

where A is the total surface area of the black body and T is the absolute temperature 

of the surface. The constant σ is known as the Stefan–Boltzmann constant and has 

the value 5.67 × 10 8 W m 2 K 4. The law refers to the total power radiated by the 

object, but this is the same as the energy radiated per second. It is easy to show 

that the energy radiated each second by one square metre of a black body 

(so A = 1) is σT4. This variant of the full law is known as Stefan’s law. 

The unit of L is the watt (W ≡ J s 1).

Notice that the unit for b is metre 

kelvin, m K, and must be written 

with a space between the symbols. 

Take care not to write it as mK 

which means millikelvin.

Units for b

You will meet the Stefan–

Boltzmann equation a number of 

times in this course. It is used in 

astrophysics for the calculation of 

the properties of individual stars. 

When applied to our Sun, it allows 

us to reach conclusions about the 

energy reaching the top of Earth’s 

atmosphere and therefore make 

climate models of our planet.

What applications does 

the Stefan–Boltzmann 

equation have in 

astrophysics and in the 

use of solar energy? 
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Worked example 13

A student uses a prism spectrophotometer 

to investigate how the intensity of light from 

two incandescent lamps A and B varies with 

wavelength. The graph shows the results 

obtained.

a.  Estimate the temperatures TA and TB of the 

light-emitting wire laments of each lamp.

b.  The surface area of the lament of lamp A is the 

same as that of lamp B. 

Calculate, using the Stefan–Boltzmann law, 

the ratio 
LA

LB

 of the total powers radiated by the 

lamps.

Solutions

a.  We assume that both lamps are black-body radiators. The peak of the intensity curve of lamp A occurs at a 

wavelength of about 1200 nm. The temperature of the lament is therefore TA =
2.9 × 10 3

1200 × 10 9
≃ 2400 K. Lamp B has 

the peak of intensity at about 1400 nm. TB =
2.9 × 10 3

1400 × 10 9
≃ 2100 K.

b.  Since the surface areas of the laments are equal, the ratio of the radiated powers depends on the temperatures 

only: 
LA

LB

= (TA

TB
)
4

= ( 2400

2100 )
4

= 1.7.

Worked example 14

A hot plate has a surface area of 0.025 m2 and a constant temperature of 150 °C. Its surroundings are kept at a 

temperature of 20 °C. We assume that the hot plate behaves like a black body and that thermal radiation is the 

onlyenergy transfer mechanism. Determine the net power exchanged by the exposed face of the hot plate with 

thesurroundings.

Solution

The absolute temperatures of the hot plate and the surroundings are Thot plate = 423 K and Tsurroundings = 293 K. The net 

power is the dierence between the power radiated by the hot plate and the power it absorbs from the surroundings:

Pnet = σA(T4
hot plate T4

surroundings) = 5.67 × 10 8
× 0.025(4234  2934) = 35 W
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Worked example 15

The Sun has a diameter of 1.4 × 109 m and a surface temperature of 5800 K. Calculate:

a. the power radiated by one square metre of the surface of the Sun

b. the total energy radiated by the Sun in one day.

Solutions

a. P= σT4
= 5.67 × 10 8

× 58004
= 6.4 × 107 W

b.  The surface area of the Sun is 4π (1.4 × 109

2 )
2

= 6.2 × 1018  m2. 

 The energy radiated in one day is 6.4 × 107
× 6.2 × 1018

× 24 × 60 × 60 = 3.4 × 1031 J
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Practice questions

20. Visible light has wavelengths in the range from about 

400 nm to about 700 nm. Calculate the minimum and 

the maximum temperature of a black body that has the 

peak intensity of its radiation within the visible part of 

the spectrum.

21. The coiled metal lament in a light bulb has a diameter 

of 0.050 mm and an uncoiled length of 0.30 m. The 

light bulb radiates a power of 45 W.

a. Determine the absolute temperature of  

the lament.

b. Calculate the peak wavelength of the radiation 

emitted by the light bulb.

22. A hot plate of surface area 0.025 m2 is placed in an 

environment of temperature 20 °C. 

a. The hot plate exchanges energy with the 

environment at a net rate of 50 W. Calculate the 

temperature of the hot plate.

b. Determine the additional power that must 

be delivered to the hot plate to increase its 

temperature to 200 °C.

By the end of the 19th century, the graph of radiation intensity emitted by a 

black body as a function of wavelength was well known. Wien’s equation 

tted the experiments but only at short wavelengths. Rayleigh attempted to 

develop a new theory based on classical physics. He suggested that charges 

oscillating inside the cavity produce standing electromagnetic waves (see 

Topic C.4) as they bounce backwards and forwards between the cavity walls. 

Standing waves that escape from the cavity produce the observed black-body 

spectrum. Rayleigh’s model ts the observations at long wavelengths, but 

predicts an “ultraviolet catastrophe” with an innitely large intensity at  

short wavelengths. 

Max Planck varied Rayleigh’s theory slightly. He proposed that the standing 

waves could not carry all possible energies, but only certain quantities of 

energy E given by nhf where n is an integer, h is a constant (Planck’s constant) 

and f is the frequency of the allowed energy. Planck’s model tted the 

experimental results at all wavelengths and thus, in 1900, a new branch of 

physics was born: quantum physics. Planck limited his theory to the space 

inside the cavity, he believed that the radiation was continuous outside. 

Some years later, Einstein realized that the photons outside the cavity also 

had discrete amounts of energy. Planck was the scientic referee for Einstein’s 

paper, and it is to Planck’s credit that he recognized the value of Einstein’s 

work and accepted the paper for publication even though it overturned some 

of his own ideas.

Science as a shared endeavour — Building a theory

Observational astronomy and black-body radiation

Given that most stars are black-body radiators to a very close approximation, the 

Stefan–Boltzmann law and Wien’s displacement law have crucial importance 

for astronomers. Indeed, the Stefan–Boltzmann law is sometimes known as 

the luminosity law in astronomy because the radiated power L is known as 

luminosity when used in the context of stars (hence the symbol L). 
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The luminosity of a star allows comparisons between stars of similar ages or sizes. 

It allows astronomers to apply the properties and distances of a known star to 

those of a newly discovered star.

When a star radiates a power P, at a large distance from the star the radiation can 

be imagined as being emitted by a point source. Imagine the surface of a sphere 

of radius d, centred on a star S (Figure 26 shows part of the sphere). The intensity

I is the power that falls on unit area of the sphere surface. When the sphere has 

double the radius, 2d, then the intensity at the new surface falls to 
1

4
. This is an 

inverse-square law:

I=
P

4πd2

The units of intensity are watt metre 2 (W m 2
≡ J s 1 m 2).

In astrophysics, luminosity can be quoted relative to the luminosity of the Sun. 

The Sun’s luminosity is often given the symbol L⊙ so that a star with an radiated 

power output that is 20 times that of the Sun will have a luminosity of 20L⊙. The ⊙

notation can also apply to the mass of the Sun M⊙ and the surface temperature  

of the Sun T⊙. As an example, the star Betelgeuse is the tenth-brightest star  

in the sky with a mass of 17 M⊙, a temperature of 0.62 T⊙ and a luminosity of 

130 000 L⊙. This means that its mass is (2.0 × 1030
× 17 =) 3.4 × 1031 kg, the 

surface temperature is (0.62 × 5800 =) 3600 K and the luminosity is  

(3.8 × 1026
× 130 000 =) 4.9 × 1031 W.

▴ Figure 27 A photograph of the 

rst Solvay conference in 1911. Einstein 

(standing second from the right) was 

the second youngest participant. Max 

Planck can be seen standing second 

from the le and Wilhelm Wien is sitting 

third from the right.

Scientists regularly hold conferences 

to share ideas and promote 

research. The first Solvay conference 

in 1911 was titled “The Theory of 

Radiation and the Quanta”. It was 

one of the first conferences bringing 

physicists from different countries 

together. Hendrik Lorentz chaired 

the conference and impressed all 

the participants with his careful 

chairing.

Today, the Solvay Institute still hosts 

international conferences. The 

aim of all physics conferences is to 

promote the sharing of ideas so 

that progress can be made.

How has international 
collaboration helped 
to develop the 
understanding of the 
nature of matter? 

▴ Figure 26 As radiation spreads out 

from a point source S it covers an area that 

increases as the square of the distance from 

the source.

S

r

2r

3r

The relationship between the intensity of a wave and the distance that the 

wave has travelled from the source is met frequently in physics. You will meet it 

again in the wave theory of Theme C. It also describes the variation of intensity 

of the radiation with distance from a point source of gamma photons.

Where do inverse-square relationships appear in other 
areas of physics? (NOS)

Apparent brightness

Using the notation for luminosity introduced earlier (L≡ P), then the intensity 

b falling on the surface of the sphere at a distance d from the star is b=
L

4πd2
. 

Astronomers call b the apparent brightness of the star rather than its intensity.

The apparent brightness is the power received at a telescope or other detector 

at Earth. A knowledge of the luminosity of the star and details of its spectrum (the 

peak wavelength λmax, for example) allows astronomers to deduce the distance of 

the star from Earth.O
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The concept of a galaxy did not exist until the early 20th century. In 

1925, Edwin Hubble deduced that M31 was 900 000 light years away 

and therefore well beyond the edge of our own galaxy. This enabled 

Hubble to use the apparent brightness of M31 to deduce that its mass 

was about 3.5 × 109M⊙ and its luminosity about 7 × 108 L⊙

It was later discovered that M31 (the Andromeda galaxy) is in fact 

2.5 million light years away. Its greater distance means that it is much 

brighter than Hubble thought. The luminosity of the andromeda galaxy 

is now thought to be 2.6 × 1010 L⊙

Combining the Stefan–Boltzmann law with the equation for the area 

of a sphere of radius R, assuming that these stars are spherical in shape, 

gives L= σ4πR2T4. The luminosity of a star depends on its temperature 

and its radius.

Observations — Discovering galaxies

Topic E.5 takes this relationship further to discuss an important classication tool in stellar astronomy — the 

Hertzsprung–Russell diagram. 

▴ Figure 28 The M31 galaxy.

Practice questions

23. The star Antares has a luminosity of 76 000 L⊙
(L⊙ = 3.83 × 1026 W) and is at a distance of 5.2 × 1018 m 

from Earth. 

 Calculate the apparent brightness of Antares as seen 

from Earth.

24. The minimum intensity of light that can be detected by 

unaided human eye is approximately 10 10 W m 2

 Estimate the distance at which the Sun could just be 

seen by unaided eye.

25. A sphere of radius R has an absolute temperature T

and it radiates powerP. A second sphere has a radius 

2R. The spheres can be assumed to be black-body 

radiators. Determine:

a. the power radiated by the second sphere, when 

its absolute temperature is T

b. the absolute temperature of the second sphere, 

when it radiates power P
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In this topic, you will learn about:

• energy conservation 

• emissivity 

• albedo and the albedo of Earth

• the solar constant and the intensity of solar radiation at 

Earth’s surface 

• the main greenhouse gases and how they absorb 

infrared radiation 

• the greenhouse effect and the enhanced  

greenhouse effect.

A concern of both national governments and world 

citizens is the future of Earth’s climate. Science 

can model the behaviour of the atmosphere and 

the results of this modelling are discouraging. 

There need to be urgent eorts to reduce the rate 

at which we release greenhouse gases into the 

atmosphere to avoid catastrophic temperature 

increases on Earth. But we rely on the greenhouse 

eect to prevent the temperature of the planet 

from plunging. What is the greenhouse eect 

and how has our impact modied its eects? All 

these questions rely on the development and 

understanding of climate models. 

Conditions in our Sun dictate the energy that 

arrives at Earth. Physics tells us about the balance 

of wavelengths emitted from the star and inform 

us about the interaction of these wavelengths with 

the atmosphere. The Sun’s conditions therefore 

ultimately inuence the emission of radiation by 

Earth and the relative intensities of the wavelengths 

in this radiation. 

How does the greenhouse eect help to maintain life on Earth and how does human activity 

enhance this eect?

How is the atmosphere as a system modelled to quantify the Earth–atmosphere energy balance?

B.2  Greenhouse eect

▴ Figure 1 The atmosphere is responsible for creating the possibly 

unique conditions that have allowed life to develop on Earth.
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Introduction
On the face of it, modelling Earth’s atmosphere should be straightforward. Three 

gases, nitrogen, oxygen and argon make up all but 0.04% of the total. But it is the 

last one part in 2500 that makes a profound difference to life on Earth. Remove 

the ozone and the damaging ultraviolet radiations from the Sun will destroy much 

of life on Earth. Increase the amounts of carbon dioxide, methane, nitrous oxide 

and water vapour by too much and the greenhouse effect on which we rely 

becomes enhanced. This enhancement leads to dramatic changes in the climate 

and, specifically, in the mean temperature of the atmosphere with consequent 

changes in sea level and climate. A good understanding of the relationship 

between climate change and the composition of the atmosphere is vital for all 

concerned citizens of this planet not just physicists, chemists and climatologists.

Grey bodies and emissivity 

In Topic B.1, you were introduced to the concept of a black body. The spectrum 

emitted by a black body has a maximum of intensity at a characteristic wavelength 

λmax for a particular temperature T of the body. Two mathematical laws are 

associated with black bodies:

• Wien’s displacement law that links λmax and T: λmax T = 2.9 × 10 3 m K

• the Stefan–Boltzmann law that links the total power output of a black body to 

its surface area A and the absolute temperature T: P = σAT4

In practice, objects can approximate to a black body without being 100% perfect 

in the way they behave. These approximations to black bodies are called grey 

to account for this. A grey body at a particular temperature emits less energy 

per second than a perfect black body of the same dimensions at the same 

temperature. How much less is shown by the quantity emissivity e which is the 

measure of the ratio between these two powers: 

 e =
power emitted by a radiating object

power emitted by a black body with the same dimensions  

and at the same temperature

Emissivity has no units because it is a ratio. 

For an object with emissivity e, the Stefan–Boltzmann law becomes

P = eAσT4

and

e =
P

A
×

1

σT4

The emissivity is

e =
power radiated per unit area

σT4

• A perfect black body has an emissivity value of 1. 

• An object that completely reects radiation without any absorption at all has 

an emissivity of 0. 

• All real objects have an emissivity somewhere between these two values. 

Table 1 shows typical values of emissivity at visible wavelengths for some 

substances. It is important to note that emissivity values such as these are a 

function of the wavelength of the radiation. It is surprising that snow, although 

apparently white and reflective, is an effective emitter (and absorber) at 

infraredwavelengths.

Substance Emissivity

brick 0.90

glass 0.95

ice 0.97

polished silver 0.02

snow 0.8–0.9

▴ Table 1 Typical values of emissivity at 

visible wavelengths.
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Worked example 1

The data points in the diagram show 

experimental results of the variation with 

wavelength of the intensity of radiation 

emitted by a metal sample. The solid curve 

corresponds to a black body of the same 

shape and at the same temperature as the 

metal sample.

a. Calculate the temperature of the 

sample.

b.  Estimate the emissivity of the sample 

at the wavelength corresponding to 

the peak of the intensity curve.

Solutions

a. λmax is approximately 1250 nm. T=
2.9 × 10 3

λmax

=
2.9 × 10 3

1250 × 10 9 = 2300 K

b. Emissivity is the ratio of the intensity emitted by the sample to that emitted by the black body. At 1250 nm, the ratio is 

e=
20
60

= 0.33. Note that the ratio would be slightly dierent at dierent wavelengths, indicating that the emissivity 

varies with the wavelength!

Worked example 2

A body of surface area 0.50 m2 and temperature 400 K radiates energy at a rate of 580 W. 

Calculate the emissivity of thebody.

Solution

e=
power radiated per unit area

σT 4
=

580

0.5 × 5.67 × 10 8
× 4004

= 0.80

Worked example 3

Human skin can be considered a grey body of emissivity 0.97. An adult person of normal body weight has a total 

surface area of about 1.8 m2. 

a.  Calculate the total energy radiated by the human body during one hour. Assume that the body temperature 

is37 °C.

b.  If the temperature of the surroundings is 25 °C, calculate the net energy transferred from the human body as 

radiation during one hour.

Solutions

a. The absolute temperature of the human body is 273 + 37 = 310 K. 

 Energy = power × time = 0.97 × 5.67 × 10 8
× 1.8 × 3104

× 3600 = 3.3 MJ

b. The temperature of the surroundings is 273 + 25 = 298 K. 

 The net energy transfer is therefore 0.97 × 5.67 × 10 8
× 1.8 × (3104  2984) × 3600 = 480 kJ.
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The solar constant and our Sun

The Sun emits large amounts of energy every second because of nuclear fusion 

reactions. As Earth is small and a long way from the Sun, only a small fraction of this 

energy arrives at the top of Earth’s atmosphere. A black body at the temperature 

of the Sun has just under half of the energy of its radiation in our visible region, 

roughly the same amount in the infrared, and about 10% in the ultraviolet. 

The energy gained by Earth from the Sun every second is the overall difference 

between the powers of the incoming solar radiation and the radiation that Earth 

subsequently emits back into space. This energy gained by the planet is used 

by plants in photosynthesis. It also drives the changes in the world’s oceans and 

atmospheres. This energy from the Sun is crucial to life on the planet. 

The intensity I of radiation is defined as the incident power P arriving per unit 

area A, so that I =
P

A
. The intensity of the radiation that arrives at the top of the 

atmosphere is known as the solar constant S. A precise definition of S is that:

The solar constant is the intensity of solar radiation across all 

wavelengths that is incident at the mean distance of Earth from the Sun 

on a plane perpendicular to the line joining the centre of the Sun and the 

centre of Earth.

One way to evaluate the solar constant is to imagine that the energy from the 

Sun, at Earth’s orbit, is spread over the area of an imaginary sphere that has a 

radius equal to Earth–Sun distance (this area is A in the intensity equation).  

Earth is roughly 1.5 × 1011 m from the Sun and so the surface area of this sphere is 

4πr2
= 4π × (1.5 × 1011)2

= 2.8 × 1023 m2. 

The Sun emits about 3.8 × 1026 J of electromagnetic radiation every second. 

The energy incident in one second on one square metre at the distance of Earth 

from the Sun is therefore I =
P

A
=

3.8 × 1026

2.7 × 1023
= 1400 J. This answer is quoted to 

2 s.f., which is a reasonable precision for this estimate which uses 2 s.f. data. It 

represents a fraction of about 5 × 10 10 of the entire power output of the Sun. 

When data with more precision are used, the solar constant is 1360 W m 2

to 3 s.f.

Practice questions

1. A body of surface area 1.4 m2 and emissivity 0.90 

radiates energy at a constant rate of 1.1 kW. Calculate 

the absolute temperature of the body.

2. A sphere of radius 0.12 m and surface temperature 

55 °C emits thermal radiation at a rate of 100 W. 

Calculate the emissivity of the sphere.

3. A cube of side length 0.15 m, initial temperature 0 °C 

and emissivity 0.75 is placed in an environment of 

constant temperature 50 °C.

a. Calculate the net power exchanged by the cube 

with the environment as thermal radiation.

b. The mass of the cube is 28 kg and its specic 

heat capacity is 380 J kg 1 K 1. Estimate, using 

the answer in a., the initial rate of change of the 

temperature of the cube. State the answer in K s 1. 

c. The actual temperature of the cube increases 

at a higher rate than calculated in b. Suggest a 

possible reason for this.

Details of the nuclear fusion that is 

taking place in the Sun and other 

stars are given in Topic E.5. 
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The value of the solar constant varies periodically for several reasons: 

• The output of the Sun varies by about 0.1% during its principal 11-year 

sunspot cycle. 

• Earth’s orbit is elliptical with Earth slightly closer to the Sun in January 

compared with July; this accounts for a dierence of about 7% in the solar 

constant. (This dierence is not the reason for a January summer in the 

southern hemisphere. Seasons occur because the axis of rotation of Earth is 

not perpendicular to the plane of its orbit around the Sun.) 

• Other longer-period cycles are believed to occur in the Sun’s luminosity 

and Earth’s orbit. These have periods ranging from roughly hundreds to 

thousands of years. 

The mean distance from Earth to 

the Sun is 1.50 × 1011 m. This is 

known as the astronomical unit 

(symbol: AU). This is an important 

length both for climatologists and 

for astronomers. Astronomers 

rely on the distance across Earth’s 

orbit (2 AU) for their baseline in the 

determination of distances to stellar 

objects, as you see in Topic E.5.

The astronomical unit

Worked example 4

The distances between some of the planets and the Sun are given.

 Venus–Sun distance = 0.72 AU

 Saturn–Sun distance = 9.6 AU

Calculate the intensity of the solar radiation at the position of:

a. Venus

b. Saturn.

Solutions

The intensity at the location of Earth is S = 1.36 × 103 W m 2. The intensity  

at the location of a planet can be expressed in relative terms:

Iplanet

S
=

1
d2

planet

 ÷ 
1

d2
Earth

⇒ Iplanet = ( dEarth

dplanet
)

2

× S

a. IVenus =
1

0.722 × 1.36 × 103
= 2.6 × 103 W m 2.  

This is nearly twice the solar constant. 

b. ISaturn =
1

9.62 × 1.36 × 103
= 15 W m 2.  

This is a little more than 1% of the solar constant.

Practice questions

4. The Earth–Sun distance changes due to the elliptical 

shape of Earth’s orbit. The minimum Earth–Sun 

distance is 0.9833 AU, in early January each year. The 

maximum distance is 1.0167 AU, in early July.

 Show that the changes in the Earth–Sun distance 

result in a dierence of about 7% in the intensity of the 

solar radiation received by Earth.

5. A space observatory in an Earth orbit is powered by 

an array of solar cells of total surface area 16 m2. The 

eciency of solar to electrical energy conversion in 

the solar array is 0.10. 

 Calculate the power output of the solar array when 

sunlight is incident at right angles to it.

Energy balance in Earth’s surface — Atmosphere system

The solar constant of 1360 W is the power incident per square metre at the top of 

the atmosphere. It is not the average power arriving at the surface. 

The energy from the Sun falls on only half the area of the sphere at any one time. 

The energy is then transferred to the whole of Earth’s surface (Figure 2). The 

energy arriving comes through a disc of radius R, where R is the radius of Earth. 
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This disc area is πR2. This energy is then spread over the whole of the sphere 

surface (day side and night side) which has a total area of 4πR2

The average incident intensity Isurface throughout the course of one day (24 h) at any 

point on the surface must be 
power arriving through the disc

total surface area of Earth
= 

S × πR2

4πR2
= 

S

4

Therefore Isurface =
1360

4
= 340 W m 2 to 2 s.f.

This is not the end of the story because we have neglected the effect of Earth’s 

atmosphere. As the radiation from the Sun enters and travels through the 

atmosphere, it is subject to losses that reduce the energy arriving at the surface. 

Radiation is absorbed and scattered by the atmosphere. The degree to which 

this absorption and scattering occur depends on the position of the Sun in the 

sky at a particular place. When the Sun is lower in the sky (at dawn and sunset and 

near the poles), its radiation passes through a greater thickness of atmosphere 

and thus more scattering and absorption takes place. This also gives rise to the 

colours in the sky at dawn and dusk. 

The energy arrives at ground level and is incident on the surface. The surface 

of Earth is not a black body and it scatters some energy back up towards the 

atmosphere. The extent to which a particular surface can scatter energy is known 

as its albedo (from the Latin word for “whiteness”). 

Albedo is given the symbol a: 

a =
energy scattered by a given surface in a given time

total energy incident on the surface in the same time

=
total scattered power

total incident power
Like emissivity, albedo is a ratio and has no units. It varies from 0 for a surface that 

scatters no energy (a black body) to 1 for a surface that absorbs no radiation at all. 

Unless stated otherwise, the albedo in Earth system is normally quoted for  

visible light. 

The average annual albedo for the whole of Earth is about 0.3, so that, on 

average, about 30% of the intensity from the Sun that reaches the ground is 

scattered. Thus about 70% of the energy is absorbed. 

This value for a of 0.3 is an average because albedo varies depending on several 

factors:

• It varies daily and with the seasons, depending on the amount and type of 

cloud cover (thin clouds have albedo values of 0.3 0.4, thick cumulo-nimbus 

cloud can approach values of a = 0.9).

• It depends on latitude.

• It depends on the terrain and the material of the surface. 

Using the mean average intensity at the surface together with the average albedo 

shows that the average intensity absorbed by Earth’s surface is 

(1 a) ×
S

4
= 0.7 ×

1360

4
= 238 W m 2

The factor (1 a) corresponds to the ratio 
total absorbed power

total incident power

Table 2 gives typical albedo values for some common land and water surfaces. 

▴ Figure 2 The radiation incident on half 

of Earth’s sphere can be imagined as being 

incident on a circle with Earth’s radius.

radiation falls on half

the surface of the

sphere of radius R

area collecting

radiation is πR2

R

R

The inverse-square law used here is 

discussed in Topic B.1.

▴ Figure 3 Cloud cover aects the albedo 

of Earth.

Surface Albedo

ocean 0.06

fresh snow 0.85

sea ice 0.60

ice 0.90

urban areas 0.15

desert soils 0.40

pine forest 0.15

deciduous forest 0.25

▴ Table 2 Typical albedo values.
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The importance of albedo will be familiar to anyone who lives where snow 

is common in winter. Fresh snow has a high albedo and scatters most of the 

radiation that is incident on it. The snow stays frozen for a long time when the 

temperature remains low. However, sprinkle some earth or soot on the snow and, 

as the sun shines, the snow soon disappears because the dark surface material 

absorbs energy. The radiation provides the latent heat energy needed to melt 

thesnow. 

In 2021, Syukuro Manabe and Klaus Hasselmann were 

awarded part of the Nobel Prize in Physics for their work 

on climate change. It is remarkable that a study of the 

unpredictable weather systems on Earth can yield firm 

predictions about climate change. Manabe was one 

of the first to develop climate models in terms of the 

interaction between radiation balance and the movement 

of air masses. This was the basis for our present-day 

models. Hasselmann was able to identify the imprint of 

both natural phenomena and human activity on climate, 

leading to an understanding that changes in atmospheric 

temperature are due to human activities.

Although the two scientists did not work together directly, 

it is the impact of one scientist’s influence on another’s 

work that makes science such a powerful tool. 

Science as a shared endeavour — Developments in climate science

Why do physicists use two quantities, albedo and 

emissivity, when they appear to be related?

The answer is that both albedo and emissivity depend 

strongly on wavelength but are dierent quantities. 

Emissivity is the ratio of the radiation emitted by a grey 

body compared to that emitted by a black body. Albedo 

is the fraction of the radiation that is reected by a surface 

compared to the radiation incident on it. 

When considering the energy balance of Earth, the 

incoming radiation from the Sun has a black-body 

temperature of about 5700 K and a peak wavelength in 

the visible part of the spectrum. Earth itself has a black-

body temperature of 288 K and a peak wavelength 

that is in the infrared. Earth’s surface will absorb and 

reect light dierently in these dierent regions of the 

electromagnetic spectrum.

There are many other eects to consider. For example, the 

Sun’s light is not incident at 90°. This aects the albedo of 

the surface.

When radiation is incident at right angles to the surface 

and the black-body temperature of the incident radiation 

and the surface are the same, then there will be a 

relationship between albedo and emissivity so that  

e= 1 a. This is shown in Figure 4.

▴ Figure 4 Radiation incident at right angles 

to the surface.

surrounding temperature Ts

body

temperature

Tb

The grey body radiates at a rate Prad = eσATb
4. The grey 

body absorbs a fraction (1 a) of the incident radiation at a 

rate Pabs = (1 a)σATs
4. 

The system will reach equilibrium when Prad = Pabs. This will 

happen when Ts = Tb and so e= 1 a

Models — Albedo vs emissivity
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Figure 5 shows the correlation between climate changes over the past hundred 

years and both natural and human events.

▴ Figure 5 The impact of human activity on Earth’s temperature over the past hundred years, as deduced by Hasselmann. Klaus 

Hasselmann developed methods for distinguishing between natural and human causes (ngerprints) of atmospheric heating.
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calculations that show

the effect of only natural

sources such as volcanic

eruptions.

calculations of the effect

of both natural an

human sources.

volcanic eruptions

Santa Maria

Worked example 5

Four habitats on Earth are: forest, grassland (savannah), the sea and an ice cap. Discuss which of these have the 

greatest and least albedo.

Solution

A material with a high albedo scatters the incident visible radiation. Ice is a good reector and consequently has a high 

albedo. On the other hand, the sea is a good absorber and has a low albedo.

Worked example 6

The data give details of a model of the energy balance of Earth. Use the data to calculate the albedo of Earth that is 

predicted by this model.

Incident intensity from the Sun = 340 W m 2

Scattered intensity at surface = 100 W m 2

Radiated intensity from surface = 240 W m 2

Solution

Albedo =
power scattered by a given surface

total power incident on the surface

In this case, the value is 
100

340
= 0.29.
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Worked example 7

Mercury is a planet in the Solar System. The average Mercury–Sun distance is 0.40 AU. Mercury has no atmosphere.

a.  Calculate the average intensity of solar radiation incident at any point on the surface of Mercury.

b.  The albedo of Mercury is 0.11. Calculate the average intensity of solar radiation absorbed by the surface of Mercury.

Solutions

a. The intensity of solar radiation at the location of Mercury is ( dEarth

dMercury
)

2

× S=
1.36 × 103

0.402
= 8.5 × 103 W m 2. The 

exposed area of Mercury is 
1

4
 of its total surface area, so the average incident intensity is 

8.5 × 103

4
= 2.1 × 103 W m 2

b. Absorbed intensity = (1  albedo) × (incident intensity) = (1  0.11) × 2.1 × 103
= 1.9 × 103 W m 2

Practice questions

6. The Moon has no atmosphere and an average albedo 

of 0.12. Calculate the average intensity of solar 

radiation absorbed by the surface of the Moon.

7. Sunlight of intensity 900 W m 2 is incident at right 

angles on a roof of surface area 64 m2. The radiant 

power absorbed by the roof is 43 kW.

 Calculate the albedo of the roof.

8. Eris is a dwarf planet in the Solar System with an 

unusually high albedo of 0.96. Its moon, Dysnomia, 

has an albedo of 0.04.

 Calculate the ratio 
average intensity of sunlight absorbed by Dysnomia

average intensity of sunlight absorbed by Eris

The greenhouse eect and temperature balance 

Earth and the Moon are the same average distance from the Sun, yet the 

average surface temperature of the Moon is 255 K, while that of Earth is about 

288 K. The discrepancy is due to Earth’s atmosphere because the Moon has 

effectively no atmosphere. 

The difference is due to a phenomenon known as the greenhouse effect in 

which certain gases in Earth’s atmosphere trap energy within the atmospheric 

system and produce a consequent rise in Earth’s average temperature. The 

most important gases that cause this effect are carbon dioxide (CO2), water 

vapour (H2O), methane (CH4) and nitrous oxide (dinitrogen monoxide; N2O), 

all of which occur naturally in the atmosphere. Ozone (O3), which has natural 

and man-made sources, also contributes to the greenhouse effect. 

It is important to distinguish between: 

• the “natural” greenhouse eect that is due to the naturally occurring 

levels of the responsible gases, and 

• the enhanced greenhouse eect in which increased concentrations of 

these gases lead to further increases in Earth’s average temperature and 

therefore to climate change. 

The principal gases in the atmosphere are nitrogen, N2, and oxygen, O2

(roughly, 80% and 20% by weight). Both gases are made up of tightly bound 

molecules and, because of this, do not absorb energy from sunlight. They 

make little contribution to the natural greenhouse effect. The 0.04% of the 

atmosphere that is made up of CO2, H2O, CH4 and N2O has a much  

greater effect.

The glass in a greenhouse, like the 

one in Figure 6, allows the Sun’s light 

through but blocks infrared radiation 

from the ground. The environment 

in the greenhouse remains warm so 

that crops grow in cooler climates. 

Greenhouses work in a similar way 

to the greenhouse eect in the 

atmosphere. However, a greenhouse 

also traps warmer air by preventing 

convection losses. Perhaps a 

greenhouse is not the best example of 

the greenhouse eect aer all!

Models — Greenhouses

▴ Figure 6 The greenhouse eect in 

the atmosphere works in a similar way 

to a greenhouse.
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Reducing the emission of 

greenhouse gases is a crucial step to 

limiting climate change. Much of the 

progress in reducing the emission 

of greenhouse gases must be 

made by industries, governments 

and large organizations. However, 

individual actions are also 

important — particularly when made 

by people who live in wealthy 

countries. The lifestyles of the richest 

10% of the world’s population are 

estimated to be responsible for 50% 

of all greenhouse-gas emissions.

People try to reduce their 

greenhouse emissions by:

• travelling less, particularly 

airtravel

• eating less meat

• insulating houses  

(in cooler countries)

• reducing their electricity 

consumption, particularly 

where this electricity is 

generated from burning 

hydrocarbons.

What other actions can individuals 

take to reduce greenhouse 

emissions?

▴ Figure 7 Cattle farming is one 

industry which releases greenhouse 

gases. Some people try to reduce 

their intake of milk and beef to 

reduce greenhouse emissions.

Social skills — 

Reducing greenhouse 

emissions

 ATL
The structure of greenhouse-gas molecules means that they absorb ultraviolet 

and infrared radiation from the Sun as it travels through the atmosphere. Visible 

light on the other hand is not so readily absorbed by these gases and passes 

through the atmosphere to be absorbed by the land and water at the surface. As 

a result of this absorption, the temperature of the surface rises. 

Earth then re-radiates just like any other hot object. The temperature of Earth’s 

surface is far lower than that of the Sun, so the wavelengths radiated from Earth 

peak in the long-wavelength infrared. The absorbed radiation from the Sun was 

mostly in the visible region of the electromagnetic spectrum. Just as the gases in 

the atmosphere absorb the Sun’s infrared radiation on its way in, now they absorb 

energy in the infrared region being radiated by Earth. The atmosphere then 

re-radiates the energy yet again, this time in all directions, meaning that some 

returns to the surface. Therefore, energy is trapped in the complex system that 

consists of the surface of Earth and its atmosphere. 

The whole system is in a dynamic equilibrium for which:

 total energy incident on 
=

 total energy being

 the system from the Sun  radiated away by Earth

The enhanced greenhouse effect begins when there are increased levels of 

absorbing gases. These increased levels mean that more energy is being retained 

and so a greater energy must be radiated away to arrive at a new balance.  

The amount of radiated energy depends on temperature according to the 

Stefan–Boltzmann law (P = σAT4). The temperature of Earth has to rise to  

achieve this increased amount of radiation.

This increase continues until the balance of incoming and outgoing energies is 

reached again. Of course, this balance was originally established over billions of 

years. It has also varied steadily as the composition of the atmosphere and the 

albedo have changed with variations in vegetation, and with continental drift and 

other geological processes.

The dynamic equilibrium in our climate has been important for the evolution 

of life on Earth. The planets Venus and Mars evolved very dierently from 

Earth. We have been able to make observations of other worlds through  

the development of spacecra sophisticated enough to travel to  

harsh environments.

Venus has similar dimensions to Earth but is closer to the Sun with an albedo 

of about 0.76. This higher albedo is caused by a thick cloud layer. Without its 

atmosphere, the Venusian surface is thought to have an albedo of about 0.6 

and this would give Venus a surface temperature of about 260 K. However, 

the thick atmosphere is composed almost entirely of carbon dioxide and the 

surface temperature reaches 730 K. A runaway greenhouse eect acts on 

theplanet. 

Mars has very little atmosphere. The pressure at its surface is about 0.6% 

that of Earth’s air pressure. Its surface temperature is about 215 K and the 

greenhouse effect only contributes about 5 K to this. It is thought that Mars 

had a thicker atmosphere in its past and that at this time, the greenhouse 

effect could have raised its surface temperature sufficiently to have liquid 

water and possibly even life.

Observations — Other worlds, other atmospheres 
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Why greenhouse gases absorb energy 

Both ultraviolet and long-wavelength infrared radiations are absorbed by Earth’s 

atmosphere. 

Photons in the ultraviolet region of the electromagnetic spectrum are energetic 

and have enough energy to break the bonds within the gas molecules. This leads 

to the production of ionized materials in the atmosphere. A good example is the 

reaction that leads to the production of ozone from the oxygen atoms formed 

when oxygen molecules are split apart by photons with ultraviolet frequencies. 

The energies of infrared photons are much smaller than those of ultraviolet 

photons and are not sufficient to break molecules apart. When the frequency 

of a photon matches the frequency of a vibrational state in a greenhouse-gas 

molecule, then an effect called resonance occurs. The vibrational states and 

resonance in carbon dioxide are described here, but similar effects occur in all 

the greenhouse-gas molecules. 

In a carbon dioxide molecule, the oxygen atoms at each end are attached by 

double bonds to the carbon in a linear arrangement. The bonds resemble springs 

in their behaviour. 

The molecule has four vibrational modes, as shown in Figure 9. The first of 

these modes — a linear symmetric stretching mode — does not cause infrared 

absorption, but the remaining three motions do. Each one has a characteristic 

frequency. When the frequency of the incident radiation matches this frequency, 

then the molecule is stimulated into vibrating at the matching mode. The energy 

of the vibration comes from the incident radiation. This leads to vibrational 

absorption at infrared wavelengths of 2.7µm, 4.3µm and 15µm. 

The effects of these absorptions can be clearly seen in Figure 10, which shows 

part of the absorption spectrum of carbon dioxide. 

Venus and Mars are clear reminders to us of the fragility of a planetary climate.

▴ Figure 8 Venus and Mars. (a) Venus has such a thick atmosphere that its surface 

cannot be seen. (b) Mars, on the other hand has very little atmosphere.

▴ Figure 9 The modes of vibration in a 

carbon dioxide molecule.

equilibrium

position

O

anti-symmetric stretching

symmetric stretching

bending 

modes

▴ Figure 10 Part of the absorption 

spectrum for carbon dioxide. The peaks 

indicate wavelengths at which signicant 

absorption occurs.
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Mechanical resonance is discussed in 

more detail in Topic C.4 (page 449).
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What limitations are there in using a resonance model to explain the greenhouse effect?

Modelling climate balance 

Knowledge of the present energy balance leads to a simple model for the 

climate balance of Earth. Taking everything into account, the average intensity 

arriving at the surface is 238 W m 2. The knowledge of this emitted power allows 

us to predict the temperature T of a black body that will emit an intensity of 

238 W m 2. Using the Stefan–Boltzmann law, 238 = eσT 4 and, assuming a value 

for the emissivity of 0.9, this gives T = 
238

 0.9 × 5.67 × 10 8

4
= 261 K. This is −12 °C 

and is close to the value for the average temperature of the Moon’s surface. An 

improved estimate can be made by accounting for the fact that the Moon has a 

lower albedo than Earth. As a result, less of the incident radiation from the Sun is 

reflected and the average intensity arriving at the Moon’s surface is greater than 

238 W m 8. We need to investigate why the mean temperature of Earth is about 

27 K greater than this. 

What relevance do simple harmonic motion and resonance have to climate change?

Practice questions

9. Explain, with reference to greenhouse gases, why 

some of the thermal radiation emitted by the land  

and water is returned to Earth’s surface from  

the atmosphere.

10. Explain why the symmetric stretching mode of 

oscillation of a carbon dioxide molecule (see Figure 9) 

does not cause absorption of infrared radiation, but the 

anti-symmetric stretching mode does.

Electromagnetic radiation, as its name implies, consists of an electric field and a magnetic field that propagate in the 

same direction but are at 90o to each other. The fields alternate in field strength and direction.

The waves interact with a greenhouse-gas molecule and drive a forced oscillation of the molecule. The molecules have a 

polarity so that one part of the molecule is slightly positive with respect to another part. As the wave passes through the 

gas, the alternation in field direction rotates the molecule in a cycle: first in one direction and then the opposite way, at 

the frequency of the electric field. This is what stimulates the absorption of the radiation at resonance frequencies.

As the molecule continues to move, charged regions of the molecule oscillate and this movement of charge gives rise to 

both electric and magnetic fields — another electromagnetic wave. This time, however, the wave will not be moving in 

the original direction. The molecule can be thought of as a point source that radiates equally in all directions.

Imagine the molecule to be a simple system consisting of three or more atoms connected by springs. Provide energy 

to it and the spring system will oscillate in a complex way. Provide this energy at exactly the correct frequency and the 

system will resonate.

▴ Figure 11 With very little atmosphere, 

but the same distance from the Sun, the 

Moon shows us the eect that Earth’s 

atmosphere has on its surface conditions.

Oxygen and nitrogen are abundant gases in the atmosphere but do not contribute to the greenhouse effect even though 

they have vibrational modes. This is because oxygen and nitrogen are so symmetrical that even when vibrating their 

charges do not become “lopsided”. It is the absence of symmetry in the charge positions that causes greenhouse gases 

to absorb and then re-radiate the energy from the Sun.
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We made the assumption that Earth emits 238 W m 2, and that this energy 

leaves the surface and the atmosphere completely. This would be true for 

an atmosphere that is completely transparent at all wavelengths, but Earth’s 

atmosphere is not transparent because of the absorbing effects of the 

greenhouse gases.

Figure 12(a) shows the intensity–wavelength graph for a black body at 255 K. 

As expected, the total area under this curve will be 238 W m 2 because it 

represents the predicted emission from Earth’s surface assuming no atmospheric 

absorption. 

Figure 12(b) shows the transmittance of the atmosphere as a function of 

wavelength. Transmittance is the measure of how well the atmosphere transmits 

a particular wavelength. The value of 100% means that all energy is completely 

transmitted at the wavelength; 0% means that no energy is transmitted at the 

wavelength. With a completely transparent atmosphere (or no atmosphere at 

all), all the black-body radiation leaves Earth because the transmittance equals 

100% for all wavelengths in this model. When Figures 12(a) and 12(b) are 

combined, they indicate the overall intensity radiated from the planet (at the 

top of the atmosphere) allowing for atmospheric effects. The overall radiated 

intensity is identical to the emitted intensity because a transparent atmosphere 

has no effect.

A more realistic model uses the fact that the atmosphere absorbs energy in both 

the infrared and ultraviolet regions. In this model the transmittance remains at 

100% for the visible wavelengths but is reduced to zero above and below the 

visible wavelengths. Figure 13(b) shows the modified transmittance–wavelength 

graph after this change. 

The infrared and ultraviolet wavelengths (the yellow shaded areas in Figure 13(a)) 

will be absorbed by the atmosphere. The total area under the overall emission 

curve will now be less than 238 W m 2 because of this absorption. The infrared 

and ultraviolet radiations are absorbed by the atmosphere rather than being 

radiated away into space. The atmosphere then re-radiates these wavelengths in 

all directions and so some energy returns to the surface.

For the system to reach equilibrium again, the temperature of the emission curve 

must be raised enough to compensate for the energy that has been trapped. 

The total area under the emission curve must return to 238 W m 2 to match the 

incoming energy from the Sun. The only way that this can happen is for Earth’s 

temperature to increase so that the energy deficit is included in the emission 

curve. As the curve changes with the increase in temperature, the area under 

the curve increases too. The calculation of the temperature change required is 

difficult and not given here. However, for the emission from the surface to equal 

the incoming energy from the Sun, allowing for the absorption, the surface 

temperature must rise to about 288 K. The net effect is shown in Figure 13(c) 

where the emission curve is raised and its peak shifts to shorter wavelengths 

to compensate exactly for the energy that was not transmitted through the 

atmosphere because of absorption. 

The suggestion that the atmosphere completely removes wavelengths above 

and below certain wavelengths is, of course, an over-simplification. Figure 14 

shows the complicated transmittance pattern in the infrared and indicates the 

molecules responsible for some of the absorption regions.

▴ Figure 12 (a) The intensity–wavelength 

graph for a black-body at 255 K. (b) The 

variation of transmittance with wavelength 

for a transparent atmosphere. Combining 

this with (a) does not change the emitted 

radiation prole. 
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▴ Figure 13 When the transmittance 

is zero for some wavelength ranges the 

emitted energy prole changes.
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The energy balance of Earth 

The surface–atmosphere energy balance system is very complex. Figure 15 is a 

diagram showing the basic interactions and you should study it carefully.

▴ Figure 14 Transmittance of Earth’s atmosphere in the infrared.

▴ Figure 15 The factors that make up the energy balance of Earth (aer Stephens and others, 2012  

An update on earth’s energy balance in light of the latest global observations. Nature Geoscience.)
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Global warming 

There is no doubt that climate change is occurring on our planet. There is a 

significant warming that will ultimately lead to changes in sea level and climate 

across the world. The fact that there is change should not surprise us. We have 

recently (in geological terms) been through several Ice Ages and we are thought 

to be in an interstadial phase (between Ice Ages) now. In the 17th century, a “Little 

Ice Age” covered much of northern Europe and North America. The River Thames, 

in London, regularly froze, and the citizens held fairs on the ice. In 1608, the Dutch 

painter Hendrick Avercamp painted a winter landscape showing the typical extent 

and thickness of the ice in Holland (Figure 16).

Many models have been suggested to explain global warming, they include: 

• changes in the composition of the atmosphere (and specically the 

greenhouse gases) leading to an enhanced greenhouse eect 

• increased solar are activity 

• cyclic changes in Earth’s orbit 

• volcanic activity. 

Scientists now recognize that climate change is due to the burning of fossil fuels, 

which has gone on at increasing levels since the Industrial Revolution in the 18th 

century. There is much evidence for this. Table 3 shows some of the changes in 

the principal greenhouse gases over the past 250 years.

Gas Pre-1750 

concentration / ppb

Recent 

concentration / ppb

% increase 

since 1750

carbon dioxide 280 000 410 000 46

methane 700 1900 170

nitrous oxide 270 330 20

ppb = parts per billion

▴ Figure 16 Winter landscape with 

skaters (1608), Hendrick Avercamp.

▴ Table 3 Changes in greenhouse gases over the past 250 years.

The recent values in this table have been collected directly in many parts of the 

world. There is a long-term study of the variation of carbon dioxide in Hawaii where, 

recently, carbon dioxide levels exceeded 400 ppm for the first time (Figure 17).

These changes become even more stark when viewed over the longer term. 

Figure 18 shows the carbon dioxide concentration going back roughly 0.8 

million years. These data were obtained from the analysis of Antarctic ice cores. 

▴ Figure 17 Data from Mauna Loa, 

Hawaii, showing recent changes in carbon 

dioxide concentration.
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▸ Figure 18 Long-term change in carbon 

dioxide concentration in the atmosphere. 

(Lüthi, D., M. Le Floch, B. Bereiter, T. Blunier, 

J.-M. Barnola, U. Siegenthaler, D. Raynaud, 

J. Jouzel, H. Fischer, K. Kawamura, and T.F. 

Stocker. 2008. High-resolution carbon 

dioxide concentration record 650,000–

800,000 years before present. Nature, Vol. 

453, pp. 379–382, 15 May 2008.)
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The cores are extracted from deep in the ice and yield data for the composition of 

the atmosphere during the era when the snow originally fell on the continent. 

The enhanced greenhouse effect results from changes in concentration of the 

greenhouse gases. As the amounts of these gases increase, more absorption 

occurs both when energy enters the system and when the surface re-radiates. 

For example, in the transmittance–wavelength graph for a particular gas, when 

the concentration of the gas rises, the absorption peaks increase too. The surface 

temperature increases to emit sufficient energy at sea level so that emission of 

energy by Earth from the top of the atmosphere will equal the incoming energy 

from the Sun. 

Global warming is likely to lead to other mechanisms that will themselves make 

global warming increase at a greater rate: 

• The ice and snow cover at the poles will melt. This decreases the average 

albedo of Earth and increases the rate at which energy is absorbed by 

thesurface. 

• Increased water temperatures in the oceans reduce the extent to which 

CO2 is dissolved in seawater leading to a further increase in atmospheric 

concentration of the gas.

Other human-related mechanisms also drive global warming as the amount of 

carbon fixed in plants is reduced. This is a problem that must continue to be 

addressed at both an international and an individual level. The world needs 

greater efficiency in power production and a major review of the types of fuel 

used. As individuals we need to be aware of our personal impact on the planet. 

We should all encourage the use of non-fossil-fuel methods and be conscious of 

our carbon footprint. Nations can capture and store carbon dioxide and agree to 

increase the use of combined heating and power systems. Everyone agrees that 

doing nothing is no longer an option.

At present, much of the electrical energy production around the world 

comes from the generation of steam that is used to power turbines that rotate 

electrical generators. Much of the steam generation comes from the burning 

of fossil fuels and this has a major impact on the atmosphere and hence on 

global warming.

However, the use of nuclear fission to generate the steam leads to no large-

scale release of carbon dioxide. The same goes for renewable generation 

methods such as wind turbines and solar panel farms.

Climate modelling and the physics of energy conversion both impact the 

future of the planet.

You learn more about electrical energy generation in Topic D.4.

How do different methods of electricity production affect 

the energy balance of the atmosphere?

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



Topic B.2 Greenhouse effect

248

There have been a number of international attempts to reach agreement over 

the ways forward for the planet. These have included: 

• the Kyoto Protocol that was originally adopted by many (but not all) 

countries in 1997 and later extended in 2012

• the Intergovernmental Panel on Climate Change

• the Asia–Pacic Partnership on Clean Development and Climate

• various other United Nations Conventions on Climate Change, e.g. 

Cancùn 2010, Paris 2015, Glasgow 2021.

Internet research will show you what agreements are in force at present 

between governments.

Science as a shared endeavour — An international 

perspective 

Opinions about climate change vary with age, nationality, gender and 

education. A 2021 UN study found that:

• In the US and Canada, women and girls were more than 10% more likely 

than men and boys to believe in the climate emergency, whereas the 

opposite was true in Vietnam and Nigeria.

• The highest proportion of people who believed that climate change is a 

global emergency was in Italy and the UK (81%). 

• High-income countries (72%) and small-island developing states (74%) had 

a higher belief in the emergency than the least-developed countries (58%).

More and more people believe that climate change is caused by human 

activities. However, there are still discrepancies between the number of 

people who believe in the human cause of climate change and the scientific 

community. Studies of peer-reviewed scientific articles concluded that more 

than 99% of scientists believed that humans were the cause of 

climate change.

Surely just being a scientist does not guarantee that you are right? Or have 

scientists failed to be persuasive?

Science and society

You should understand the impact that climate change is likely to have on both the planet and the plants and animals 

that inhabit it. Will this affect developments in science and technology in years to come? The answer must be: almost 

certainly. Already we see the development of electric-vehicle technology as industry and governments attempt to 

remove the effects of unnecessary fossil-fuel consumption. Work continues to make nuclear fusion (Topic E.5) a reality as 

an alternative source of energy. 

All this work is driven by a desire to back away from the climate catastrophe that will affect future generations. What 

other changes do you expect to see in the development of science and technology?

How are developments in science and technology affected by climate change?O
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Climate scientists rely heavily on models to predict how changes to the 

atmosphere may aect Earth’s energy balance, and how this in turn might 

change the average equilibrium temperature of Earth’s surface. 

The table on the right shows some data 

from a model of how the change in the 

temperature of Earth’s surface depends 

on the concentration of carbon dioxide 

in the atmosphere C measured in parts 

per million (ppm).

The model is logarithmic:  

ΔT = a × ln C − b, where a and b

are constants.

• Deduce the units of a and b

• Tabulate values of ln C

• Plot a graph of ΔT against ln C. Include error bars on your graph.

• Use the graph to nd the values of a and b

• Use maximum and minimum gradients to nd uncertainties in your values 

for a and b

• The Paris Agreement in 2021 aimed to limit global warming to below 

2 °C and ideally to 1.5 °C. Assuming that no other factors contribute to 

global warming, use your values of a and b to deduce the limits for the 

amounts of carbon dioxide in the atmosphere in order to achieve these 

targets. Give an uncertainty with your answer.

To find out more about this sort of model, research “radiative forcing”. 

This is a concept used by climate scientists to measure the imbalance of 

Earth’s energy. It is often assumed that the increase in global temperature 

will be directly proportional to the increase in radiative forcing. The 

constant of proportionality is often called “the climate-sensitivity 

parameter”. Modelling the values of these parameters is important in 

climate science.

Using models such as these enables climate scientists to compare the 

effects of other greenhouse gases to that of carbon dioxide. As a result, 

the amount of carbon dioxide in the atmosphere has become a unit of 

measurement for climate impact. Hence, the idea of carbon offsetting 

when engaging in one activity which acts to reduce global warming is 

matched against an activity which acts in the reverse way. The activities 

do not necessarily require carbon dioxide to be released or absorbed. 

Rather, the amount of carbon dioxide in the atmosphere is used as a 

conversion factor or a currency in trading between the two.

Data-based questions

C / ppm ΔT / °C

(± 0.20 °C)

250 0.46

300 0.33

350 0.98

400 1.56

450 2.06

500 2.51

550 2.92
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Worked example 8

The diagram shows a simplied model of the energy balance in Earth surface–atmosphere system. The 

arrows represent the intensities of radiation. The average intensity of the radiation entering the system is 

equal to the average intensity of the radiation leaving it.

a. The albedo of Earth is a = 0.300. Calculate the intensity I1 of the outgoing radiation emitted by Earth.

Earth’s surface may be assumed to be a black body of absolute temperature T that emits thermal radiation 

of intensity I2. A fraction k of this intensity is re-radiated by the greenhouse gases in the atmosphere back 

towards the surface. 

b. Show that (1 k)σT 4
= (1 a) 

S

4
c. Explain why Earth surface–atmosphere system can be considered a grey body of emissivity 1 k

d. The present average temperature of Earth is close to 288 K. Determine k

e. Outline what eect the enhanced greenhouse eect has on the value of k and therefore, on the global  

average temperature.

surface

atmosphere

surface

absorption

surface

radiation, I2

radiated by

atmosphere,

I3 = kI2

outgoing,  I1incoming, S

4
reflected, aS

4

Solutions

a. The intensity leaving the system is the sum of the intensities of the reected solar radiation and the 

outgoing thermal radiation of Earth. Energy balance of Earth as a whole implies that this sum must be 

equal to the incoming intensity, 
aS

4
+ I1 =

S

4
.  

Hence, I1 = (1 a) 
S

4
= (1  0.300) ×

1.36 × 103

4
= 238 W m 2

b. We have I2 = σT4 and I3 = kI2 = kσT4. On average, the energy entering the atmosphere must be equal to 

the energy leaving it, so σT4
= kσT4

+ I1. Combining this equation with the result of part a.,  

we get (1 k)σT4
= I1 = (1 a) 

S

4

c. emissivity =
intensity radiated by Earth as a whole

σT4
=

I1

σT4
= 1 k

d. Rearranging the equation from part b. gives k = 1 
238

5.67 × 10–8
× 2884

= 0.39. This means that, 

according to the model, 39% of the longwave radiation emitted by Earth’s surface is returned to it by the 

greenhouse gases in theatmosphere.

e. The increased concentration of the greenhouse gases in the atmosphere leads to a greater fraction 

of the radiation returned to the surface, so k would increase. The energy balance equation in part b. 

requires that the average global temperature T increases, too.
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Practice questions

11. Consider the energy-balance model given in Worked 

example 8. 

a. Suppose that the fraction of the thermal radiation 

returned to the surface increases to 0.40 

because of the enhanced greenhouse eect.

 Use the model to predict the change in the 

average global temperature of Earth. 

b. There is evidence that the increased global 

average temperature results in melting of sea ice 

and increased cloud cover. Discuss, by reference 

to albedo, how each of these changes modies 

the eects of global warming.

12. a.  The average temperature of Earth’s surface is 

288 K. Calculate the intensity of thermal radiation 

emitted by Earth’s surface.

 A more detailed energy balance model of Earth 

considers additional ways of energy transfer in the 

Earth surface–atmosphere system.

b. Outline two mechanisms other than thermal 

radiation by which thermal energy may 

be transferred from Earth’s surface to the 

atmosphere.

c. The average intensity of the solar radiation 

absorbed by Earth’s surface is 161 W m 2. 

Theintensity of radiation returning to the 

surfacefrom the atmosphere is 333 W m 2. 

Estimate the intensity that must be transferred 

from Earth’s surface to the atmosphere by other 

means than thermal radiation.
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We can measure the bulk properties of a gas: 

its pressure, volume, temperature and the mass 

of the sample. A gas consists of many particles 

all interacting on a microscopic level. How can 

all these individual interactions be incorporated 

in a model that allows us to move from a 

microscopic description of a gas to a prediction 

of its macroscopic bulk quantities?

The behaviour of a gas can be modelled 

using the mechanics of a single moving 

particle that describe the effects that occur 

when the particle strikes the wall of its 

container. This is straightforward and follows 

directly from the work in Theme A. Then we 

can consider the effects of many particles 

moving in many different directions and 

at many different speeds — an averaging 

process over a very large scale. When these 

parameters are linked to the bulk properties, 

the behaviour of the gas in our theoretical 

interpretation should match the experimental 

observations if our model is to be confirmed.  

This mechanical model is based on assumptions 

about the gas particles: the nature of their 

interaction with each other and with the walls of 

their container, and the nature of their motion. 

The model also paints a picture of the gas — one that we 

can visualize, but not image or observe directly. It aids our 

understanding of the nature of a gas and helps us to link 

our observations of bulk gas behaviour to the reality of 

gas behaviour at the microscopic level. 

How are macroscopic characteristics of a gas related to the behaviour of individual molecules?

What assumptions and observations lead to universal gas laws?

How can models be used to help explain observed phenomena?

B.3  Gas laws

▴ Figure 1 The pressure and temperature of the atmosphere govern the 

existence of life on Earth. Should humans want to explore outside Earth’s 

atmosphere, they must replicate these conditions.

In this topic, you will learn about:

• pressure and how it arises at a microscopic level

• the mole and the Avogadro constant

• how ideal gases approximate the behaviour of  

real gases

• the ideal gas law equation 

• how pressure is related to the average translational 

speed of the molecules of a gas

• how the internal energy of a gas is related to its  

Kelvin temperature

• approximating a real gas from an ideal gas.
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B. The particulate nature of matter

Introduction
The atmosphere has a mass of 5 × 1018 kg and contains roughly 1044 molecules. 

It reaches over 100 km above our heads and produces a pressure at sea level of 

about 105 Pa. But how does this pressure arise?

This topic examines the origin of gas pressure and links it to other properties 

of a gas. Macroscopic and microscopic concepts are connected using ideas 

from Theme A and Topics B.1 and B.2. This topic also looks at ways in which 

the microscopic model fails and where it cannot match the behaviour of a real 

gas. Recognizing the limitations of a model is as important to a scientist as the 

construction of the model itself.

Pressure in solids, liquids and gases

Pressure P is always defined as the force F per unit area that acts perpendicular to 

the surface of the object:

P =
F

A

where A is the area on which the force acts. This allows pressure to be defined for 

solids, liquids and gases.

• Solid. The weight W of a solid acts vertically downwards (Figure 2(a)) onto 

a horizontal surface on which it rests. The contact area of the solid on the 

surface is A. The solid pressure is P =
W

A
• Liquid. The pressure P in a liquid at a depth h depends on the gravitational 

eld strength g and the liquid density ρ (Figure 2(b)). The pressure denition 

leads to P = ρgh, as in Topic A.2.

• Gas. The pressure is caused by the force exerted by the gas molecules on 

the wall of the gas container when they transfer momentum as they rebound 

(bounce) at the wall (Figure 2(c)). The pressure of the gas depends on other 

quantities such as the number of gas particles in the container, the volume of 

the container and the absolute temperature (in K) of the gas. 

weight

100 N A= 0.01 m2

P= 10 000 Pa

A= 0.1 m2

P= 1000 Pa

same force,

different area,

different pressure

(a)

(b)

h

P

A

vx

before collision

aer collision

(c)

w
al

l
w

al
l vx

vx

▴ Figure 2 Pressure in (a) solids, (b) liquids 

and (c) gases.

Topic A.2 contains an explanation 

of why a buoyancy force acts on 

a solid floating in a liquid. This 

explanation involved the concept 

of the pressure exerted by a liquid 

on the sides of the floating solid.

Worked example 1

A cyclist applies a force of 800 N to a pedal of a bicycle. The pedal can 

be modelled as a rectangle of dimensions 6.5 cm × 2.5 cm. Calculate the 

pressure applied between the shoe and the pedal.

Solution

The contact area is 0.065 × 0.025 = 1.6 × 10 3 m2. The pressure is 

P =
F

A
=

800

1.6 × 10–3
= 4.9 × 105 Pa. This is about ve times greater than 

the standard atmospheric pressure of about 105 Pa.O
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Worked example 2

The quietest sound a young person with normal hearing can hear corresponds to an air-pressure variation of about 

2 × 10−5 Pa. The diameter of the human eardrum is about 9 mm. Estimate the amplitude of the force exerted on the 

eardrum by the quietest detectable sound.

Solution

The surface area of the eardrum is π (9 × 10 3

2 )
2

= 6 × 10 5 m2. The variation of the force is of the order of  

P × A= 2 × 10 5 × 6 × 10 5 ≃ 10 9 N. Such a small force is sucient to produce a vibration of the eardrum that  

the human ear can detect!

Practice questions

1. An ice skater pushes o the ice by applying a force 

of 1.2kN to the skate. The contact area between the 

blade of the skate and the ice is 7.0 × 10−4m2. Calculate 

the pressure that the skater exerts on the ice.

2. A push pin is pressed with a nger into a cork board 

by applying a force of 2.5 N to its at head, which has 

a diameter of 8.0 mm.

a. Calculate the pressure between the head of the 

pin and the nger.

b. The pressure at the sharp tip of the pin is 

300 MPa. Estimate the diameter of the tip  

of the pin.

Even though hot-air balloons were used by the Chinese 

in about 300 CE for signalling, much of the history of 

ballooning is linked to the development of the gas laws. 

This work was centred around France in 1783. In June of 

that year, the Montgoler brothers demonstrated a hot air 

balloon at Annonay. They repeated the demonstration in 

September at the Palace of Versailles, this time carrying 

a duck, a cockerel and a sheep. Following the success of 

this experiment, they demonstrated the rst piloted ight 

later that year.

The principle of hot-air ballooning is that hotter air 

expands and becomes less dense. The hot air trapped 

in the balloon displaces cooler, denser surrounding air. 

When the resulting buoyancy force exceeds the weight of 

the balloon and its load, then the balloon rises.

Jacques Charles (aer whom Charles’s law is named) 

was also interested in ballooning. Rather than using the 

hot-air principle, he used hydrogen to provide buoyancy 

and demonstrated a balloon in Paris in August 1783. 

The balloon took four days to ll and the demonstration 

attracted large crowds. By December, he had launched a 

piloted balloon in front of a crowd of  400 000.

Although balloons lled with hydrogen were more 

popular at rst, they have not proved so resilient. There 

was a vogue for commercial passenger ights using 

hydrogen-lled airships at the start of the 20thcentury. 

However, a series of catastrophic crashes, in which 

the hydrogen in the balloon ignited, stopped the 

development of this form of transport. Nowadays, 

tethered helium balloons are used to take passengers 

above a viewpoint.

Although the rst of the gas laws, Boyle’s law, was published 

in 1662, Charles’s law and the pressure law were not 

published until 1802 by Joseph Gay-Lussac who stated that 

Jacques Charles had observed the eect of Charles’s law 

15years earlier but had not published his results.

Working collaboratively — Hot-air balloons ATL

▴ Figure 3 Hot-air balloons.
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Avogadro’s number and the mole

The mole is the SI measure of quantity or amount of a substance. 

The mole is defined to be 6.02214076 × 1023 particles. The abbreviation for it is mol

The recent redefinition of the mole is helpful as it reminds us that “mole” is simply 

a collective name for a certain number of something (just as we say a “dozen” 

meaning twelve). The number itself is known as the Avogadro number, and has 

the symbol NA

The Avogadro number, NA = 6.022 140 76 × 1023

You can specify 3 mol of electrons (meaning 3 × 6.022 140 76 × 1023 electrons) 

or 0.5 mol of water (meaning 0.5 × 6.022 140 76 × 1023 H2O molecules). The 

quantity of the 0.5 mol of water and its chemical formula together tell you straight 

away that there are 6.022 140 76 × 1023 hydrogen atoms and 3.011 070 38 × 1023

oxygen atoms making a total of about 1024 atoms in each half mole of water.

Molar mass 

The use of the mole to yield numbers of atoms and molecules leads to molar 

mass. Nitrogen gas normally has two atoms and is written as N2. One mole of 

nitrogen has 12.044 × 1023 atoms. The mass of one mole of nitrogen atoms is 

14.01 g and so the mass of one mole of nitrogen molecules must be 28.02 g. 

Up until 2019, the mole was 

dened as the amount of substance 

in 12 g of carbon-12, the isotope 

of carbon that has 6 protons and 6 

neutrons in one nucleus. This was 

one of the changes made to the SI 

to improve the basis for scientic 

measurement. Some of the 

other changes made in 2019 are 

discussed elsewhere in this book. 

Measurements

Worked example 3

A bottle contains 0.500 kg of water. The molar mass of water is 18.0 g mol 1. Calculate:

a. the quantity of water, in mol, in the bottle

b. the number of water molecules in the bottle

c. the mass, in kg, of one molecule of water.

Solutions

a. n =
500

18.0
= 27.8 mol

b. N = 6.02 × 1023
× 27.8 = 1.67 × 1025 molecules

c. One mole of water has a mass of 0.0180 kg and contains NA molecules.  

The mass of one molecule is therefore  
0.0180

6.02 × 1023
= 2.99 × 10 26 kg.

Worked example 4

A single serving of espresso typically contains about 2.5 × 1020 molecules of caeine,  

which has a molar mass of 194 g mol 1. Calculate the total mass, in mg, of caeine in one  

serving of espresso.

Solution

The number of moles in one serving is n =
2.5 × 1020

6.02 × 1023
= 4.15 × 10–4 mol. The total mass of caeine is  

4.15 × 10–4
× 194 = 8.1 × 10–2 g ≃ 80 mg.
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The gas laws

Boyle’s law was the first of the laws. Robert Boyle, an Irish physicist, carried out 

the work in 1662. 

He showed that:

The pressure P of a fixed quantity of gas (that is, a constant number of 

molecules) is inversely proportional its volume V when the temperature 

does not change.

In fact, the requirement that the temperature should be constant was due to the 

French scientist Edmé Mariotte who repeated Boyle’s  experiment in 1679. 

The law can be written algebraically in two ways:

P ∝ 
1

V
or PV = constant (at constant temperature)

The law leads to two graphs (shown in Figure 4) of the variation of pressure with 

(a) volume and (b) 
1

volume

Practice questions

3. A ring contains 12.0 g of gold and 4.0 g of copper. 

The molar mass of gold is 197 g mol 1 and that of 

copper is 63.5 g mol 1. Calculate the number of 

atoms of each element in the ring. Are there more 

gold or copper atoms in the ring?

4. One egg yolk contains about 1 μg of vitamin D3, an 

important dietary component. The molar mass of 

vitamin D3 is 385 g mol 1. Calculate the number of 

molecules of vitamin D3 in the egg yolk.

5. A typical human body contains about 8 × 1014 atoms 

of radioactive carbon-14, naturally absorbed from 

the environment and replenished by breathing 

and eating. Calculate the mass, in μg, of carbon-14 

present in the body.

The properties of gases were 

investigated experimentally over a 

period of about 150 years starting in 

the mid-17th century. In those days, 

the experiments were carried out 

with gases at about atmospheric 

pressure and temperatures around 

300 K. We will see later that under 

these conditions a gas can be 

regarded as an ideal gas. An ideal 

gas always obeys the gas laws. 

In fact, no real gas is ideal at high 

pressures and high temperatures. 

When the pressure is roughly 

atmospheric, the approximation to 

ideal behaviour is good.

Models — The ideal 

gas law

▴ Figure 4 Boyles law gives the variation of pressure with volume when the temperature of 

a xed mass of gas is constant. 

You can see how real gases deviate 

from the ideal gas on page 270 of  

this topic.

volume
(a)

p
re
ss
u
re

increasing

temperature

p
re

ss
u

re

0
0

1
volume

Boyle's law

PV = constant

temperature constant

(b)

The inverse nature of the relationship between P and V leads to the P–V graph 

being curved for each temperature. A fixed quantity of gas gives a different curve 

at each different temperature (Figure 4(a)). These curves are known as isothermals

(the name is from Greek words “isos” meaning equal and “therme” meaning heat).

The alternative graph (Figure 4(b)) is more useful as it allows easier predictions of 

gas behaviour when conditions change. As well giving P for a change in 
1

V
, it is 

possible to predict the line:
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The three rules developed 

empirically to predict the behaviour 

of a gas are known as “laws”. These 

rules do not attempt to explain the 

behaviour of the gases. They simply 

report what most gases do when 

the pressure is small at around 

room temperature. Move away 

from these limits and the “laws” 

do not apply anymore.

Laws are statements that allow 

scientists and engineers to make 

predictions without requiring an 

explanation.

Are there other examples of 

such laws?

Theories — Law or 

theory?

• for a higher temperature and the same mass of gas (the gradient of the line 

will increase)

• for a smaller mass of gas at the original temperature (the gradient of the line 

will decrease).

Charles’s law is named for the French experimenter Jacques Charles who, 

around 1787, repeated the earlier experiments of Guillaume Amontons. In these 

experiments the temperature of the fixed mass of gas was varied and the volume 

change measured; the pressure was held constant. Charles found that every time 

the temperature changed by 1 K, the volume of the gas changed by 
1

273
 of the 

volume at 273 K (0 °C). This implies that when the temperature has dropped to 

0 K (−273 °C) the volume will be zero, assuming that the properties of the gas do 

not change with temperature. 

Although Charles did not publish this work, it was announced in 1802 by Joseph 

Gay-Lussac. In words, the law becomes:

The volume of a fixed quantity of gas at a constant pressure is directly 

proportional to the absolute temperature (T)

Mathematically,

V ∝ T or
V

T
= constant (at constant pressure)

We now have two laws that connect the three quantities P, V and T. 

The origin of the third pressure law (or Gay-Lussac’s law) is obscure. Amontons 

investigated the variation of pressure with temperature, but his equipment was 

not sensitive enough to reach a firm conclusion. The law in words is:

The pressure of a fixed quantity of gas at a constant volume  

is directly proportional to the absolute temperature

or

P ∝ T or
P

T
= constant (at constant volume) 

The final strand to this experimental work on gases is due to the Italian scientist Count 

Amadeo Avogadro who hypothesized in 1811 that all gases at the same temperature 

and pressure contain equal numbers of particles per unit volume. This follows 

from the knowledge that gases expand by equal amounts for equal temperature 

increases. This has become known as Avogadro’s law and can be stated as:

The quantity of gas (in mol) at constant temperature and pressure is 

directly proportional to the volume of the gas.

Once again this leads to a mathematical relationship:

n ∝ V or
n

V
= constant (at constant temperature and pressure)

(Incidentally, each of the four relationships leads to a constant quantity, but these 

quantities are different for each equation and different gas samples.)

The ideal gas equation, also known as the equation of state for an ideal gas,

can be derived using all four equations met so far. They combine to give

PV

nT
= R or PV = nRT
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This is, of course, the same 

constant from Topic B.1 where the 

average kinetic energy of particles 

Ek is given by Ek =
3

2
kBT

You should be able to recognize that each of the four laws is contained in this 

over-arching equation.

The constant R is the gas constant and it applies for any gas that can be treated 

as ideal. When pressure is measured in pascal, volume in cubic metres and 

temperature in kelvin, then R takes the value 8.31 J mol 1 K 1. 

There is one final modification to make to the equation and that is to convert from 

an equation in terms of moles to one that contains the number of molecules N in 

the gas.

One mole of the gas contains NA molecules (using the Avogadro number from 

earlier in this topic), so it is convenient to define a new constant 
R

NA

. Now n can 

be replaced by the total number of molecules if we also replace R with a new 

quantity kB, the Boltzmann constant. This is defined as kB =
R

NA

 and leads to the 

ideal gas equation in an alternative form:
PV

NT
= kB or pV = NkBT

The Boltzmann constant has the value

kB =
R

NA

=
8.31

6.02 × 1023
= 1.38 × 10 23 J K 1

In Topic B.1, the specific heat 

capacity was the energy 

transfer required to change the 

temperature of a unit mass of a 

substance by 1 K. The units of 

specific heat capacity are J kg 1 K 1. 

That should remind you of the unit 

of R. The only difference is the 

replacement of kg by mol. You can 

regard R as a type of specific heat 

capacity. It will also remind you 

that P × V has the units of energy.

An interpretation of R?

• Tool 3: Construct and interpret tables and graphs for 

raw and processed data including scatter graphs and 

line and curve graphs.

• Tool 3: Extrapolate and interpolate graphs.

• Inquiry 1: Justify the range and quantity of 

measurements.

• Inquiry 1: Appreciate when and how to maintain 

constant environmental conditions of systems.

Boyle’s law
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▴ Figure 5 Apparatus to verify Boyle’s law.

There are many forms of apparatus used to verify Boyle’s 

law. They all require measurements of the pressure of a 

xed mass of gas at a known volume under conditions 

in which the temperature will remain constant. The 

apparatus shown in Figure 5 achieves that well, provided 

some precautions are observed.

• The xed mass of gas is trapped in a transparent 

column by a tube of oil. Oil can be forced into 

the tube using a bicycle or football pump. This 

compresses the gas in the tube, decreasing its 

volume and increasing its pressure. The pressure is 

read directly using a Bourdon gauge.

• It is important to carry out the change slowly and then 

to wait for several seconds because compressing the 

gas increases its temperature. The wait allows the gas 

to return to room temperature.

• Once a range of pressure values have been obtained 

for various volumes, the graph of P against 
1

V
 can 

be plotted. A straight-line graph like the one in 

Figure4(b) will verify the law.

Verifying the gas laws
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Charles’s law

capillary

tube

oil plug

trapped

air water

sulfuric acid

rubber band

0 –100 °C

thermometer

▴ Figure 6 Apparatus to verify Charles’s law.

The aim here is to keep the pressure constant. Air is trapped 

between the sealed end of a glass capillary tube and a 

length of sulfuric acid in the tube (the acid keeps the air dry). 

The top end of the tube is open to the atmosphere, meaning 

that the pressure in the gas is equal to atmospheric pressure 

plus the pressure due to the length of the acid.

• The temperature of the gas is changed by heating 

or cooling the liquid. Sucient time needs to be 

le to allow the gas inside the glass to be in thermal 

equilibrium with the water. The process of thermal 

transfer by conduction through the glass takes time.

• The volume of the gas is directly proportional to 

the length of the gas column. This assumes that the 

internal diameter of the capillary tube is constant.

• Readings of the length of the gas column should be 

made over as wide a temperature range as possible, 

recording both length and temperature. 

• Plot length against temperature. There is no need to 

convert to gas volume. The graph should be a straight 

line that can be extrapolated back to zero length to 

give an estimate of absolute zero.

Pressure (Gay-Lussac’s) law

The final experiment involves a constant volume of gas 

with readings of the pressure and temperature. Again, 

there are many forms of this apparatus (Figure 7). 

• The xed mass of gas is trapped in a round-bottomed 

ask. The ask is connected to a Bourdon gauge. 

Notice that a signicant error here is caused by 

the tube connecting the gauge and the ask. The 

gas inside it is not at the temperature of the water 

bath. This is a reason to keep the tube volume small 

compared with the volume of the ask.

• The temperature of the water bath is varied and, for 

a wide range of temperatures, the pressure is read 

directly. Again, time must be allowed for the system 

to reach thermal equilibrium.

• A plot of pressure against temperature should be 

a straight line and again you can use the graph to 

estimate a value for absolute zero.

water bath

thermometer

Bourdon gauge

250 ml round-bottomed
flask containing air

▴ Figure 7 Apparatus to verify the pressure 

(Gay-Lussac’s) law.

Worked example 5
A sample of an ideal gas expands at constant pressure from an initial volume of 80 cm3 and  

temperature 13 °C to a nal volume of 120 cm3. Calculate, in °C, the nal temperature of the sample.

Solution

For constant pressure, 
T

V
= const.

273 + 13

80
=

Tf

120
⇒ Tf =

120

80
× 286 = 429 K = 156 °C

Note that each of the gas laws requires the use of the absolute temperature of the gas.  

Since the calculation involves the ratio of the volumes, it is not necessary to convert the volume to m3.
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Worked example 6

A sample of ideal gas at a temperature of 280 K and pressure 9.0 × 104 Pa is compressed  

from an initial volume of 240 cm3 to a volume of 60 cm3. Its nal pressure is 5.4 × 105 Pa.

Calculate the nal temperature of the gas.

Solution

We use the ideal gas equation, written in the form 
PV

T
= const.

9.0 × 104
× 240

280
=

5.4 × 105
× 60

T
⇒ T =

5.4 × 105
× 60

9.0 × 104
× 240

× 280 = 420 K

Worked example 8

A xed mass of 19 mg of an ideal gas is 

kept in a container of a constant volume 

5.0 × 10 5 m3. The gas is heated. The 

graph shows how the pressure of the 

gas varies with temperature.

a. Calculate the number of molecules 

of the gas in the container.

b. Calculate the molar mass of the gas.

c.  The experiment is repeated 

with half of the original amount 

of the gas in the container. 

Sketch the variation of pressure 

with temperature for this new 

experiment.

Worked example 7

A sample of argon undergoes compression in a sealed container. The following data are given:

 initial volume = 35.0 cm3

 initial pressure = 9.60 × 104 Pa

 nal volume = 6.00 cm3

 nal pressure = 5.60 × 105 Pa

a. Show that the initial and nal temperatures of the gas are the same.

b.  The mass of the sample is 58.0 mg. The molar mass of argon is 39.9 g mol 1. Determine the  

temperature of the sample.

Solutions

a. PV = 9.60 × 104
× 35.0 × 10 6

= 3.36 Pa m3; PfVf = 5.60 × 105
× 6.00 × 10 6

= 3.36 Pa m3

The product pressure × volume has the same value in the initial and nal states, indicating that the  

temperature of the gas is also the same.

b. The amount of the gas in the sample is n = 
58.0 × 10 3

39.9
= 1.45 × 10 3 mol. Using the ideal gas equation,  

T =
PV

nR
=

3.36

1.45 × 10 3
× 8.31

= 278 K
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Solutions

a. From the ideal gas equation, N =
P

T
×
V

kB

, 

where 
P

T
=

4.0 × 104

250
= 160 Pa K 1 is 

the slope of the pressure–temperature 

graph,

N = 160 ×
5.0 × 10 5

1.38 × 10 23
= 5.8 × 1020

b. The number of moles of the gas in the 

container is 
N

NA

. Hence the molar mass is 

m × NA

N
=

19 × 10 3
 × 6.02 × 1023

5.8 × 1020

= 20 g mol 1

c. The graph will be directly proportional, and the slope will bereduced to one half of the originalvalue.

Practice questions
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8. A sample of diatomic nitrogen (molar mass 28 g mol 1) 

occupies a volume of 150 cm3 at a temperature 25 °C 

and pressure 1.0 × 105 Pa. The sample expands to a 

nal volume of 180 cm3 and its temperature increases 

to 150 °C. Calculate:

a. the nal pressure of the sample

b. the mass of the sample.

9. A container of constant volume 2.0 × 10 3 m3

is lledwith air at a pressure of 1.0 × 105 Pa and 

temperature 22 °C. 

a. Calculate, in mol, the quantity of air in 

thecontainer.

 The air in the container is cooled to 4.0 °C.

b. Calculate the nal pressure of the air in 

the container.

 The container has a lid of surface area 80 cm2. The 

pressure outside of the container is 1.0 × 105 Pa.

c. Determine the force needed to open the lid.

10. The gravitational wave detector Virgo near Pisa in Italy 

is one of the largest vacuum installations in the world. 

Its vacuum system has the total volume of 7000 m3 and 

is kept at a residual pressure of about 10 7 Pa. Assume 

that the temperature of the gas is 290 K.

 Calculate:

a. the quantity of the gas, in mol, in the Virgo’s 

vacuum system

b. the number of gas particles in one cubic 

centimetre of the vacuum.

6. The temperature of a xed amount of an ideal gas 

changes from 100 °C to 200 °C at a constant volume. 

The initial pressure of the gas is 2.0 MPa. What is the 

nal pressure of the gas?

A. 1.0 MPa B. 1.6 MPa C. 2.5 MPa D. 4.0 MPa

7. A xed amount of an ideal gas is kept at a constant 

pressure P. The graph shows how the volume of the 

sample varies with the absolute temperature. 

absolute temperature

vo
lu

m
e

T1

V1

V2

T2

 What is the quantity of gas in the sample?

A. 
T2 T1

V2 V1

×
R

P

B. 
T2 T1

V2 V1

×
P

R

C. 
V2 V1

T2 T1

×
R

P

D. 
V2 V1

T2 T1

×
P

R
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A microscopic interpretation of gases

Despite the suggestion by Democritus, a Greek philosopher from about 

400 BCE, the existence of atoms has only been recognized by scientists over 

the past century or so. In the 19th century, a chemist named John Dalton realized 

that elements combine in fixed ratios. He proposed atoms to account for this. 

However, this was not direct evidence and relied on careful measurement of the 

products of chemical reactions. Even today, we cannot form direct images of gas 

molecules in motion. We have indirect evidence, however, from the effects of 

diffusion and the phenomenon known as Brownian motion.

Cook food on a barbecue and the smell soon reaches all parts of the garden, 

even on a windless day. Air molecules produce a random motion in the vapours 

from the food. This is known as diffusion. Figure 8 shows a demonstration of this. 

The gas jars on the right contain bromine gas (bottom jar) and air (top jar). These 

are prevented from mixing by a piece of glass between the jars. Remove the 

glass, keeping the jars together, and the bromine gas gradually diffuses up into 

the upper jar.

The air molecules are colliding at random with the bromine molecules and, by 

chance, some are knocked upwards into the jar that was initially full of air.

Robert Brown, in 1827, first observed the motion of small particles that were 

suspended in water.

Robert Boyle was one of the giants of European science. During his lifetime 

the “scientists” of his day resorted to philosophical reasoning rather than 

experimentation. Boyle preferred the latter. He described his techniques 

carefully so that they could be repeated by others. This was in contrast to the 

other scientists who worked independently and guarded their work closely. 

Boyle reported his results and conclusions swily so that others could make 

progress too.

Scientically speaking, the 17th century was a dierent time from ours. 

Many who we now hold in the highest regard were alchemists as well as 

scientists — Isaac Newton is a famous example. They believed that if they 

could discover a way to transmute metals — to turn base metal in gold — then 

they would make their fortunes. This is why they generally kept their results to 

themselves. Of course, true transmutation of one element into another had to 

wait 200 years until nuclear ssion and fusion were studied.

Observations

▴ Figure 8 A demonstration of diusion.

these specks of light

are the smoke particles

scattering light

the random motion of a

smoke particle showing

how it moves linearly in

between collisions with

air molecules

▸ Figure 9 The cell contains smoke 

particles that can be seen to be bueted by 

invisible, fast-moving air molecules.
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B. The particulate nature of matter

Some particles of smoke are introduced into a cell that contains air (Figure 9). 

The space is illuminated, and the interior of the cell, which has transparent walls, 

is viewed with a microscope. Small specks of light are seen. These are smoke 

particles and they have a curious random motion in which they move in straight 

lines but then change direction abruptly. Some of the invisible air molecules are 

moving at large speeds and when they collide with a smoke particle there is a 

transfer of momentum. This deflects the smoke particle giving the random motion 

that Brown saw.

However, the explanation had to wait 80 years until a young Albert Einstein, 

making one of his first scientific contributions, explained the effect. He went 

on to analyse the statistics of the motion of the smoke particles with great 

success. Another statistical model explaining Brownian motion was developed 

independently by a Polish physicist Marian Smoluchowski.

Today we are clear that gases consist of molecules or atoms in constant motion. 

We use this as a basis for a theoretical model of the kinetics of a gas.

Brownian motion can be modelled by a random-walk process. A computer 

was used to model the data below. A particle starts at the origin (0, 0). It then 

takes a step of length 1 unit in a random direction. The computer repeats this 

process N times.

The model tracks 10 particles, determining the average distance d of a 

particle from the origin aer N steps and the uncertainty in d. The results are 

given in the table.

N d Uncertainty in d

10  2.97  0.48

20  2.96  0.68

50  5.52  0.82

100  7.54  0.93

200  12.7  1.8

500  26.6  5.0

1000  18.0  3.2

2000  46.6  7.4

5000  62.6  8.5

10 000  92.0  11

20 000  137  17

50 000  213  34

100 000  325  24

• Theory suggests that d2 
∝ N. Plot a graph of log d against log N and 

explain whether your graph conrms the relationship.

• Plot a graph of d2 against N

• Calculate the uncertainties in d2 and add suitable error bars to your graph.

• Find the gradient. Use maximum and minimum gradients to nd the 

uncertainty in your value for the gradient.

Data-based questions

At this point, we move from 

empirical models of gas behaviour 

to a theoretical model based on a 

set of assumptions. Both types of 

model have their place in science.

In the 17th century, the 

understanding of the microscopic 

composition of a gas was not 

sucient to allow Boyle and Charles 

and their collaborators to develop 

a theory. Nevertheless, the rules of 

gas behaviour that they produced 

from experiments allow a prediction 

of the bulk behaviour of a gas. We 

assume that a gas under the same 

conditions of an experiment will 

always behave in same way.

Theoretical models are based on 

a set of assumptions about the 

system they model. Theoretical 

models are, supercially, very 

attractive because they appear 

to allow predictions for all 

circumstances. But this is an 

illusion. Even today, attempts to 

produce a unied theory for all 

gases under all conditions have 

not been successful. An important 

piece of work by the Dutch scientist 

Johannes van der Waals (mentioned 

later in this topic) requires individual 

sets of empirical constants for 

each individual gas for his theory 

to work. We still need empirical 

results when the assumptions of a 

model break down.

Empirical or 

theoretical modelling
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Kinetic model of an ideal gas 

The gas laws outlined above were based solely on experimental investigations 

that involved work by different scientists that stretched over 150 years. It is 

important to recognize that they are empirical results. 

It is also possible to construct a theoretical model of an ideal gas that begins 

with a series of assumptions and uses mechanics principles developed in  

Theme A to arrive at a description of the gas. We will then compare the results  

of these two routes to see the extent to which they complement each other.

The ideal gas model we develop is known as the kinetic model of an ideal gas

and it is based on a set of assumptions. These are:

1. A gas consists of many identical particles in a container. They have the same 

mass as each other. (We now know that these particles are the atoms or 

molecules of the gas.)

2. These particles are in constant random motion.

3. The total volume of the particles is negligible compared with the total volume 

of the gas. (This is the same as saying that the average distance between 

particles is much greater than their average size.)

4. The particles collide elastically with each other and with the walls of their 

container. 

5. Intermolecular forces between the particles and the walls can be ignored 

except during collisions. (This means that the energy in the gas can be 

considered as entirely kinetic with no potential-energy contribution.)

6. The time for a collision between particles, and the time for a collision 

between a particle and the wall are negligible compared with the time 

between collisions. 

7. External forces (such as gravity) are ignored.

The particle is moving at velocity v as shown which can be resolved into three 

components vx
, vy and vz

Assumption

Our model begins with the single particle of mass m shown in 

Figure 10 moving inside a cube of wall length L. This box has a 

volume V, where V = L3. 

The particle strikes the cube wall at right angles with speed vx

and it is the x-direction on which we initially focus. 

1

The particle collides elastically with the wall and rebounds with 

a velocity that is equal and opposite to its original value. 

4

The momentum of the particle before the collision is mvx and 

afterwards is mvx, giving an overall momentum change of  

mvx – (mvx), which is 2mvx (the signs are important).

5

The particle will then travel to the opposite wall and back again 

taking a time T to do so. The average force Fx that the wall exerts 

on the particle over the whole of this motion is the change of 

momentum divided by T and this is – 
2mvx

T
This time T can be expressed as

total distance travelled as the particle crosses the box

x-component of speed
=

2L

vx

6

7

x
LL

L

vx

m

z

y

▴ Figure 10 The particle strikes the 

right-hand wall at 90° and then retraces 

its path to the far wall. There is a transfer 

of momentum between the wall and 

theparticle. 
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Assumption

The force Fx is therefore 
−2mvx

(2L
vx

)
= − 

mvx
2

L

This tells us that the particle exerts a force of 
mvx

2

L
 on the right-hand 

wall of the box (this is, by Newton’s third law of motion, in the 

opposite direction to the force exerted by the wall on the particle).

For a gas, the box will be filled with N gas particles. One of them 

is shown in Figure 11. These particles have a range of velocities 

and therefore a range of speed components. The first particle 

has three speed components (vx1
, vy1

, vz1
) in the axis directions x, 

y and z. The second particle has components (vx2
, vy2

, vz2
) and so 

on up to the final particle (vx
N
, vy

N
, vz

N
).

2

In terms of the original wall, each of the particles collides  

with it to give an averaged-out force on the wall, given by  

Fx =
m(vx

2
1
+ vx

2
2
+ … + vx

2
N)

L
This averaging can be taken further by using the mean of the 

squared velocities, in other words, vx
2

= 
(vx

2
1
+ vx

2
2
+ … + vx

2
N)

N
. 

The quantity vx
2 is known as the “mean square speed” of the 

x-components. When the square root of it is taken, in other 

words, √vx
2, this is the “root mean square speed of the x” 

components.

1

Replacing the individual speed components with their mean 

square speed, the average force on the wall becomes 

Fx =
Nm

L
vx

2

For an individual particle, its actual speed v is the combination of 

the three components, given by v2
= vx

2
+ vy

2
+ vz

2

Applying this to the mean square speeds means that  

v2
= vx

2
+ vy

2
+ vz

2

The quantity v2 is the mean square speed of the molecules.

The line above the symbol extends over the 2 to remind you that 

the speeds are first squared and then averaged.

When N is very large (and when there is one mole of gas in the 

box, there will be around 1024 individual atoms), then the gas 

will look the same in whatever direction we observe it. This 

means that the magnitudes of mean components of velocity 

must be the same: 

vx
2

= vy
2

= vz
2 and so v2

= 3vx
2 or vx

2
=

v2

3

Replacing vx by v leads to a total force F on the wall of 

F =
1

3

Nm

L
v2

The pressure on the wall is P =
force acting on wall

area of wall
, and 

because the area of the wall is L2, the pressure on a wall is 

P =
1

3

Nm

L
×

1

L2
× v2 or P =

1

3

Nm

V
v2

x

LL

L

vx

vy

vz

m

v

z

y

▴ Figure 11 The particle is moving with a 

random velocity v that has components (vx, vy, vz)

The statistical idea of an average or 

a mean value works well for large 

numbers. The numbers of atoms or 

molecules of a gas are usually very 

large indeed. Despite the random 

motion of the particles, the overall 

effect is very unlikely to deviate 

from the behaviour of the model.

Where else do large numbers 

lead to increased confidence 

inknowledge?

Large numbers

Although you need to understand 

the physics that underlies the 

derivation of P =

1

3

Nm

V
v2, you do 

not need to recall the proof that 

leads to the result. 
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The kinetic theory is an analysis of gas 

behaviour at the microscopic level. 

It begins with a consideration of the 

kinematics of a single gas particle 

moving in a highly constrained way 

and gradually broadens the analysis 

until it encompasses all the particles 

in the ensemble. The theory applies 

the familiar concepts of force and 

rate of change of momentum from 

Theme A to link the particle motion 

to the pressure that the whole gas 

exerts on the internal walls of its 

container. 

Coupled to this kinematic 

approach is the underlying 

property that each particle has a 

kinetic energy due to its motion 

and that therefore the whole 

ensemble of atoms has a total 

kinetic energy. This can also be 

analysed to give an average energy 

for all the atoms in the gas. 

The gas laws arise empirically. The 

kinetic theory arises theoretically. 

They both meet in the equation 

that links the internal energy of 

the gas to the amount of gaseous 

substance in the container and its 

temperature.

The kinetic theory of an ideal gas 

was itself extended later. Four 

giants of 20th-century physics, 

Fermi and Dirac, and Einstein and 

Bose used the kinetic theory as a 

basis for a model of the behaviour 

of other particles such as electrons, 

neutrons and photons.

This is also the pressure of the gas itself because pressure acts 

equally all directions.

We will now drop the line that is printed over the v2, but you 

should remember that, from here on, v is the square root of 

the average (mean) translational speed2 of a gas particle. The 

equation becomes P =
1

3 (Nm

V
)v2. This square root of the 

mean squared speed is usually called the root mean square

(rms) value.

The quantity N × m is the number of molecules × mass of one 

molecule. In other words, it is the total mass of the gas in the box. 

The term in brackets is the total mass divided by the gas volume: 

the gas density. A simpler form of this equation is therefore

P =
1

3
ρv2

where ρ is the density of the gas.

The kinetic model of an ideal gas is successful as it simplies a complicated 

situation. The application of simple physics leads to predictions which 

match experimental results.

It is important to consider the credibility of any model and whether it has 

limitations. Make some estimates of the air in your room and answer the 

following questions.

Thinking skills — Credibility ATL

• Tool 3: Carry out calculations involving decimals, fractions and exponents.

Root mean square (rms) speeds are not the same as mean speeds or mean 

velocities. Squaring the magnitude of the velocity remove direction. 

Imagine that a gas has four particles and at one instant these particles have 

velocities of +1 m s 1, −3 m s 1, +5 m s 1 and +7 m s 1.  

• The mean speed of the four particles is 
(1 + 3 + 5 + 7)

4
=

16

4
= 4.0 m s 1

• The mean velocity of the four particles is 
(1  3 + 5 + 7)

4
=

10

4
= 2.5 m s 1

• The mean square speed is 
(12

+ ( 3)2
+ 52

+ 72)

4
=

84

4
= 21 m2 s 2

• The root mean square speed is √21 = 4.6 m s 1

Quantities with rms values occur elsewhere in physics, most notably in 

alternating current (AC) theory where the rms value of a current has the same 

heating effect as a direct current with the same value.

Root mean square

How does the concept 

of force and momentum 

link mechanics and 

thermodynamics?

How does a consideration 

of the kinetic energy of 

molecules relate to the 

development of the  

gas laws?
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Practice questions

11. The kinetic model assumes that the total volume  

of gas particles is much smaller than the volume of  

the box.

a. Estimate the volume of the room.

b.  Estimate the number of gas molecules in 

theroom.

c. The diameter of a nitrogen molecule is about 

3× 10 10 m. Estimate the total volume of the 

gasmolecules in the room.

12.  The kinetic model assumes that we can ignore the 

eects of external forces such as gravity.

a.  Estimate the change in gravitational potential 

energy (Topic D.2) as a gas molecule travels from 

the oor to the ceiling.

b.  What is this change in terms of a percentage of 

the molecule’s kinetic energy?

13.  The kinetic model assumes that gas molecules collide 

elastically with each other and with the walls of the 

container. What would an inelastic collision of gas 

molecules be like? Is this a good assumption?

Worked example 9

A beam of electrons is formed in an electron tube. The cross-sectional area of the beam is 1.0 mm2. Electrons 

are emitted at a rate of 9.0 × 1014 per second and travel at a speed of 1.0 × 107 m s 1. The mass of an electron 

is 9.11 × 10 31 kg. The electrons are incident normally on the inner wall of the tube and are absorbed by the 

wall. Determine the pressure exerted by the beam on the wall.

Solution

The force exerted by the electrons on the wall is equal to the rate of change of momentum of the electrons.

F =
Δm

Δt
v = 9.0 × 1014 × 9.11 × 10 31 × 1.0 × 107 = 8.2 × 10 9 N. 

The pressure is P =
F

A
= 

8.2 × 10 9

1.0 × 10 6
= 8.2 × 10 3 Pa.

Worked example 10

Dry air at room temperature and a pressure of 100 kPa has a density of 1.16 kg m 3. Calculate the root mean 

square speed of the air molecules in these conditions.

Solution

P =
1

3
ρv2 ⇒ v =

3P

ρ
=

3 × 100 × 103

1.16
= 509 m s 1

Note that this value represents the average over dierent gases that make up the air. The air is a mixture of 

molecular nitrogen, oxygen and other gases, which all have dierent root mean square speeds depending 

on their molecular mass. See Figure 13 later in this chapter and question 3 in Topic B.1. 

Worked example 11

Nitrogen makes up about 75.5% of dry air by mass. The rms speed of nitrogen molecules at room 

temperature is 517 m s−1. Calculate the pressure due to nitrogen molecules alone.

Solution

The density of nitrogen in air is 0.755 × 1.16 = 0.876 kg m 3, using the data from Worked example 10.

P =
1

3
× 0.876 × 5172 = 78.0 kPa.

This is known as partial pressure — exerted by the molecules of just one constituent gas in a mixture. Other 

atmospheric gases are responsible for the remaining 22.0 kPa of the atmospheric pressure.
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Practice questions

14. A balloon is lled with 240 kg of helium at a pressure 

of 1.1 × 105 Pa. The volume of the balloon is 1300 m3.  

Calculate the root mean square speed of helium 

atoms in the balloon.

15. Oxygen makes up 23.1% of air by mass. At room 

temperature, the molecules of atmospheric oxygen 

exert a pressure of 20.8 kPa. The density of air is 

1.16 kg m 3.  

Calculate the root mean square speed of oxygen 

molecules.

16. The atmosphere of the planet Venus has an average 

pressure of 9.0 × 106 Pa and an average density of 

5.2 kg m 3.  

Calculate the root mean square speed of the 

molecules that make up the atmosphere of Venus.

17. A sealed container of volume 5.0 × 10 4 m3 is lled 

with 2.2 × 10 4 kg of a gas at a temperature of 300 K 

and pressure 2.5 × 104 Pa. 

Calculate:

a. the density of the gas

b. the root mean square speed of the gas molecules

c. the molar mass of the gas.

Gas particles with high speed and 

therefore large kinetic energies can 

do work by acting as sources of 

energy that is transferred to energy 

sinks. This transfer is the basis of a 

heat engine (Topic B.4).

A heat engine is a general concept, 

not confined simply to the internal 

combustion engine. Any process 

where work is done as a result 

of energy transfer from a hot to a 

cold body can be regarded as a 

heat engine — including biological 

systems such as animals.

How can gas particles  

of high kinetic energy  

be used to perform  

useful work? 

Interpreting temperature

The empirical ideal gas equation can be linked to this theoretical kinetic model.

The expression for the pressure in a gas, P =
1

3

Nm

V
v2, can be rewritten as  

PV =

Nm

3
v2. This leads to a new equation that uses elements of both the 

empirical and theoretical equations:

PV =

Nm

3
v2
= NkBT

A further rearrangement of  
Nm

3
v2
= NkBT and the introduction of a numerical 

factor 
3

2
 gives

3

2

Nm

3
v2
= N ×

1

2
mv2

=

3

2
NkBT

Therefore, N ×
1

2
mv2

=
3

2
NkBT and

1

2
mv2

=
3

2
kBT

This equation has a very specific physical meaning. The left-hand side of the of 

the equation is 
1

2
× mass × speed2 and is therefore the translational kinetic energy 

of the “average” gas molecule in the box. The right-hand side of the equation is 

1.5 × Boltzmann constant × absolute temperature. 

This is an important result. The kinetic theory links the macroscopic quantity 

temperature to the microscopic quantity kinetic energy of the “average” molecule. 

This interpretation is discussed in Topic B.1 (page 203) 

Recall that an ideal gas has no long-range intermolecular forces (assumptions 5 

and 7) and therefore no potential energy contribution to the total energy. The 

total energy of the gas relies solely on the kinetic energy. Given that there are  

N molecules in the gas, then 

total internal energy of an ideal gas =
3

2
NkBT

This is an important step in thinking about the properties of an ideal gas. Its total 

internal energy is directly proportional to the Kelvin temperature. The units of kB

(J K−1, as we saw earlier) reflect this and will help you to remember the importance 

of this relationship.

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



269

B. The particulate nature of matter

Worked example 12

Calculate the root mean square speed of water vapour molecules at a temperature of 300 K.  

The mass of a water molecule is 3.0 × 10 26 kg.

Solution

We assume that water vapour behaves like an ideal gas. 

1

2
mv2 =

3

2
kBT ⇒ v =

3kBT

m
=

3 × 1.38 × 10 23 × 300

3.0 × 10 26
= 640 m s 1

Worked example 13

A sample of 2.0 mol of a monatomic ideal gas is kept at a constant volume. Calculate the energy  

transferred to the sample when its temperature increases from 30 °C to 100 °C.

Solution

The energy transferred to the sample is equal to the increase in its internal energy:

∆U =
3

2
NkB∆T =

3

2
nR∆T =

3

2
× 2.0 × 8.31 × (100  30) = 1.7 kJ

Practice questions

18. A container of constant volume is lled with an 

unknown quantity of a monatomic ideal gas. When 

50 J of thermal energy is transferred to the container, 

the temperature of the gas increases by 85 K.

a. Calculate, in mol, the quantity of gas in the 

container.

The molar mass of the gas is 40 g mol 1

b. Calculate:

 i. the mass, in kg, of the sample.

 ii.  the specic heat capacity, in J kg 1 K 1, of the 

gas when it is kept at constant volume.

19. Helium is a monatomic noble gas. The mass of one 

atom of helium is 6.65 × 10 27 kg. Thermal energy 

of 80.0 J is transferred to a sample of helium of mass 

2.50 × 10 3 kg, without changing the volume of 

the sample. 

 Calculate:

a. the number of atoms in the sample

b. the change in the temperature of the sample.

Ideal and real gases

It is important to remember that the kinetic model derived above applies to a 

monatomic (single atom) gas—not a gas where the molecules have two or more 

atoms. For molecules the theory must be adapted. 

Some of the behaviours that are shown by real gases should not occur if the 

assumptions made in the kinetic theory are correct. 

An example of non-ideal behaviour is that gases can be liquefied (turned from a 

gas into a liquid). This should not be possible with an ideal gas. Liquefaction was 

studied by Thomas Andrews, an Irish chemist of the mid-19th century. He showed 

that there is a critical temperature above which a gas cannot be liquefied; for 

carbon dioxide this is 31 oC. Once the gas has become a liquid, then, of course, it 

cannot be compressed. 
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▴ Figure 13 The distribution of speeds of four gases at room temperature.

In principle, Newton’s laws of motion can be used to predict the behaviour of 

the collection of molecules that make up a gas. In practice, this is not possible. 

The number of particles is far too great even for the most powerful computer. 

In 1860, Maxwell produced arguments resembling our derivation of the 

kinetic model but he used ranges of molecular speeds rather than the mean 

square speed we used in our proof.

In 1868, Boltzmann improved Maxwell’s argument and his work led to an 

understanding of the molecular-speed distribution that is shown in Figure 13. 

This shows the speed distribution for four gaseous elements, all for the same 

temperature. Helium, the least massive molecule shown here, has the largest 

tail and therefore more molecules with the highest speeds. Hydrogen would 

have speeds even higher in its tail. This is one reason why the atmosphere 

contains little helium and hydrogen. The escape speed for Earth is 11 km s 1

and for hydrogen there is a signicant number of molecules with this 

speed. These molecules are lost from the atmosphere. The speeds are then 

re-distributed through collisions so that another group of molecules gains the 

highest speeds and the loss of hydrogen continues.

Your work on gravitational elds (Topic D.1) links to the kinetic theory in  

this phenomenon.

Van der Waals won the Nobel Prize 

in 1910 for his work on modifying 

the ideal gas equation. In its 

modied form his equation is 

(P + 
n2a

V 2 ) (V nb) = nRT. The 
n2a

V 2

term that modies P is to account 

for the intermolecular forces 

of attraction. As the number of 

molecules increases (increase in 

n) or as the volume decreases, the 

molecules become closer together. 

The forces between them can no 

longer be ignored and the pressure 

term is eectively increased.

Similarly, the volume available 

for molecular movement itself 

is reduced as n increases. This 

accounts for the change to the V

term and for its negative sign.

The values of a and b depend on 

the gas under consideration so that 

van der Waals produced a hybrid 

empirical–theoretical model.

Hypotheses

Applying a theory — The Maxwell–Boltzmann 

distribution and the atmosphere

A graph of 
PV

RT
 against P for one mole of a real gas hints at this behaviour. The quantity 

PV

RT
= n and so an ideal gas has a constant value on the y-axis. This is not found for 

real gases at low temperatures and high pressures (Figure 12). For an incompressible 

material we would expect the line to rise vertically, parallel to the y-axis. Look at the 

lowest temperature here (the green line) and you can see that the behaviour of the 

gas is beginning to approach this at high pressures and low temperatures.

The best approximations to ideal gas behaviour occur when a gas is at a high 

temperature and low pressure.300

200 K
500 K

1000 K

ideal gas

0
0

1

2

3

600 900 1200
P (atm)

PV

RT

▴ Figure 12 The behaviour of a real 

gas showing the deviation from ideal-gas 

behaviour.
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The speed of sound in a gas is closely related to the typical speeds of 

the molecules. As a consequence, the speed of sound in air varies with 

temperature. The table shows the speed of sound at various temperatures. 

The uncertainty in each speed is ±1 m s 1

T / °C Speed of sound / m s 1

−20 319

−10 325

0 331

10 337

20 343

30 349

40 355

• Plot a graph of the speed of sound vs temperature. Include the 

uncertainties in the speed.

• Find the gradient of your graph and use the maximum and minimum 

gradients to nd the uncertainty in your gradient.

• Although the data seem to follow a linear trend very well, theory would 

predict that v2
= bT, where T is the absolute temperature (in kelvin) and b

is a constant. Plot a graph of v2 against T in kelvin.

• Add error bars to your graph.

• Use the gradient of your graph to determine b and determine the 

uncertainty in b

• At what temperature would a measurement of the speed of sound have 

to be made in order to distinguish between these two trends?

Data-based questions

You will come across many examples of complex phenomena that are 

explained using simple models. Examples include:

• the motion of electrons through a metallic lattice (Theme B.5)

• the behaviour of single waves as they diract through apertures and 

multiple coherent waves as they interfere (Theme C)

• the behaviour of the air in a pipe when a standing sound wave is 

propagated in it (Theme C)

• the use of eld theory for the description of gravitational, electric and 

magnetic elds (Theme D)

• the energy levels in atoms (Theme E.1).

What other simplified models are used in this course?

What other simplified models do we rely on to communicate 
our understanding of complex phenomena? (NOS)
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Society uses machines that transfer heat into mechanical 

energy. Thermodynamics is the branch of physics that 

models the conversion of the internal energy of a system 

into mechanical work. It also answers the question of the 

extent to which such a conversion is possible. 

Inevitably, in physics, these systems are large. Even 
1

1000
of a mole will contain 1021 particles. This means that 

statistics can apply to the system in the same way that 

the averaging of a collection of molecules allowed us to 

develop the kinetic theory of Topic B.3. Thermodynamics 

looks at the wholesale transfer of energy between energy 

reservoirs, not at the movement of individual particles, 

each carrying a minuscule amount of energy.

The tools of thermodynamics allow future predictions of 

behaviour too. They can describe the likely (though not 

completely certain) outcome of a transfer, or whether it will 

even occur or not. Again, this is a statistical judgment. The 

sheer number of microscopic particles in a system means 

that only average macroscopic behaviour is likely to be 

seen. This is itself driven by the assumed randomness of 

these large systems. A measure of this randomness, called 

entropy, is introduced towards the end of this topic. This 

quantity allows a measure of prediction about the possible 

outcomes of an energy transfer.

Our knowledge of the universal nature of thermodynamics 

allows very long-term predictions. Entropy is a measure 

of randomness and, as we allow systems to interact, the 

amount of randomness increases with time. One way 

to interpret any change is as a transfer of energy from a 

hot body (at a high temperature) to a cold body (at a low 

temperature). The statistics of thermodynamics predict 

that transfers are always in this direction except in the very 

rarest cases. Essentially, everything in the universe is moving 

towards a uniform temperature. This so-called “heat death” 

is one way to describe the fate of the universe.

How can energy transfers and storage within a system be described and analysed? 

How can the future evolution of a system be determined? 

How is entropy fundamental to the evolution of the universe?

B.4  Thermodynamics

▴ Figure 1 A re releases thermal energy and this energy is 

dissipated to the cooler surroundings. The ordered structure of the 

wood with its complex molecules storing energy, is a useful source 

of fuel. Once this thermal energy is distributed to the environment 

in a disordered way, it is less useful and impossible to put back.

In this additional higher level topic, you will learn about:

• the first law of thermodynamics 

• modelling isovolumetric, isobaric, isothermal and 

adiabatic processes 

• entropy and the degree of disorder of a system

• entropy and the number of possible microstates of  

a system

• the second law of thermodynamics 

• entropy changes in a real isolated and  

non-isolated systems 

• irreversibility

• cyclic heat engines and their efficiency

• the Carnot cycle and its theoretical efficiency.
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Introduction
The ideal gas and how the behaviour of real gases differs from it occupied 

Topic B.3. This topic is also largely concerned with gas behaviour but in a 

different way. It examines changes in the state of gases and other substances, not 

in isolation, but in the context of their surroundings. This is much closer to our real 

interactions with matter. We expand and compress gases, we allow them to act 

as energy sinks and then we use the stored energy to perform useful work for us. 

It is interactions like this that are examined in this topic. 

In earlier topics, our interests concerned the overall state before and after a 

change to the gas state. Now we are also concerned with the way in which the 

change is made. What can we say about the consequences of the rate at which 

the changes happen? And what models emerge from these considerations?

The modelling used in this topic again involves the assumption that the molecules 

in a solid, gas or liquid can be treated as single entities.

System and surroundings

The Guiding questions for this topic use the term “system”. This word needs 

some explanation as the term has an exact meaning in thermodynamics. Figure 3 

shows the connection between a system, its surroundings and the universe. 

The system is the body or bodies that we are considering. Normally, this system 

can interact with the surroundings through the transfer of energy. The system 

together with the surroundings constitute the universe. The total energy within 

the universe is assumed to have a constant value.

Much of the work on 

thermodynamics originated 

from scientists trying to make 

steam engines more ecient. 

Throughout the 18th and 19th 

centuries, steam engines were 

able to do more work, using less 

fuel. They became more useful, not 

just for transport, but for driving 

machinery in factories. This was 

the industrial revolution — the 

nature of society changed as fewer 

people were needed for farming 

and more people worked in 

factories. The industrial revolution 

began to increase life expectancy, 

improve living conditions and raise 

wages, although some of these 

improvements did not appear 

straight away. However, the 

industrial revolution also marked 

the beginning of population 

increase, more pollution and a 

reliance on fossil fuels.

▴ Figure 2 A steam locomotive 

hauling a passenger train. These 

locomotives are direct descendants of 

the steam engines originally developed 

in the early 1800s. 

Global impact of 

science — Industrial 

revolution

Sometimes the system is said to be a closed system. This means that the entities 

(often the particles of a gas) inside the system cannot vary in number. A phrase 

such as “a fixed mass of an ideal gas” indicates this — because when the mass is 

fixed, so is the number of particles in the gas which, in this case, is ideal and will 

follow the kinetic gas model and the gas laws. However, energy can flow into and 

out of a closed system. When neither matter nor energy can enter or leave, then 

the system is said to be isolated

system

surroundings

universe

the flask represents the boundary in this case

▴ Figure 3 In thermodynamics, there is a system under consideration and its surroundings. 

Taken together, these are the universe. 
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The unit of energy was named aer James Joule, the rst 

scientist to show that doing work on a system is equivalent 

to transferring thermal energy to it. 

He showed this using apparatus in which weights fall 

(transferring gravitational potential energy to kinetic 

energy) and turn paddles which stir the water in a 

container (Figure 4). The temperature of the water 

increases as a result. This result seems obvious to us 

today, but in the 1840s this conversion was not yet 

fullyunderstood.

▴ Figure 4 Joule’s apparatus used to nd the mechanical 

equivalent of heat.

Joule tried other more direct experiments, too. He 

took a pair of sensitive thermometers with him on his 

honeymoon and placed one at the top and one at the 

bottom of a tall waterfall in Switzerland. He hoped to 

nd a temperature dierence (higher at the bottom 

because energy was transferred to the falling water). 

Unfortunately, because most waterfalls mix the water with 

the surrounding air very eectively, the experiment did 

not give the result he expected (Figure 5).

▴ Figure 5 Even the highest waterfall in the world — Angel Falls 

in Venezuela with a single drop of over 800 m — would only have 

a theoretical temperature dierence of 1.9 °C between the top 

and the bottom. In reality, the surrounding air is likely to dier in 

temperature by more than this between the top and bottom, and 

the water mixes with the air and its surroundings.

This conversion of “work to heat” was a hypothesis 

by Joule. He designed an ingenious and successful 

experiment to verify his idea (Figure 4). We can interpret 

the waterfall test as a falsication of the hypothesis. 

However, further examination of the conditions of this 

experiment show that it is not a good test of Joule’s idea.

Hypotheses — Joule, work and temperature

The rst law of thermodynamics

The internal energy of a system changes when:

• the system does work, or has work done on it

• energy is transferred into or out of the system when there are temperature 

dierences between the system and the surroundings.

This is a statement of conservation of energy and leads to the first law of 

thermodynamics. There are several ways to express this law; the version used in 

IB Diploma Programme physics is

Q =ΔU + W 

where Q is energy transferred, ∆U is the change in internal energy of the system 

and W is the work done by the system.

It is important to use a consistent sign convention with this equation.

• A positive Q means that heat energy is transferred from the surroundings to

the system 

• A positive ∆U means that the internal energy of the system increases.

• A positive W means that the system does work on the surroundings 

This is the Clausius sign convention.
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There is another sign convention in common usage, 

so it is important to be clear about which one is used 

in a particular case. The second convention is that of 

the International Union of Pure and Applied Chemistry 

(IUPAC) where the rst law is written as ΔU = Q + W. 

Although this looks similar at rst glance, when the IUPAC 

equation is rearranged in the same way as the IB Diploma 

version, it becomes Q =ΔU  W. So in the IUPAC 

formulation, work done on the system by the surroundings 

is treated aspositive. 

It is important to stick to the IB Diploma version. However, 

the two equations always lead to the same answers when 

used consistently.

There are many other cases where you must be consistent 

in dening what is a positive quantity. In mechanics, for 

example, when considering projectile motion, you may 

decide that the upwards direction is positive. However, 

taking the downwards direction as positive should still lead 

to the same answers. Can you nd any other examples 

where a sign convention is important?

Using terminology consistently — What’s in a sign? ATL

Worked example 1

80 J of work is transferred to a system. The internal energy of the system increases by 60 J.

a.  State, referring to the rst law of thermodynamics, the magnitude and the sign of:

 i. W      ii. ΔU

b.  Calculate the energy transferred between the system and the surroundings. State whether 

the energy is transferred into or out of the system.

Solutions

a. i.  The work is done by the surroundings on the system, so W is negative. W = –80 J.

 ii.  The internal energy has increased, so ΔU is positive. ΔU = 60 J.

b.  Q =ΔU + W = 60 + ( 80) = –20 J. A negative Q indicates that thermal energy is transferred  

from the system to the surroundings.

Worked example 2

An ideal gas in a sealed container with a piston expands without change in temperature. 

Explain why thermal energy must be transferred to the gas.

Solution

Since the temperature of the gas does not change, its internal energy remains constant: ΔU = 0. 

The rst law of thermodynamics becomes Q = W. The gas does positive work on the surroundings  

when it expands. Hence, an equal amount of thermal energy must be supplied to the gas.

Worked example 3

A cylinder with a piston contains 0.025 mol of monatomic ideal gas at a temperature 10 °C.  

Thermal energy of 12 J is supplied to the gas. The gas expands and does a work of 5.0 J on the piston.

Calculate:

a. the change in the internal energy of the gas

b. the nal temperature of the gas.

Solutions

a. In this situation, Q > 0 and W > 0. ΔU = Q  W = 12  5.0 = 7.0 J.

b.  For an ideal gas, the change in temperature is proportional to the change in the internal energy.

ΔT =
ΔU
3

2
nR

=
7.0

3

2
× 0.025 × 8.31

= 22 K. The nal temperature is 10 + 22 = 32 °C.
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Using pressure–volume diagrams

The work on the three gas laws in Topic B.3 leads to three graphs: pressure–
volume, pressure–temperature, and volume–temperature. These are all graphs 
that represent gas processes (that is, changes in the conditions of a gas). The first of 
these (P V) has a particular use because it can lead us directly to the work that a gas 
is doing on its surroundings or the work that is being done on the gas.

An ideal gas at a pressure P is trapped in a cylinder of cross-sectional area A by 
a piston (Figure 6). In this example, the gas constitutes the system. The gas is 
allowed to expand moving the piston upwards by a distance Δx. The gas volume 
was initially V and it increases by ΔV = A ×Δx because of this movement. The 
distance Δx is taken to be small, so that the change to the volume is also small. 

Some energy is now transferred from the surroundings to the gas in a way that 
ensures that the gas pressure remains constant. The surroundings in this case are 
the cylinder and the atmosphere outside it. We ignore temperature and energy 
changes to the cylinder walls and the piston. The volume of the gas increases; the 
top of the piston moves upwards and so compresses the atmosphere. Work is 
being done on the atmosphere. 

The work done by the gas on the surroundings during the expansion is equal to 
the force on the piston (which is constant at P × A). The work done is therefore

F ×Δx = (P × A) ×Δx = P × (AΔx) = P ×ΔV

Practice questions 

1. The work done to compress a sample of a gas is 
50 J. During the compression, an energy of 30 J is 
transferred to the gas from the surroundings. What is 
the change in the internal energy of the gas?

A. −80 J B. −20 J C. +20 J D. +80 J

2. A quantity of 0.060 mol of monatomic ideal gas has a 
xed volume. 40 J of energy is supplied to the gas. 

a. State the work done on the gas.

b. Calculate the change in the temperature of 
thegas.

3. When 0.030 mol of monatomic ideal gas is 
compressed, the temperature of the gas increases 
from 20 °C to 90 °C. The gas does not exchange 
thermal energy with the surroundings. Calculate the 
work done in compressing the gas.

4. A quantity of 8.0 × 10 3 mol of a monatomic ideal gas 
in a cylinder is compressed by a piston. The work 
done on the gas is 7.0 J and the temperature of the 
gas increases by 50 K.

a. Calculate:

 i. the change in the internal energy of the gas

 ii.  the energy transferred between the gas and 
the surroundings during compression.

b. The gas remains compressed at a constant 
volume and its temperature increases by another 
50 K. State the energy transferred to the gas.

P–V graphs are commonly used in engineering physics when dealing with 
the performance of steam engines or internal combustion engines. In this 
practical context, the graph is known as an indicator diagram. The diagram 
was used very early in the development of steam engines by James Watt and 
his associate John Southern to study the eciency of the engines. The P–V

graph itself was rst used by Émile Clapeyron in 1834 to illustrate the Carnot 
cycle that you will meet later in this topic.

To what extent do graphs such as this represent the scientic fact itself?

Indicator diagrams — Visualizing the work done 

piston

area A

volume V

ideal gas =
system

cylinder

∆x
∆ V = A∆x

▴ Figure 6 When a gas expands, it pushes 

back against the atmosphere through the 

piston. This means that the gas does work 

on the atmosphere.
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P

area under line = work done by

gas on surroundings = P∆V

volume

pressure

0
0

(a)
∆V

X Y

(b)

P
p

volume

pressure

0
0 V

▸ Figure 7 (a) The work done by a gas as it expands from X to Y 

is the area under the line XY. When the change is in the opposite 

direction work is done on the gas. (b) The graph sometimes has 

a false origin. Always make sure that you calculate the total area 

under the line.

In terms of the first law of thermodynamics, W = +PΔV. This is positive 

because the gas (the system) is doing work on the surroundings. Figure 7 

shows the change X to Y for a gas expanding at constant pressure. The work 

done by the gas is the area below the line that joins X and Y on the graph. 

Notice the arrow on this line: it shows the direction of the change (expanding 

gas in this case) and shows also that the work done by the gas is positive. 

When the arrow is in the other direction, then the work done is by the 

surroundings on the gas and, using our sign convention, is negative.

• Tool 3: Use basic arithmetic and algebraic calculations 

to solve problems.

• Tool 3: Interpret features of graphs including 

gradient, changes in gradient, intercepts, maxima 

and minima, and areas under the graph.

Look closely at the graph in Figure 7(a). There is an origin 

marked as (0, 0). You will not always have a real origin; 

sometimes the graph will be the small graph (top-right in 

Figure 7(b)) which has a false origin. Don’t forget to include 

the green area in your calculation for the total work done.

When the P–V graph is not straight, then the task becomes 

one of counting squares or estimating the area in some 

other way. You must use the technique of dividing the 

area below the line into strips or other convenient shapes. 

Figure 8 shows you how. Simply add up the values for 

each approximate rectangle. In other words,

work done = P1ΔV1 + P2ΔV2 + ... + PNΔVN

Make sure that the strips are thin enough to give a 

reasonable answer but not so thin that the problem takes 

a long time to complete.

Graph origins and areas

volume

P

P1
P2

work done = area of strip

= P1 × ∆V1

∆V1

∆V2

A

B

▴ Figure 8 When the variation of P with V is a curve, use thin 

rectangular strips or counting squares to evaluate the work done.

Worked example 4

A monatomic ideal gas is compressed along the path AB as shown.

a. Calculate the work done during the compression.

The temperature of the gas at A is 480 K.

b. Calculate the temperature of the gas at B.

c. Determine: 

 i. the change in the internal energy of the gas

 ii.  the energy transferred between the gas and thesurroundings.

Solutions

a.  The gas is compressed at a constant pressure; hence W = PΔV = 1.5 × 105 × (3  4) × 10 3 = –150 J. 

The value is negative because the work is done on the gas to compress it.
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Worked example 5

The P–V graph shows two possible processes that can change the 

conditions of a gas from the initial state A to the nal state B. 

Deduce which of the processes results in agreater amount of:

a. work done by the gas

b. thermal energy transferred to the gas.

Solutions

a.  The change in the volume of the gas is the same for both 

processes. Process 1, on average, has a greater gas pressure 

than process 2. From W = PΔV, the work done by the gas during 

process 1 is greater.

b.  The change in the internal energy of the gas depends only on the 

temperature dierence between the states A and B. Hence, ΔU is 

the same for both processes. From Q= ΔU+W, the heat transferred 

to the gas is greater during process 1, because the gas must do more 

work for the same change in the internal energy.

p
re

ss
u

re
0

0
volume

process 1

process 2

A

B

Worked example 6

An ideal gas expands along the path AB shown in the P–V diagram.

a. Calculate the work done by the gas.

b. Show that the initial and the nal temperature of the gas is the same.

c. Hence, state the energy supplied to the gas.

Solutions

a. The work is equal to the area under the path AB. The gas expands 

hence the work is positive. W =
2 × 105 + 4 × 105

2
× 2 × 10 3 = 600 J.

b.  PAVA = 4 × 105 × 2 × 10 3 = 800 Pa m3 and PBVB = 2 × 105 × 4 × 10 3

= 800Pa m3. From the ideal gas equation, since PAVA=PBVB, the 

temperature at A and at B must be the same.

c. Equal temperature means that the gas has the same internal energy in 

both states, so ΔU = 0. The rst law of thermodynamics gives Q = W = 600 J.

A

B

0
0 1 2 3 4 5

1

2

3

4

5

V/ 10 3 m3

P
/

10
5

 P
a

b.  For an ideal gas at a constant pressure, 
T

V
= constant, so 

TB

VB

=
TA

VA

. 
TB

3 × 10 3
=

480

4 × 10 3
 and TB = 360 K.

c. i.  The ideal gas equation implies that nRΔT = PΔV. Hence, the change in the internal energy is  

ΔU =
3

2
nRΔT =

3

2
PΔV =

3

2
× ( 150) = –225 J.

 ii.  From the rst law of thermodynamics, Q = ΔU + W = –225  150 = –375 J. The energy is transferred out of 

thegas.
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Practice questions 

5. A monatomic ideal gas expands at a constant 

pressure of 1.2 × 105 Pa. The initial temperature of the 

gas is 300 K and the initial volume is 1.5 × 10 4 m3

 a. Calculate the number of moles of the gas.

  The work done by the gas during the expansion  

is 6.0 J. 

 b.  Determine:

   i. the nal volume of the gas

   ii. the nal temperature

   iii.  the energy transferred to the gas during  

the expansion.

6. A cylinder with a moveable piston contains an ideal 

gas. The cylinder is placed in a cold environment and 

thermal energy is removed from the gas. The volume 

of the gas decreases from 1.8 × 10 3 m3 to 1.4 × 10 3 m3

at a constant atmospheric pressure of 1.0 × 105 Pa.

a. Calculate the work done.

The nal temperature of the gas is 260 K. 

b. Calculate the initial temperature.

The energy removed from the gas is 100 J.

c. Calculate the change in the internal energy of  

the gas.

An ideal gas and the rst law of thermodynamics

P V diagrams help to visualize four common types of change that occur in a gas:

• isobaric — a change carried out at constant pressure

• isovolumetric — a change carried out at constant volume

• isothermal — a change carried out at constant gas temperature which is 

constant internal energy

• adiabatic — a change carried out with no energy transferred to or from the system.

Isobaric change

Isobaric changes occur at constant pressure. (The word “isobaric” comes from 

two Greek words “iso” meaning “the same” and “baros” meaning “weight”.)

This case was considered in Figure 7(a) where the P V diagram shows a line 

parallel to the V-axis and, in this case, the work transferred was easy to calculate. 

For an isobaric change, the first law of thermodynamics can be written as

Q =ΔU + PΔV

The equation of state for the gas, in this case, is
V

T
= constant

Isovolumetric change

An isovolumetric change occurs when the volume of the gas is constant. 

Therefore the equation of state is

P

T
= constant

Figure 9 shows the P V diagram for this case. The single line parallel to the 

pressure axis makes it clear that the change in volume is zero (ΔV = 0). 

The first law becomes

Q =ΔU + PΔV =ΔU + P × 0

This leads to Q =ΔU. All the heat energy transferred into the system appears as 

internal energy. Conversely, when the first law is written with a negative sign as  

Q = –ΔU, then all the energy is removed from the system and transferred from 

the internal-energy store of the gas.

volume

p
re
ss
u
re

Y

X

▴ Figure 9 An isovolumetric change 

shown on a P–V graph. No work is done 

because the area under the line is zero.
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Isothermal change

The following two equivalent statements describe an isothermal change.

• The internal energy of the system remains constant, and therefore

• the temperature of the system remains unchanged.

This time, the first law Q = ΔU + W becomes Q = W because ΔU = 0. All the 

thermal energy is transferred into the system and appears as work done by 

thegas.

• When the work done is +W, then the gas in its container is expanding 

against theatmosphere (surroundings). 

• When the work done is W, then energy is transferred away from the gas and 

work is done by the surroundings on the gas which is being compressed.

The equation of state for this change is PV = constant. The P V diagram for two 

different temperatures T1 and T2 is shown in Figure 10. Each line is known as an 

isotherm. T1 is greater than T2 here. The larger temperature is always further from 

the origin.

An important question is whether an isothermal change is ever possible. The 

answer is that, in practical terms, it is not. The energy must transfer through 

the boundary between the system and the surroundings without changing the 

temperature of the gas. This can only happen when the energy transfer happens 

very slowly through a boundary that is itself a good thermal conductor. An 

isothermal change will take an infinite time to happen. However, in practice, a 

slow change can be a good approximation to an isothermal change. 

Adiabatic change

When no energy is transferred between the surroundings and the system, the 

change is said to be adiabatic. This is achieved when there is an insulating 

boundary between the system and the surroundings. (They can in principle be at 

different temperatures because of this insulation.)

The first law of thermodynamics tells us that, for adiabatic conditions, Q = 0. 

Therefore, Q = ΔU + W becomes:

• 0 = –ΔU + W, so ΔU = W (work done on the system with an increase in 

internal energy), or 

• 0 = ΔU W, so ΔU = –W (work done by the system with a decrease in 

internal energy). 

As always, you should note the use of the signs here. 

For an ideal monatomic gas, the equation for an adiabatic change is  

PV 
5

3 = constant. You do not need the proof for this equation, but it follows  

from a combination of the first law and the general gas equation. 

At constant temperature, P1V1

5

3 = P2V2

5

3, and when this is divided by 
P1V1

T1

= 
P2V2

T2

, 

then T1V1

5

3 = T2V2

5

3 for conditions where the pressure is constant.

Figure 11 shows a single adiabatic curve (green) on a P V diagram together with 

lines (black) for two isothermal changes. The gradient of the adiabatic curve is 

always greater than that of the isothermals because the exponent of V in the 

adiabatic equation is greater than one.

The exponent 
5

3
 only applies to 

monatomic gases  For molecules 

with two or more atoms, the value 

changes. Calculations that involve 

nitrogen (N2) with two atoms in the 

molecules take the value 
7

5
. Often 

the adiabatic equation is written 

as PV 
γ
= constant, where γ is a 

constant that depends on the 

number of atoms in a gas molecule. 

Why 
5

3
?

V

P

work

done

adiabatic

process

isotherms

T1

T2

▴ Figure 11 An adiabatic process 

compared with two isothermal changes. 

The gas in the adiabatic change moves 

between the two temperatures T1 and T2

volume

p
re
ss
u
re

T1 > T2

T1

T2

▴ Figure 10 Two isotherms for an ideal gas.
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Is an adiabatic change possible? As for the isothermal case, the answer strictly 

is no. There must be no opportunity for any energy to transfer between the 

system and the surroundings. The change in internal energy of the system (that 

is, its temperature change) must be the work being done. Any transfer of energy 

through the system boundary will make the process non-adiabatic.

This leads to the (perhaps surprising) result that an adiabatic change can be 

approximated by a very rapid change from one gas state to another. The essential 

point is that there must be no time for energy to transfer through the system 

boundary (which, in practice, is the wall of the gas container).

Worked example 7

An ideal gas undergoes a cyclic process along the loop 

ABCA, as shown in the P–V graph. The change AB is 

isothermal at a temperature of 900 K.

a. Calculate the temperature of the gas at C.

The work done by the gas during the change AB is330 J.

b. Determine the net work done in one cycle.

c.  Explain whether thermal energy is transferred to the 

gas or from the gas during each of the changes AB, 

BC and CA.

Solutions

a. The change CA is isovolumetric, so 
P

T
= constant. 

1 × 105

TC

=
3 × 105

900
⇒ TC = 300 K.

b. The work done in compressing the gas during the 

isobaric change BC is PΔV= 1 × 105 × ( 2 × 10 3 ) =

200 J. No additional work is done during the nal change CA because the volume remains constant. The net work 

is therefore W= 330  200 = 130 J. The sign is positive; hence the work is done by the gas on the surroundings. 

 Note that this work is equal to the area enclosed by the cycle.

c. During change AB, the internal energy remains constant, ΔU= 0. The rst law of thermodynamics gives Q=W, and 

since W > 0 (work done by the gas), we must have Q > 0 (energy transferred to the gas).

 During change BC, we have W < 0 and ΔU < 0, because the temperature of the gas decreases. From Q=ΔU+W, 

it can be deduced that Q < 0 (energy transferred from the gas to the surroundings).

 During change CA, W= 0 and ΔU > 0, because the gas returns to its original temperature. In this case, Q=ΔU and 

therefore Q > 0 (energy transferred to the gas).

Worked example 8

A monatomic ideal gas at an initial temperature 300 K, pressure 1.00 × 105 Pa 

and volume 3.60 × 10 4 m3 is compressed adiabatically to a new volume of 1.20 

× 10 4 m3. The compression is represented by the change AB in the P–V graph. 

The gas is then allowed to cool at constant volume to the original temperature, as 

represented by the change BC. The dashed line is the isothermal at 300 K.

a. Calculate, for the gas in state B:

 i. its pressure

 ii. its temperature.

b.  Determine the change in the internal energy of the gas during the compression. 

Give the answer to the nearest joule.

0
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c. Hence, state:

 i. the work done during change AB

 ii. the energy transferred during change BC.

Solutions

a. i.  We use the equation of an adiabatic change, PV 
5
3
= constant, so PBVB

5
3
= PAVA

5
3.  

PB (1.2 × 10 4)
5
3

= 1.00 × 105 (3.6 × 10 4)
5
3. From here, PB = 6.24 × 105 Pa.

 ii.  For an ideal gas, 
PV

T
= constant, so 

PBVB

TB

=
PAVA

TA

6.24 × 105 × 1.20 × 10 4

TB

=
1.00 × 105 × 3.60 × 10 4

300
⇒ TB = 624 K.

b. The change in the internal energy is ΔU =
3

2
nR(TB – TA ). We nd the quantity (number of moles) of the gas by 

applying the ideal gas equation to state A. n = 
PAVA

RTA

= 
1.00 × 105 × 3.6 × 10 4

8.31 × 300
 = 1.44 × 10 2 mol.  

ΔU = 
3

2
× 1.44 × 10 2 × 8.31(624  300) = 58 J.

c. We use the rst law of thermodynamics, Q = ΔU + W, to answer both parts of this question.

 i.  The change AB is adiabatic. Hence, Q = 0. The increase in the internal energy is solely due to the work done on 

the gas, 0 = ΔU + W ⇒ W = –ΔU = –58 J.

 ii.  The gas does not change volume from B to C. Hence, W = 0. The gas returns to the original temperature,  

so ΔU = –58 J. An equal amount of energy is removed from the gas: Q = ΔU = –58 J.

Practice questions

7. An ideal gas undergoes a cyclic process that consists of 

an adiabatic compression AB, an isovolumetric process 

BC and an isobaric expansion CA.

B

C
A

volume

p
re
ss
u
re

 The table contains some of the data about the 

process. Q is the energy transferred to the gas, ΔU is 

the change in the internal energy, and W is the work 

done by the gas. 

Q / J ΔU / J W / J

AB −970

BC −1570

CA 1000

a. Complete the table by lling in the missing 

quantities, including the appropriate sign.

b. Determine the net energy that leaves the gas 

during one cycle.

8. A monatomic ideal gas is compressed at a constant 

temperature of 346 K from an initial state A of volume 

5.00 × 10 3 m3 and pressure 2.00 × 105 Pa to a new 

state B of volume 2.20 × 10 3 m3. The isothermal 

compression is followed by an adiabatic expansion to 

a nal state C of volume 5.00 × 10 3 m3

0

0
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a

 Calculate:

 a. the pressure at B

 b. the temperature at C.
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hot reservoir
Th

Qh

work = Qh Qc
Qc

heat

engine

cold reservoir
Tc

▴ Figure 12 A representation of a 

heat engine. This works between a hot 

source at temperature Th and a cold sink 

at temperature Tc. Energy Qh is removed 

from the source while Qc is transferred to 

the sink. The dierence Qh − Qc is used to 

perform work.

V

P

A

D

C

B

Q
c

Q
h

T
h

> T
c

T
h

T
c

▴ Figure 13 A Carnot cycle in which an 

ideal gas is taken through two isothermal 

and two adiabatic processes ABCD. The 

area bounded by the cycle is work done  

by the gas when the arrow directions  

are clockwise. 

Heat cycles and engines

The conversion of internal energy into work is an important one for society 

because it is the basis of a motor or engine. 

A device that performs useful work by continuously converting energy to work is 

known as a heat engine. The principle behind any heat engine (Figure 12) is that 

energy Qh is transferred into the engine at a high temperature Th and that energy 

Qc is rejected by the engine at a lower temperature Tc. The energy difference 

(Qh − Qc) is used for work. Any engine that is to work continuously must 

eventually be returned to its initial state and thus work in a cycle. There must be 

some way to return the heat engine to its original situation.

The thermal efficiency η of the heat engine is

η=
useful work output

input energy
=

Qh − Qc

Qh

The first description of a cyclic heat engine was given by the French engineer and 

physicist Nicolas Léonard Sadi Carnot in 1824. He described a cycle, as shown 

in Figure 13, in which an ideal gas is carried around four processes in sequence: 

two isothermal and two adiabatic. The moving parts of the heat engine are 

assumed to be completely frictionless. This is known as the Carnot cycle. You 

should compare Figure 13 with Figure 11.

The steps in the cycle are:

• Step A→B. The gas undergoes an isothermal expansion when an energy  

Qh is supplied to it at high temperature Th. As the temperature is constant,  

the internal energy of the gas is unchanged. All the energy absorbed (Qh) 

does work on the surroundings through the expansion of the gas.

• Step B→C. The gas expands adiabatically. No energy is absorbed or 

rejected by the gas (Q= 0) but because this is an expansion, the internal 

energy of the gas falls and its temperature decreases to Tc. The gas has 

transferred internal energy into work done on the surroundings, –ΔU=W

• Step C→D. The gas returns to its original state (A) and it does this in two 

stages. First, there is an isothermal compression in which energy Qc is 

rejected to the surroundings. This is entirely work done on the gas as its 

internal energy is unchanged and it is compressed. 

• Step D→A. Finally, there is a further adiabatic compression during which 

the work done on the gas increases the internal energy as the gas returns to 

temperature Th

9. An ideal gas undergoes adiabatic compression AB, 

isobaric expansion BC and isovolumetric process CA. 

The volume at A is 6.00 × 10 4 m3, the pressure at A is 

2.00 × 105 Pa and the pressure at B is 6.00 × 105 Pa.

A

volume

p
re
ss
u
re

a. Calculate the volume at B.

b. Explain why the temperature at B is greater 

thanat A.

c. Calculate the work done during process BC.

d. The work done on the gas during process AB is 

99 J. Calculate the net work done in one cycle.

e. The energy that leaves the gas during process 

CA is 360 J. Calculate the energy transferred to 

the gas during process BC.
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A heat engine that performs the Carnot cycle is reversible. 

A reversible process is one in which a system can be returned to its 

previous state with only an infinitesimal change to the properties of the 

system or its surroundings.

Another interpretation is that:

A reversible process operates continuously in a quasi-static state.  

Quasi-static means that the system and its surroundings are always in a state 

of thermodynamic equilibrium.

These definitions of reversibility imply that a reversible change must be carried 

out infinitely slowly so that the system can return to its exact initial state at the end 

of the cycle.

For a Carnot cycle, the thermal efficiency ηCarnot is given by

ηCarnot =
useful work output

input energy
=

Qh Qc

Qh

=

Th Tc

Th

= 1
Tc

Th

where Th and Tc are absolute (Kelvin) temperatures. 

When the process is irreversible (not reversible), some of the energy will be lost 

to non-useful processes such as friction or turbulence and the difference Qh Qc

will not all be useful work output.

This equation implies that to increase the efficiency of a Carnot cycle (and in 

principle any heat engine), Th should be as large as possible and Tc should be as 

small as possible.

How are efficiency 
considerations important 
in AC/DC motors and 
generators?

Discussions in physics textbooks 

are usually in terms of gases and 

processes in which gases are 

moved around a cycle of changes. 

But this tends to conceal the 

importance to an engineer of 

the efficiency of any process that 

involves a cycle.

Take, for example, the electrical 

generators of Topic D.4. Such 

generators are often fed by 

turbines that are driven by steam. 

The steam will be superheated 

(that is, will be above 100 °C) when 

it enters the turbine and will leave 

at a lower temperature when it has 

expanded and driven the turbine 

around. The difference between 

these temperatures is crucial to the 

overall efficiency. The designers of 

the power station will maximize the 

steam temperature and minimize 

the final temperature at which it is 

rejected to improve theefficiency. 

This may involve a two-stage 

cooling where the steam is 

returned to a heat exchanger to 

decrease its temperature even 

further. The energy from this 

cooling will be used to pre-heat 

the water that is about to be boiled 

to form steam. This second stage 

of temperature reduction improves 

the overall efficiency of the station.

The cooling towers shown in 

Figure 14 are common to many 

forms of power station whether 

they use fossil or nuclear fuels.

Worked example 9

A heat engine is modelled as a Carnot cycle whose hot and cold reservoirs 

are maintained at constant temperatures of 900 K and 350 K, respectively.

a. Calculate the eciency of this cycle.

The energy is transferred from the hot reservoir into the engine at a rate of 

720 W.

b. Calculate:

 i. the useful power developed by the engine

 ii.  the rate at which waste thermal energy is rejected to the  

cold reservoir.

Do not think that heat engines are theoretical devices invented by physicists. 

Such engines can be very real. Take a locomotive steam engine, for example. 

High temperature superheated steam is allowed to expand in a cylinder, 

pushing back a piston. As a result, the steam–air mixture cools and is ejected 

from the piston at a much lower temperature. The original internal energy 

of the steam is greatly reduced. Energy is transferred to the piston and, 

eventually, to the driving wheels and kinetic energy of the locomotive.

Modelling a real heat engine
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▴ Figure 14 This nuclear power station 

uses nuclear fuel to power a turbine. The 

cooling towers in this nuclear power station 

act to keep the temperature Tc as small as 

possible, so that the eciency is improved.

Worked example 10

An ideal gas operating in a Carnot cycle absorbs 1.50 kJ of energy per cycle 

from a hot reservoir of a constant temperature of 490 °C. The gas transfers 

energy to the low-temperature reservoir at a rate of 0.63 kJ per cycle.

Calculate:

a. the eciency of the cycle

b. the temperature of the cold reservoir.

c.  Explain why a practical heat engine operating between the same 

temperatures as a Carnot cycle is likely to require a higher energy input 

from its hot reservoir to do the same useful work.

Solutions

a.  The useful work done by the gas is 1.50  0.63 = 0.87 kJ. The eciency is 
0.87

1.50
= 0.58.

b.  The absolute temperature of the hot reservoir is Th = 490 + 273 = 763 K. 

0.58 = 1 
Tc

763
⇒ Tc = 320 K = 47 °C

c.  For given hot and cold temperatures, the eciency of a practical engine is 

always lower than that of an ideal Carnot cycle. 

Since input energy =
useful work

eciency
, the lower eciency results in a higher 

input energy required.

Practice questions

10. The work done per cycle of a reversible heat engine 

is 5.8 kJ. The engine rejects energy at a rate of 2.4 kJ 

per cycle into a cold reservoir kept at a constant 

temperature of 100 °C.

a. Calculate the energy transferred to the engine 

from the hot reservoir during one cycle.

b. Calculate the eciency of the engine.

c. Assuming that the engine can be modelled as 

a Carnot cycle, calculate the temperature of the 

hot reservoir.

11. The diagram shows a Carnot cycle for an ideal gas.

A

B

C

D

volume

p
re
ss
u
re

 a.  Identify the part of the cycle during which the 

energy is:

   i. transferred to the gas

   ii. transferred from the gas.

 The eciency of the cycle is 0.40. The work done 

during one cycle is 960 J.

 b. Calculate the energy:

   i. transferred to the gas during one cycle

   ii. removed from the gas during one cycle.

12. A heat engine of eciency 0.30 can be modelled 

as a Carnot cycle. The engine rejects waste thermal 

energy into a cold reservoir of temperature  

Tc = 150 °C. An engineer wants to improve the 

eciency of the engine to 0.50 without changing  

the temperature of the hot reservoir. Suggest how 

this can be achieved.

Solutions

a. η = 1 
350

900
= 0.61

b. i. useful power = (input power) × (eciency) = 720 × 0.61 = 440 W

 ii. 720  440 = 280 W

The Carnot cycle represents the 

optimum eciency of a heat 

engine. However, since the 

isothermal stages in the cycle must 

be carried out innitely slowly, the 

power output of a Carnot engine 

is zero.

The consequence is that a 

compromise must be made 

between power output and 

eciency.

Is scientic knowledge limited 

when it is only relevant to an 

unattainable reality?

Achieving optimum 

eciency
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Refrigerators and heat pumps 

The energy transfers in an ideal heat engine can be reversed. A net amount of 

work can be done on the gas or other fluid in the system to transfer energy from 

the cold to the hot reservoir. As before, the engine works between hot and cold 

reservoirs, but the direction of energy transfer is now as shown in Figure 15.

Such a device can be used either as a:

• refrigerator, where as much energy as possible is transferred from the cold 

reservoir for each joule of work done, or a

• heat pump, where as much energy as possible is transferred to the hot 

reservoir for each joule of work done.

The coils of a refrigerator contain a fluid known as the refrigerant (Figure 16). 

The properties of a good refrigerant include:

• low boiling point

• high specic latent heat of vaporization

• low specic heat capacity of liquid

• low vapour density

• easy to liquefy at moderate pressure and temperature.

A compressor (the point at which work is done on the system) raises the pressure 

and temperature of the refrigerant, which then flows into a set of coils on the 

outside of the refrigerator. At this stage, the refrigerant is a gas. The coils are 

hot compared with the temperature of the kitchen and so the gas cools down 

(heating the room) and condenses into a liquid. The internal energy of the liquid 

is rejected into the kitchen as latent heat. 

electrically-powered

compressor

external heat

exchange coil

internal heat

exchange coil

refrigerant

expansion

valve

flow
inside refrigerator

coil behind

(outside) refrigerator

▴ Figure 16 A schematic diagram for a refrigerator. 

W

Q
h

Q
c

hot

cold

▴ Figure 15 The energy transfer diagram 

for a refrigerator or heat pump. The aim now 

is to use energy to heat up the hot reservoir 

at the expense of the cold reservoir (which 

becomes even colder). External work must 

be supplied to do this.

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



A
H
L

287

B. The particulate nature of matter

The fluid then passes through a thermal expansion valve and — as its name 

suggests — the liquid refrigerant expands and becomes a gas again in the coils 

inside the refrigerator. To do this, the fluid requires latent heat and this can only 

come from the interior of the refrigerator, which loses energy and cools. The gas 

travels through these coils and back to the compressor where its state of pressure 

and temperature are changed again. The cycle then continues.

The principle of a heat pump is identical to that of a refrigerator. This time, 

the evaporator coils are in the air outside the house or in the ground nearby. 

The condenser (the equivalent of the coil outside the refrigerator) is inside the 

house so that the work done on the system is transferring energy to make the 

outside become colder and the inside of the house hotter. The benefit of using 

a heat pump for heating a house is that the amount of heat energy Qh provided 

to the house is greater than the work done, since Qh = W + Qc

The power usage of a refrigerator was measured at dierent 

room temperatures. The data are shown in the table below.

The internal temperature of the refrigerator was 3 ± 1 °C.

It is suggested that P∝ΔT 2, where P is the average power and 

ΔT is the dierence in temperature between the inside and 

outside.

• Tabulate values of ΔT and ΔT 2. Calculate the uncertainties 

in these values.

• Plot a graph of P against ΔT 2

• Find the gradient of your line of best t.

• By considering maximum an minimum gradients, establish the uncertainty in your gradient.

• Write an equation to express the relationship between P and the ambient temperature.

Data-based questions

Worked example 11

The working substance of a refrigerator is an ideal gas that undergoes a Carnot cycle in reverse. 

During one cycle, the refrigerator extracts energy Qc = 5.0 J from a cold reservoir of temperature 

2 °C and transfers energy Qh to a hot reservoir of temperature 25 °C.

Calculate:

a. Qh

b. the work done by the refrigerator.

Solutions
a.  The Carnot cycle equation is satised also if the cycle is taken in reverse.  

Qh  Qc

Qh

= 1 
Tc

Th

. 
Qh 5.0

Qh

= 1
273 + 2

273 + 25
⇒ Qh = 5.42 J.

b. W=Qh Qc = 5.42  5.0 = 0.42 J.

T / °C (±1 °C) Average power / W (±2 W)

 8  8

15 13

20 18

25 25

30 35

35 46
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There are several types of internal combustion engines 

used for public and private transport, including the diesel 

engine and the four-stroke petrol (Otto cycle) engine. 

The German engineer Nicolaus Otto developed  

the internal combustion (petrol) engine in the mid  

19th century.

In the theoretical Otto cycle, the gas steps are:

• A–B: an adiabatic compression — a constant entropy 

change because ΔQ= 0 (see page 280) 

• B–C: thermal energy is supplied in an isovolumetric 

change

• C–D: an adiabatic expansion — again at constant 

entropy

• D–A: energy rejection from the system (a cooling) under 

isovolumetric conditions.

In this theoretical cycle (which ignores the intake and 

exhaust processes), the work done by the engine is, as 

usual, the area ABCD enclosed by the loop. Try to match 

the four strokes of the practical Otto cycle to Figure 17.

C

= constantPV

B

D

A

V

P

5

3

▴ Figure 17 The Otto cycle for an internal 

combustion engine.

It is the aim of automotive engineers to maximize the 

efficiency of these engines by choosing ideal running 

conditions for real engines.

Global impact of science  —  Real heat engines

The term “zeroth law of thermodynamics” appears to come from the 1930s 

when Sir Ralph Fowler, a British scientist, was discussing the (then) recent 

work of Meghnad Saha and Bishwambhar Nath Srivastava. These were two 

in a long line of scientists who realized that there is a basic, almost unspoken, 

requirement before the laws of thermodynamics can be expressed. The 

zeroth law essentially says that temperature scales must exist and be 

equivalent to each other. Another way to state this is to imagine three objects, 

A, B and C. When A and B are in thermal equilibrium, and B and C are in 

thermal equilibrium, then A and C must also be in thermal equilibrium. We 

make this basic assumption every time we use a thermometer.

To what extent does a failure to note the basis of a theory invalidate the results 

of the theory?

Zeroth law of thermodynamics

For a heat engine to operate at 

an efficiency of 100%, the sink 

temperature must be 0 K. This is 

not a practical proposition, so this 

100% is not a possible efficiency. 

The upper limit is set by the Carnot 

cycle. However, two parts of this 

cycle involve changes that can 

only take place infinitely slowly. 

The Carnot cycle is certainly not a 

practical proposition either! 

Any real engine or energy source 

must be less efficient that the 

Carnot cycle (because of non-

conservative losses).

Why is there an upper 

limit on the efficiency 

of any energy source or 

engine?
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Worked example 12

A heat engine is modelled by the cycle ABCDA shown in the 

P–V diagram. The working substance is 7.00 × 10 2 mol of a 

monatomic ideal gas. Change AB is an adiabatic compression 

to 
1

4
 of the original volume. During change BC, the pressure 

of the gas increases by a factor of 3 under a constant volume. 

Change CD is adiabatic and change DA is isovolumetric.

The pressure of the gas at A is 1.00 × 105 Pa. 

a. Calculate the pressure at B.

The temperature of the gas at B is 866 K. 

b. Calculate the temperature at C.

c. Calculate the energy transferred to the gas during the 

change BC.

The energy transferred from the gas to the environment during 

the change DA is 600 J. 

 d. Calculate:

  i. the work done by the gas during one cycle

  ii. the eciency of the cycle.

Solutions

a. PB = PA ( VA

VB
)
5
3

= (1.00 × 105) (4)
5
3

= 1.01 × 106 Pa.

b.  For an isovolumetric change, the temperature is directly proportional to the pressure; hence  

TC = 3TB = 3 × 866 = 2598 K.

c.  Since W = 0, we have Q = ΔU =
3

2
nRΔT =

3

2
 (7.00 × 10 2)(8.31)(2598  866) = 1.51 × 103 J.

d. i.  Aer one full cycle, the internal energy of the gas returns to the original value. Hence, the work 

done is equal to the net energy transferred to the gas. The adiabatic processes AB and CD 

transfer no energy. Hence, W = QBC QDA = 1510  600 = 910 J.

 ii. η =
910

1510
= 0.603.

Practice questions 

13. A heat engine whose working substance is a 

monatomic ideal gas operates on the reversible 

cycle shown in the P–V diagram. The change AB is 

an isothermal compression, BC is an isovolumetric 

heating and CA is an adiabatic expansion. The volume 

of the gas at B is 
1

3
 of the volume at A.

 At A the pressure is 9.00 × 104 Pa, the volume is  

1.20 × 10 3 m3 and the temperature is 400 K.

 a. Calculate:

   i. the pressure at B

   ii. the temperature at C

   iii.  the thermal energy added to the gas during 

change BC.

C

B

A

VA VA
1

3

V

P

C
3PB

VAVA

PB
B

1

4

D

A

P

V
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 The work done on the gas during the isothermal 

compression is 119 J. 

 b. Determine:

   i. the net work done during one cycle

   ii. the eciency of the heat engine.

14. Initially, a monatomic ideal gas has a temperature of 

320 K and a pressure of 1.0 × 105 Pa, and it occupies 

a volume of 8.0 × 10 4 m3. The gas undergoes a 

cycle that consists of three changes: an adiabatic 

compression to a volume of 3.0 × 10 4 m3, an 

isothermal expansion to the initial volume and 

cooling at a constant volume to the initial pressure.

 a.  Calculate, at the end of the adiabatic 

compression:

   i. the pressure

   ii. the temperature.

 b.  Calculate the pressure of the gas at the end of the 

isothermal expansion.

 c. Sketch the cycle in the following coordinate grid. 

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10

V/ 10 4 m3

P
/

10
5

 P
a

 The energy supplied to the gas during the isothermal 

expansion is 150 J and the energy removed from the gas 

during the isovolumetric cooling is 110 J. 

 d. Calculate the eciency of the cycle.

The second law of thermodynamics 

The first law of thermodynamics is a statement of the conservation of energy, 

but it does not give any clue as to the preferred direction of energy transfer. The 

second law considers the direction in which energy transfer can occur. There are 

several different ways to express the second law. Two are outlined here. A third 

way reveals another way to think about energy transfer, in terms of the disorder 

that occurs because of the transfer. This involves a new concept called entropy 

that is discussed later in this topic.

One version of the second law is due to Clausius:

Energy cannot be transferred from a body at a lower temperature to a body 

at a greater temperature unless work is done on the system.

In other words, energy will not move spontaneously from a low-temperature 

object to a high-temperature object. Imagine that a cup containing a hot drink 

is placed in a room where the temperature is lower than that of the drink. It is 

impossible for the drink to become hotter at the expense of the temperature 

(internal energy) of the room — which would then cool down. The domestic 

refrigerator is a heat engine that warms a room at the expense of the cold interior 

of the refrigerator, but an input of energy (to the compressor) is required to 

achieve this.

Another version of the second law is due to Kelvin and Planck (sometimes 

attributed just to Kelvin):

Energy cannot be extracted from a hot object and transferred entirely into work.

The Clausius law is just one way 

to express the second law of 

thermodynamics, but even this 

formulation can be written in 

dierent ways. For example:

It is impossible to build a heat 

engine that operates in a cycle 

and produces no eect other 

than the transfer of energy from 

a low-temperature body to a 

high-temperature body.

To what extent do dierent 

expressions of the same rule 

describe the same physical rules?

Dierent expressions
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This means that Qc, the rejected energy, can never be zero for a heat engine and 

therefore η =
Qh Qc

Qh

 can never be equal to 1. The consequence is that a heat 

engine must always be less than 100% efficient because there must always be 

some Qc rejected to the sink at the lower temperature Tc

In any heat engine or other change at the microscopic level, we are transforming 

the internal energy of an object (in other words, the random motion of the 

molecules) into work. This must cool down the object giving the collection of 

molecules a smaller internal energy, effectively making them more ordered. 

Entropy — A macroscopic interpretation

The idea of order in cool objects and disorder in hot objects leads us directly to 

another way to think about the second law of thermodynamics. This involves the 

concept of entropy. We discuss changes in entropy from the macroscopic view of 

a thermodynamic system and then from a microscopic viewpoint

A change in entropy S can be defined on a macroscopic scale for a reversible 

change as

ΔS =
ΔQ

T

where ΔS is the increase in entropy, ΔQ is the energy transferred into a system 

and T is the temperature at which the transfer occurs.

Entropy is a scalar quantity. Its units are joule per kelvin (J K 1). Entropy is a 

property of a system, like temperature and (therefore) internal energy.

When a process is reversible, then there is no change in entropy of the system. In 

symbol terms, ΔS = 0. 

As an example, imagine a gas flowing along a pipe that has a constriction (a 

narrowing in the pipe). Before the constriction, the state of the gas is P1, V1, and 

T1 — these states completely define the gas. At the point of constriction, the state 

is P2, V2 and T2. But imagine also that no energy flows in or out through the pipe 

walls or that there is no turbulent flow anywhere in the gas. This means that, 

beyond the constriction, the state returns to P1, V1 and T1 and, because no energy 

has entered or left the gas, ΔQ = 0 as well. From the definition of entropy, there 

has been no change in entropy during the gas flow. If, on the other hand, there 

had been friction at the walls of the pipe, then there would have been a transfer 

of energy from the gas to the pipe and hence to the surroundings. The gas could 

not then have returned to the initial state after passing the constriction. Because 

energy ΔQ flows out of the gas through the walls of the pipe, this implies that 

the gas temperature must be higher than the surroundings. This is therefore the 

simple case of energy being transferred from a hot body to a cold body where 

Tgas > Tsurroundings. The change in entropy of the universe is

ΔS = –
ΔQ

Tgas

+
ΔQ

Tsurroundings

= ΔQ ( 1

Tsurroundings

1

Tgas
)

making ΔS positive. The overall entropy of the universe has increased.

This is a general rule: 

Entropy formulation of the second law of thermodynamics

The entropy of the universe always increases during an irreversible change.

(Remember that the universe is system + surroundings.) This is the third way to 

express the second law of thermodynamics.

The definition ΔS =
ΔQ

T
 only 

applies for a change where the 

temperature is constant or does 

not change appreciably. When 

there is a temperature change, then 

the definition becomes a calculus 

equation: dS = ∫ 1
T

 dQ. Calculations 

of entropy that involve calculus 

will not be tested in IB Diploma 

Programme physics.

ΔS when the 

temperature changes
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The laws of physics can never be proved. They can only 

be tested through experiments which may support 

the laws or may falsify them. Laws of physics can have 

exceptions. They may apply only to certain situations 

(for example, Ohm’s law or Hooke’s law), or they may be 

universal (laws of thermodynamics and the conservation of 

energy, for example).

Scientists oen seek theories that are simple and that 

can be applied to a wide variety of situations. The laws of 

thermodynamics t this principle well. As such, they have 

always been held in high esteem.

Einstein is quoted as saying:

“A theory is the more impressive the greater the 

simplicity of its premises, the more dierent kinds of 

things it relates, and the more extended is its area of 

applicability. Therefore, the deep impression which 

classical thermodynamics made upon me. It is the 

only physical theory of universal content concerning 

that, I am convinced within the framework of the 

applicability of its basic concepts, will never be 

overthrown.”

Sir Arthur Eddington said in 1927: 

“The law that entropy always increases — the Second 

Law of Thermodynamics — holds, I think, the supreme 

position among the laws of Nature. If someone 

points out to you that your pet theory of the universe 

is in disagreement with Maxwell’s equations — then 

so much the worse for Maxwell’s equations. If it is 

found to be contradicted by observation — well these 

experimentalists do bungle things sometimes. But 

if your theory is found to be against the second law 

of thermodynamics I can give you no hope; there is 

nothing for it but to collapse in deepest humiliation.”

Can the laws of thermodynamics ever be disproved?

The laws of physics

Worked example 13

a.  A sample of 0.15 kg of water at 0 °C freezes. The specic latent heat of fusion of water is  

3.3 × 105 J kg 1. Calculate the change in entropy of the water during freezing.

b.  The freezing takes place outdoors on a winter day when air temperature is −10 °C.  

Calculate the change in entropy of the water–air system as the water freezes.

c.  Comment on your answers to a. and b. with reference to the second law of thermodynamics.

Solutions

a. The energy transferred to the surroundings is mL = 0.15 × 3.3 × 105 = 5.0 × 104 J. 

ΔSwater =
ΔQ

T
= –

5.0 × 104

273
= –180 J K 1. The change is negative (the entropy decreases) because the 

energy is removed from the water.

b. The energy gained by the air is equal to the energy lost by the water. The air temperature does not 

change by any appreciable amount, so the energy transfer to the air happens at a nearly constant 

temperature of 273  10 = 263 K.

 The change in entropy of the water–air system is ΔS = ΔSwater + ΔSair = – 
5.0 × 104

273
+

5.0 × 104

263
= 7.0 J K–1.

c. The entropy of the water decreases, but the entropy of the surroundings (cold air) increases by a 

greater amount. The total entropy of the universe has increased in agreement with the second law of 

thermodynamics, indicating that freezing is an irreversible change.
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Entropy — A microscopic interpretation

Entropy can be defined on a microscopic scale too. The molecules in a gas 

constantly explore all the alternative speeds and positions available to them. 

When there are Ω different arrangements for a group of molecules, then the 

entropy of these molecules is defined to be S = kB ln Ω. Notice that this is the 

value of S not a change in the value of S, unlike the macroscopic definition.

The individual arrangements of the same group of molecules are known as 

microstates. Each microstate is different from the others, but each is equally 

likely to be observed. The atoms in a solid could be perfectly ordered with no 

gaps in the lattice (there is only one way to achieve this), but once some atoms 

are removed to leave gaps, then there are a many different possibilities for the 

positions of the gaps. Many possibilities means many microstates and an increase 

in entropy when the ions are removed.

As an example, imagine a copper crystal that initially has a perfect lattice arrangement 

(Figure 18). Suppose that one copper atom is removed at random from the lattice. 

There are as many ways to do this as there are atoms, but only one arrangement 

can happen in practice. The total number of possible arrangements of the lattice 

with one atom missing are the microstates. The removal has changed Ω from 1 to a 

large number and this increases the entropy (the disorder) in the system using

S = kB ln Ω

The alternative view of entropy says that energy ΔQ has been required to remove 

the atom from the lattice and that this has been carried out at a temperature T, 

leading to the change in entropy, ΔS =
ΔQ

T
It may not be immediately clear why a definition of change of entropy ΔS =

ΔQ

T
and a definition in terms of numbers of arrangements available to gas molecules  

(S = kB ln Ω) are equivalent.

Worked example 14

The diagram shows a Carnot cycle for an ideal gas.

a.  Describe the change in entropy taking place during each part of 

the cycle.

b. State the change in entropy during once complete cycle ABCDA.

Solutions

a. The entropy is constant during adiabatic changes BC and DA. 

ΔQ = 0; hence ΔS = 0.

 The entropy increases during isothermal expansion AB because energy is added to the gas.  

ΔQAB > 0; hence ΔSAB > 0.

 The entropy decreases during isothermal expansion CD because energy is removed from the gas.  

ΔQCD < 0; hence ΔSCD < 0.

b. The gas returns to the original state, so the net change in entropy is zero.

▴ Figure 18 A perfect crystal of a solid 

can have only one possible arrangement. 

Remove just one atom. There are many ways 

in which that this can be done. The entropy 

has increased with this removal.

A
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To understand the link between entropy and randomness, imagine two boxes. One 

box initially contains six counters, labelled 1 to 6. The other box is empty (Figure 19). 

Throw a six-sided die and move the counter with the number that landed 

upwards into the other box. Then throw again, and so on. Whenever the number 

of a counter occurs, then that counter moves to the other box. Figure 19 shows 

the first few moves. 

1 2

3 4

5 6

3 4

5 6 5 6

1 2

5 6

throw a 2 throw a 4 throw a 2

▴ Figure 19 A game that explores all the states of a system. When a six-sided die is thrown, the number that falls uppermost 

dictates which counter is moved. This counter is moved to the other box irrespective of which box it was in originally.

As you play this game, record the average number in each box. You will find that 

this average is three when you play the game for long enough. Even though the 

system is exploring all the possibilities, this value of three in each box occurs 

quite often because there are so many ways in which three counters in the box 

can result. 

Eventually, if you play the game long enough, you will observe every possible 

arrangement (every possible microstate) of the counters. How many are there 

altogether? The answer is 2 × 2 × 2 × 2 × 2 × 2 = 64 = 26. Each counter can 

be placed in one of two ways, independently of the others, so the probabilities 

multiply. Notice that the chance of all counters returning to one box is 1 in 64, so, 

if you are lucky, you may see this occur. 

The configuration where there are three counters is one of six macrostates

for this system. We do not know which particular counters make up the three. 

However, we know that there are 20 ways to achieve three in each box. This is 

the most common macrostate of the six possible arrangements. Figure 20(a) 

shows a histogram of the number of microstates for each macrostate of the  

six-counter system.

▴ Figure 20 The number of ways to arrange counters in the box when there are (a) six counters, and (b) 100 counters.
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Now suppose you played the game with 100 counters with suitable computer 

software to generate the moves. There are now 2100 possible alternatives for the 

counter arrangements, and all counters will appear in one box on average only 

once in 2100 throws — roughly one billion throws. At one throw per second, this 
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will take 34 years to achieve. Finally, imagine one mole of counters: the number 

of alternatives is now 26 × 1023

 and this number, when written out with digits, is 

greater than the radius of the Solar System.

Figure 20(b) shows the variation of number of microstates for the macrostates 

when there are 100 counters. When the system spends an equal time in each 

microstate, it is overwhelmingly more likely that the preferred macrostate is 

50counters in each box.

The game models the expansion of a gas from one container into a container 

of twice the volume. When the gas molecules explore a volume twice as large, 

there are more possible arrangements for the molecules than before. For the  

six-counter game, the ratio 
number of arrangements with volume 2V

number of arrangements with volume V
=

Ω'

Ω
=

26

1

=
64

1
. Remember that 

larger volume

original volume
=

V'

V
= 2, for this case.

The general case of N counters with a volume change from V1 to V2, a ratio of 
V2

V1

, 

leads to a ratio for 
Ω'

Ω
 of (V2

V1
)

N

. There is only one arrangement possible for Ω (all 

molecules in the same volume), so that the number of arrangements is Ω' = (V2

V1
)

N

The definition of entropy is that S = kB ln Ω, so the change in entropy is 

ΔS = kBN(ln V2 – ln V1 ). This can be written as ΔS = kBNΔ(ln V) and, because 

Δ(ln V) =
ΔV

V
, ΔS = kBN 

ΔV

V

The maximum amount of work that a gas can deliver when it expands at constant 

temperature is PΔV. We know from earlier that PV = NkBT, so PΔV = NkBT 
ΔV

V
(dividing both sides by V and multiplying both sides by ΔV).

This rearranges to PΔV = T × (NkB

ΔV

V
), where the expression in brackets is just 

ΔS. Finally, this shows that P × ΔV = T × ΔS, where P × ΔV is, as usual, the energy 

change of the gas when expanding at constant temperature. This leads to the first 

definition of entropy in terms of Q and T:

Q = T × ΔS or ΔS =
Q

T

This non-rigorous proof shows that the concept of entropy as a measure of 

randomness in a system is equivalent to the concept that emerges from the 

energy transfer at a particular temperature.

Worked example 15

A box contains ten identical particles that move randomly and have an equal 

probability of being found in the le-hand half and in the right-hand half of the 

box. A, B and C are three congurations of the system, with zero, two and ve 

particles in the le half of the box.

a. State the number of microstates of the system in conguration A.

b. Show that the number of microstates of the system in conguration B is 45.

c. Calculate the number of microstates of the system in conguration C.

d. All microstates of the system are equally probable. Explain why the system is 

more likely to be found in a state with particles evenly divided between the 

two halves of the box.

e. Calculate, in terms of kB, the value of SC  SA, where SC and SA are the entropies of the system in congurations C 

and A. Comment on the answer with reference to the second law of thermodynamics.

configuration A

configuration B

configuration C

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



A
H
L

Topic B.4 Thermodynamics

296

Ludwig Boltzmann was an Austrian physicist who developed our 

understanding of entropy. The constant kB was named aer him by Max 

Planck who developed the equation S = kB log Ω

However, Boltzmann found it hard to persuade others of his ideas. 

His theory relied on the concept of atoms which could not be directly 

observed at the time. As a result, not all scientists of the time believed that 

atoms existed. While Boltzmann was lecturing in Vienna about atoms, 

Ernst Mach is reputed to have called out “Have you ever seen one?” 

Boltzmann moved away from Vienna, partly to get away from his rival, 

Mach. He only returned to the city when Mach retired.

Sadly, Boltzmann struggled with his mental health and eventually 

committed suicide. The equation for entropy appears on his gravestone.

Social — Resolving conicts ATL

▴ Figure 21 The gravestone of Boltzmann. 

Even at the time of his death, some scientists 

did not believe in the existence of atoms.

Solutions

a. There is only one microstate with all of the particles in the right-hand half of the box.

b. Suppose that the particles are assigned to the le-hand half of the box one at a time. The rst particle can 

be selected in ten ways (any of the ten particles can be the rst one to be placed in the le-hand half), which 

leaves nine choices to pick the second particle. There will be 10 × 9 = 90 arrangements of two particles in the 

le-hand half of the box. But the particles are indistinguishable, so this value must be divided by the number 

of ways in which the two particles can be ordered, 1 × 2 = 2. Thenumber of microstates is 
10 × 9

1 × 2
= 45.

c. We generalize the procedure of assigning one particle at a time to the le-hand half of the box. 
10 × 9 × 8 × 7 × 6

1 × 2 × 3 × 4 × 5
= 252.

 If you take Mathematics AA in the Diploma Programme, you will have noticed that the numbers of microstates 

follow the pattern of the binomial coecients 10C0, 10C2 and 10C5

d. The number of microstates in conguration C is greater than in any uneven conguration, so the probability of 

nding the system in this conguration is greatest.

e. SC SA = kB (ln 252  ln 1) = 5.5 kB. The entropy of conguration C is greater than that of A. From the second 

law of thermodynamics, a system initially in conguration A would spontaneously evolve towards a more 

disordered conguration C.

The implications of the thermodynamic processes discussed here are that — for the universe as a whole — entropy is 

increasing and temperature differences are being smoothed out. These temperature differences drive the processes 

that occur both on the small scale (in car engines) and on the largest scales (events in stars and galaxies). When the 

differences have disappeared and entropy reaches its maximum value, then the processes cannot operate any longer.

This state is sometimes called “the heat death of the universe” and is a hypothesis about the fate of the universe. 

Because everything is in thermodynamic equilibrium, heat engines cannot operate.

This is, in one sense, the ultimate hypothesis because we cannot test this theory. Lord Kelvin postulated the idea of a 

universe heat death in the 1850s while he was attempting to disprove a suggestion that the universe was infinitely old 

and would last for an infinite time.

Kelvin’s idea cannot be called a theory as it cannot be falsified.

What are the consequences of the second law of thermodynamics to the universe as a whole? 
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B. The particulate nature of matter

Living plants and animals develop large amounts of order as they grow. As 

a result, it can appear that they break the second law of thermodynamics by 

decreasing entropy. However, the second law does not prohibit parts of a 

system from developing large-scale order provided that the overall system has 

an entropy increase. The Sun provides the energy source for life on Earth. The 

system under consideration is the Sun and Earth (to a good approximation, 

this system is closed). Entropy increase in the Sun can allow for life to develop 

on Earth.

Global impact of science — Does life break the 
second law of thermodynamics?

Don’t think of paradigm shifts as changes in understanding shared amongst 

a small number of scientists. Such shifts can lead to very real changes for 

everyone. 

There has always been a close historical link between advancements in 

physics and developments in engineering. These paradigm shifts have led 

to changes in human society and to the way in which we live our lives. There 

are many examples of this in the history of science. Changes associated with 

Theme B are obvious: 

• The European industrial revolution was largely driven by the development 

of steam-powered devices which themselves arose from the work 

carried out by the early workers in thermodynamics. Before the change, 

many societies were based on agricultural practice, with artefacts made 

individually by artisan craspeople. Aer the revolution people moved 

away from the countryside to congregate in large towns and cities. From 

then on, their lives were based around an industrial lifestyle.

• The development of electrical devices throughout the 19th and 20th 

centuries has had a profound impact on all human activity. These changes 

range from the extension of the working day through electric lighting, 

to the proliferation of mobile devices in the 21st century — expected to 

exceed 20 billion worldwide during the lifetime of this book.

What other advances in physics have resulted in paradigm shifts that had have led 

to societal change? Try to find one from each of the other Themes in this course.

What paradigm shifts enabling change to human society, 
such as harnessing the power of steam, can be attributed to 
advancements in physics understanding? (NOS) 

The concept of entropy is not 

confined to thermodynamics 

or even physics. It is used in all 

sciences and engineering. Many 

scientists and engineers talk and 

write about entropy as the degree 

of disorder in a system. By this 

they mean that increasing the 

amount of disorder in a system 

increases the number of possible 

arrangements and therefore an 

increase in the system’s entropy.

Information theory makes 

use of the idea of entropy. In 

a communication system, a 

transmitter uses a communication 

channel to send a message to a 

receiver. Because noise occurs 

in the system, the received 

message becomes unpredictable 

compared with the transmitted, 

pure, message. The entropy of 

the system is the average level 

of uncertainty in the information 

that makes up the message. In 

1948, Claude Shannon was able 

to use the result of Harry Nyquist 

and Ralph Hartley to predict the 

maximum rate at which a message 

can be sent over a channel with a 

particular bandwidth and still be 

100% recovered. Although this 

may seem a long way from a gas in 

a box, the mathematics turns out to 

be very similar.

Science as shared 
endeavour — Disorder 
or random?

◂ Figure 22 A plant 

growing on Earth develops 

ordered structures that 

seem to contradict the idea 

that entropy must increase.
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The scientific study of electricity stretches back to the 

earliest days of science. Electrical phenomena, ranging 

from lightning storms down to the simple electrostatic 

attraction between small objects, have always fascinated 

scientists. 

Although the effects of charge flow have been known 

for thousands of years, an understanding of the exact 

mechanisms that allow charges to move through materials 

is relatively recent. In this topic we concentrate on the 

motion of electrons through solid conductors – which 

are usually metals, although some non-metals are also 

conductors. But charge flow through other phases is 

also possible. Chemical electrolysis and the flow of ions 

in gases are important in industrial chemistry and in a 

description of some natural phenomena. The description 

here of electrons flowing around the fixed positive ions of 

a metal can easily be broadened to cases where positive 

charges are also mobile or absent. The charged particles 

are subject to the electric fields that you meet in detail in 

Theme D and these electric fields can be created using 

familiar laboratory items such as cells and power supplies.

Variations in the density of electrons and the other 

microscopic constituents of the solid material imply 

variations in the conduction properties of materials. To 

quantify these, we require a vocabulary that helps us to 

identify the factors that alter the charge flow in a material. 

This is where electrical current (a rate of charge flow) and 

potential difference (a measure of energy transfer) arise. 

Using these two quantities leads us to the resistance of a 

conductor. However, resistance depends on the size and 

shape of the conductor. Resistivity, which follows from 

a definition of resistance, describes the response of a 

particular material to electric charge flow rather than the 

response of an individual specimen.

Finally, we examine the consequences of resistance, both 

in terms of how resistors can be combined in various 

configurations and how they can be used to provide us 

with variations in electrical charge flow.

How do charged particles ow through materials? 

How are the electrical properties of materials quantied? 

What are the consequences of resistance in conductors?

• electric cells as a source of emf that has internal resistance

• chemical cells and solar cells 

• circuit diagrams 

• charge carriers and direct current 

• electrical conductors and insulators 

• electric potential difference as the energy transfer per 

unit charge

• electrical resistance and electrical resistivity

• Ohm’s law

• ohmic and non-ohmic behaviour 

• electrical power

• combining resistors in circuits

• variable resistors and their uses.

In this topic, you will learn about: 

B.5  Current and circuits

▴ Figure 1 The developments in thermodynamics in Topic B.4 are 

associated with the industrial revolution. The developments in our 

understanding of electricity in this topic led to the technological 

revolution.
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Introduction
Take a plastic comb, pull it through your hair and the comb can pick up 

small pieces of paper. Look closely and you may see paper being repelled 

just after it touches the comb. This is because charges can be separated by 

friction. This discovery is attributed to the Greek scientist Thales who lived 

about 2600 years ago. Then, silk was spun on amber spindles and it became 

charged and attracted to the amber. The ancient Greek word for “amber” is 

ηλεκτρον (electron).

In the 1700s, du Fay found that both materials could be “electrified” and that 

there were two opposite “electrifications”. Gradually, scientists developed the 

idea that there were positive and negative charges. The American physicist, 

Benjamin Franklin, carried out a series of experiments in which he flew kites 

during thunderstorms. He named the charge on a glass rod rubbed with silk as 

“positive electricity”. The charge left on materials such as ebonite when rubbed 

with animal fur was called “negative”. 

At the end of the 19th century, J. J. Thomson detected a small particle that he 

called the electron. Later experiments showed that all electrons have identical 

charge and that atoms contain electrons. Atoms also have protons with the same 

magnitude of electronic charge as electrons but an opposite charge sign. Now 

we assign negative charge to the electron and positive to the proton, unlike 

Franklin. Only these two species of charge are known.

Figure 3 shows a shuttling ball, charged at one plate, that is repelled to strike the 

other. The ball then gains the opposite charge to be repelled again. The ammeter 

shows an electric current in the metal wires of the circuit. This links Franklin’s static 

charges to the moving charges of current electricity.

Conduction in metals

The metal atoms in a solid are bound together by metallic bonds. The full details 

of the bonding are complex. However, a simple model of the interior of a metal 

solid suggests that the atoms form a regular lattice arrangement. The details 

of the lattice vary, but the feature common to all metals is that one electron is 

donated from the outer shell of each atom to a common sea of electrons that 

occupies the entire volume of the metal.

Figure 4 shows the model. The positive ions occupy fixed lattice 

positions. These are positive ions because each atom has lost an 

electron. Of course, at all temperatures above absolute zero the ions 

vibrate at these positions. Around the ions is the sea of free electrons or 

conduction electrons; these are responsible for electrical conduction. 

The conduction electrons interact with the ions and transfer kinetic 

energy to them. It is this transfer of energy from electrons to ions that 

accounts for the phenomenon that we call “electrical resistance”.

The energy transfer arises as follows:

In the absence of an electric field, the free electrons move and interact 

with the ions in the lattice. This is a random process. However, when 

an electric field is present (Figure 5), then an electric force acts on the 

electrons because they are charged. The direction of an electric field is 

defined as the direction in which a positive charge moves (Topic D.2), 

▴ Figure 2 Amber—fossilized tree 

resin—is a material that becomes charged 

through friction with materials such as silk.

A
ammeter

high voltage

(approx. 5 kV) supply

metal plate

+
coated

ball

insulating thread

insulating handle

▴ Figure 3 A table-tennis ball coated in 

graphite will shuttle indenitely between 

charged plates due to charge transfer.

The term eld is used in physics 

for cases where two objects, not 

in contact, exert forces on each 

other. We say that, in the case of 

the comb picking up paper, the 

paper is in the electric eld due to 

the comb. Field theory is studied in 

more detail in Theme D.

electrons

leaving

metalelectrons

entering

metal
metal rod

positive ions

▴ Figure 4 A simple model for conduction 

by free electrons in a metal.

(+) high

potential

low

potential (−)

electric field

dri direction

▴ Figure 5 The electrons dri in the 

opposite direction to that of the electric eld.
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Electric current and charge

When charge flows in a material, we say that there is an electric current in it. 

The unit of current is the ampère, the symbol for this is A. Often, in the English-

speaking world, the accent is omitted.

Current is linked to flow of charge carriers in a simple way.

Figure 6 shows a block of electrons with a total charge of one coulomb moving to 

the left along a conductor. An observer at point P watches these electrons move. 

When all the electrons in the block move past P in one second, then the current 

is defined to be one ampere. When it takes twice as long (2 s) for the electrons 

to pass, then the current is half what it was before and is 0.5 A. When the block 

takes only 0.1 s to pass the observer, then the current is 10 A.

Mathematically:

electric current, I=
Δq

Δt

where Δq is the charge and Δt is time.

The ampere is a fundamental unit and is defined as part of the SI. The definition 

of the ampere was changed in 2019 to reflect the link between charge and 

Electrical conduction is also 

possible in gases and liquids 

which contain free ions because 

of their chemical bonding. When 

an electric eld is applied to these 

materials, ions move: positive 

charges in the direction of the eld; 

negative charges the opposite way. 

When this happens, an electric 

current is observed.

Conduction in gases 

and liquids

The simple model given here is of a uid-like ow of free 

electrons through a solid, a liquid or a gas. But this is not 

the end of the story. There are other, more sophisticated 

models of conduction in solids that can explain the 

dierences between conductors, semiconductors and 

insulators. This simple ow model cannot do this. These 

more advanced models involve the electronic band 

theory which arises from the interactions between the 

electrons within individual atoms and between the atoms 

themselves. 

This band model (which comes from the atomic models 

discussed in Topic E.1) suggests that the electrons adopt 

dierent energies within the substance. This leads to 

certain ranges of energy levels (called band gaps) that 

are not available to the electrons. Where these band 

gaps are wide, electrons cannot easily move from one 

set of levels to another, and this makes the substance an 

insulator. Where the band gap is narrow, adding energy 

to the atomic structure allows electrons to jump across 

the band gap and conduct more freely. This is what gives 

a semiconductor its curious properties. You will later 

see that a property of semiconductors is that, by adding 

internal energy to them (for example, by raising their 

temperature), free electrons are released so that there is 

better conduction. In conductors, the band gap is of less 

relevance because the electrons have many energy states 

available to them and so conduction happens very readily. 

You can nd out more about band theory on the Internet.

Models of conduction

one coulomb of electron charge

−

−

−
−

− −

−

−

−

−

−

point P

▴ Figure 6 Electric current is the ow of 

electric charge.

so the force on the electrons will be in the opposite direction to the electric 

field in the metal.

In the presence of an electric field, the negatively charged electrons drift along 

the conductor. The electrons are known as charge carriers. One way to imagine 

the movement of the charge carriers is as a colony of ants carried along a moving 

walkway. Each ant moves at random with an overall drift along the walkway due 

to its motion.

While this model of conduction applies to all metallic conductors, there are 

some circumstances in which we ignore it. A particular case is when we deal with 

the connecting wires used to link practical circuits. Such wires are deliberately 

made from metals such as copper, which provide little resistance to the flow of 

the charge carriers. Using the language of later parts of this topic, the electrical 

resistance of these connecting wires is taken to be zero and they are assumed to 

have zero potential difference between their ends.

▴ Figure 7 A lightning strike can transfer 

about 15 C of charge or more.
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current. The ampere is now defined as one coulomb flowing for one second. 

Implicit in this definition is the knowledge that the magnitude of the charge of 

one electron is 1.602 176 634 × 10−19 C, which links one coulomb to the number 

of electrons that must flow past a point in the one-second time interval. 

The coulomb is a large unit. When you run a comb through your hair, a charge of 

somewhere between 1 pC and 1 nC can be transferred to it. 

You meet the concept of the electric field both in this topic and, extensively, 

in Theme D. In the present topic, we are concerned with the way in which an 

electric field influences the behaviour of conduction electrons. In Theme D, 

electric, magnetic and gravitational fields are studied to reveal similarities and 

differences between them. Electric and gravitational fields are linked by the 

inverse-square relationship between their strength and distance from a point 

charge or mass. However, they differ because of the existence of positive 

and negative charge, whereas there is only positive mass. Magnetic field 

strengths vary with distance in a different way to electric and gravitational 

fields because magnetic monopoles are not observed. The field strength–

distance relationship for a dipole is not inverse-square.

How are the fields in other areas of physics similar to and 

different from each other?

The unit of charge, unlike the 

ampere, is not a fundamental unit, 

so when you are asked for the 

fundamental units of a quantity 

involving the coulomb you should 

immediately change C into A s.

Units

Worked example 2

a.  Calculate the current in a wire through which a charge of 25 C passes in 1500 s.

b.  The current in a wire is 36 mA. Calculate the charge that ows along the wire in one minute.

Solutions

a. Current, I =
Δq

Δt
=

25

1500
= 17 mA   b.    Δq = IΔt = 3.6 × 10−2 × 60 = 2.2 C

Worked example 1

A conducting ball suspended from a long insulating thread (Figure 3) moves between the two 

charged plates at a frequency of 0.67 Hz. The ball carries a charge of magnitude 72 nC each time it 

crosses from one plate to the other. Calculate:

a. the average current in the circuit

b.  the number of electrons transferred each time the ball touches one of the plates.

Solutions

a.  The time interval between the ball hitting the same plate =
1

f
=

1

0.67
= 1.5 s. The time to transfer 

72 nC is therefore half of that: 0.75 s. So, current =
7.2 × 10−8

0.75
= 96 nA

b.  The charge transferred is 72 nC = 7.2 × 10−8 C. Each electron has a charge of −1.6 × 10−19  C, so 

the number of electrons involved in the transfer is
7.2 × 10−8

1.6 × 10−19
= 4.5 × 1011

Practice questions 

1. A lightning strike lasts for 2.0 ms and carries an 

average current of 8.0 kA. Calculate:

a. the charge

b. the number of electrons transferred between the 

thundercloud and the ground.

2. Calculate the time needed for a charge of 5400 C to 

ow through a wire if the current in the wire is 1.2 A.
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The link between charge movement and current is a crucial 

one. Electric current is a macroscopic quantity. Transfer 

of charge by electron ow is a microscopic phenomenon 

in every sense of the word. The link between the ow of 

charge and the existence of an electric current is another 

example of a link in physics between macroscopic 

observations and inferences about what is happening on 

the smallest scales. It was the lack of knowledge of what 

happens inside conductors at the atomic scale that meant 

that scientists, up to the end of the 19th century, had to 

develop concepts such as current and eld to hypothesize 

the “invisible” eects they were observing.

Hypotheses — Making the invisible imaginable

Turn on a lighting circuit at home and the lamp lights 

almost immediately. Does this tell us that the electrons are 

moving very quickly around the connecting wire? In fact 

it does not, because the electrons travel in a conductor at 

speeds of a few millimetres per second. They do not (as is 

often imagined) travel through the wires at velocities close 

to the speed of light. This slow speed at which the ions 

move along the conductor is known as the drift speed. 

A mathematical model of conduction confirms this.

Figure 8 shows a cylindrical conductor carrying an electric 

current I. We assume that there are n charge carriers in 1 m3

of conductor — this quantity is known as the charge density

In one second, a volume Av of charge carriers passes P. 

The total number of charge carriers in this volume is nAv 

and therefore the total charge in the volume is nAvq. This 

is the total charge that passes point P in one second, in 

other words, the electric current, which leads to I = nAvq. 

The slow drift speed in metals, even for large currents, 

poses the question of how a lamp turns on so quickly 

when there is a significant cable run between the 

switch and the lamp. The information that the switch 

has closed travels much more quickly — close to the 

speed of light as an electromagnetic wave. All the 

free electrons in the circuit begin to drift virtually 

simultaneously as the wave propagates. The lamp turns 

on almost instantaneously, even though, for direct 

current, it may take an individual electron many minutes 

to reach the lamp from the power supply.

Modelling — Charge carrier speeds in a conductor

cross-sectional

area, A

n charge carriers

per unit volume

length of volume

swept out in one second

v

P

charge carrier q

▴ Figure 8 A mathematical model for electrical conduction.

Potential dierence

Electric cells and power supplies provide the electric field and transfer energy to 

the electrons. As the electrons move through the conductors, they collide with 

the positive ions in the lattice and transfer the energy they have gained from the 

field to the ions. This is not a transfer of kinetic energy as the electrons do not 

speed up or slow down in the conductors. We shall see later that the electric 

current in a series circuit is the same everywhere.
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In a situation where a field is acting, physicists use two quantities called 

potential and potential difference to deal with the energy transfers. 

Potential difference (often abbreviated to “pd”) is a measure of the electrical 

potential energy transferred to or from an electron when it is moving 

between two points in a circuit. However, given the small amount of charge 

possessed by each electron, this amount of energy is also very small. It is 

better to use the much greater energy transfer associated with one coulomb 

of charge.

Potential difference is defined as the work done 

(energy transferred) W when one unit of positive 

charge q moves between two points along the path of 

the current.

potential difference, V = 
W

q

The symbol given to potential difference is V. Its unit is 

J C−1 (joules per coulomb) and is named the volt (symbol: V) 

after the Italian scientist Alessandro Volta who was born 

in the middle of the 18th century and who made early 

discoveries about electricity. 

In fundamental units, the volt is kg m2 s−3 A−1

The potential difference between two points is one volt (1V) when one joule (1 J) 

of energy is transferred per coulomb of charge passing between the two points.

The simple circuit in Figure 9 illustrates these ideas.

An electric cell is connected to a lamp via a switch and three leads. Figure 9 

shows a picture of the circuit as set up on a bench.

When the switch is closed, electrons flow round the circuit. The diagram also 

shows the direction of a conventional current and the electronic current. The 

two directions are opposite: in this case, clockwise for the electron flow and 

counter-clockwise for the conventional current. The reason for this difference 

is explained later. You need to take care with this difference, particularly when 

using some of the direction rules that are introduced later in this topic and in 

Theme D.

What happens to an electron as it goes round the circuit once? The electron 

gains electric potential energy as it moves through the cell. The electron then 

leaves the cell and moves through the connecting lead and switch. The potential 

differences across the leads and the switch are small because the passage of one 

coulomb of charge through them will not result in much energy transfer to their 

metal lattices. 

After moving through another connecting lead, the electron reaches 

the lamp. The pd across the lamp will be large because it is deliberately 

designed to transfer electrical potential energy from the electrons as they 

pass through it. The metal lattice in the filament of the lamp gains energy. The 

filament in the lamp glows brightly at its increased temperature. We say that 

“the lamp is lit”. 

electronic

 current

conventional

 current

lead

conventional

 current

electronic

 current

lamp

+ −

cell

▴ Figure 9 Conventional current in a 

circuit is from the positive terminal to the 

negative terminal outside the cell. Electronic 

current is in the opposite direction.

In an electric current, the transfer of 

negative charge (electrons) in one 

direction is the same as considering 

the transfer of positive charge in the 

opposite direction.

There are many situations where 

there is an equivalence between 

transferring a quantity of something 

in one direction and transferring the 

opposite quantity in the opposite 

direction. For example, banks and 

nancial institutions trade debt. 

Since a debt is a lack of money, 

moving a debt away from a bank is 

equivalent to moving money into 

the bank.

Try to think of other examples 

where a negative quantity is  

moved in one direction instead  

of a positive quantity in the 

opposite direction.

Thinking skills ATL
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Scientists use working hypotheses to explain their 

discoveries. Sometimes they make the wrong decisions. 

In early studies of current electricity, the idea emerged 

that there was a ow of “electrical uid” in wires and 

that this ow was responsible for the observed eects of 

electricity. This is where much of the language of “current 

and charge ow” arose. At rst, the suggestion was that 

there were two types of uid known as “vitreous” and 

“resinous”. Benjamin Franklin proposed that there was 

only one uid but that it behaved dierently depending 

on the circumstances. He was also the rst scientist to use 

the terms “positive” and “negative”. 

Then scientists assigned a positive charge to the “uid” 

thought to be moving in the wires. This positive charge 

was said to ow out of the positive terminal of a power 

supply (because the charge was repelled from the supply 

terminal) and went around the circuit, and then re-enter 

the power supply through the negative terminal. This is 

what we now term the conventional current. You should 

not confuse this with the electron current.

You may ask: why do we now not simply drop the 

conventional current and talk only about the electronic 

current? The answer is that other rules in electricity and 

magnetism were set up on the assumption that charge 

carriers are positive. All these rules would need to be 

reversed to take account of our later knowledge. It is 

better to leave things as they are.

Hypotheses — Conventional and electron currents

Worked example 3

A high eciency LED lamp is lit for 

2 hours. Calculate the energy transfer 

to the lamp when the pd across it is 

240 V and the current in it is 50 mA.

Solution

2 hours is 2 × 60 × 60 = 7200 s

The charge transferred, Δq= IΔt

= 7.2 × 103 × 50 × 10−3 = 360C

Work done = charge × pd  

= 360 × 240 = 86 400 J

Worked example 4

 A cell has a terminal voltage of 1.5 V and can deliver a charge of 460 C 

before it becomes discharged. 

a. Calculate the maximum energy that the cell can deliver.

b.  The current in the cell never exceeds 5 mA. Estimate the lifetime of  

the cell.

Solutions

a.  Potential difference, V=
W

q
, so W= qV= 460 × 1.5 = 690 J

b.  The current of 5 mA means that no more than 5 mC flows through the cell 

at any time. So 
460

0.005
= 92 000 s, which is about 26 hours.

Practice questions 

3. The potential dierence between a thundercloud 

and the ground is 3.2 × 107 V. A charge of 16 C is 

transferred during a lightning strike. Estimate the 

energy released during the lightning strike.

4. A fully charged mobile phone battery stores 60 kJ 

of energy. During recharging, a current of 1.5 A 

ows through the battery at a potential dierence of 

5.0 V. Assume that the recharging process is 100% 

ecient. In other words, all the work done in moving 

the charge through the battery is transferred into 

electrochemical energy of the battery. The battery is 

initially at 10% of its full capacity. Calculate:

a. the total amount of charge that ows through the 

battery during recharging

b. the time needed to fully recharge the battery.

Eects of electric current 

Electric currents can produce different effects when charge flows. These include: 

• a heating eect when energy is transferred to a resistor as internal energy

• a magnetic eect, when a current produces a magnetic eld, or when 

magnetic elds change near conductors to induce an emf in the conductor

• a chemical eect, when chemicals react together to alter the energy of 

electrons and to cause them to move in a cell or a battery of cells, or when 

electric current in a material causes chemical changes.
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Electromotive force (emf)

An important concept is that of electromotive force (usually written as “emf” 

for brevity). Emf describes the energy transfers in a power source rather than the 

“force” that is implied in its name. 

When charge flows electrical energy can go into another form such as internal 

energy (through the heating effect), or it can be converted from another form (for 

example, light (radiant energy) in solar (photovoltaic) cells). 

The term emf is used when energy is transferred to the electrons in, for example, 

a cell that is using a chemical effect. Other devices can also convert energy into 

an electrical form via magnetic effects. Examples include microphones, electrical 

generators and dynamos.

The term potential difference will be used when the energy is transferred from the 

electrical form. Examples of this are from the electrical form into heat and light 

(resistors and lamps), or from electrical into kinetic energy (motors). 

▴ Figure 10 Electric currents can cause 

heating eects, such as in the heating 

element of this toaster; magnetic eects, 

which cause this fan to work; or chemical 

eects such as the chemical reaction that 

occurs in a cell or battery.

A heat engine (Topic B.4) transfers energy from a hot 

source to a cold sink and performs useful work during the 

process. Heat engines work in a cycle.

Similarly, there are sources that transfer energy into 

the atmosphere and sinks that absorb the energy. The 

atmosphere also operates in a cyclical way.

A complete electric circuit has a cyclic character too. 

This is because, while the switch in the circuit is closed, 

electrons will continue to move around the circuit 

transferring energy from sources of emf to sinks of 

resistance where the energy appears in a thermal form. 

When a direct current (dc) circuit is switched on for a long 

time, one electron can complete the circuit many times.

Another similarity between the circuit and the engine 

and the atmosphere is that the circuit will stop when the 

chemical sources in the cell have all been converted into 

their discharged form. While a heat engine continues 

to run, a temperature difference exists between source 

and sink. The atmosphere will continue to generate 

convection currents and winds for as long as there are 

temperature differences to drive them.

This highlights a difference: temperature differences drive 

a heat engine and the atmosphere. Chemical changes 

drive a chemical cell.

In what ways can an electrical circuit be described as a system like the Earth’s atmosphere or a 

heat engine? 

Power, current and pd

We can now answer the question of how much energy is transferred to a 

conductor by the electrons as they move through it. Suppose there is a 

conductor with a potential difference V between its ends when a current I is in  

the conductor.

In time Δt the charge q that moves through the conductor is q = I ×Δt

The energy W transferred to the conductor from the electrons is q × V which is 

(IΔt) × V

There is also the rate of electrical energy transfer to consider. The energy 

transferred in time Δt is W = IVΔt. The electrical power being supplied to the 

conductor is 
energy transferred

time taken to transfer
=

W

Δt
 and therefore

electrical power supplied, P = IV

Alternative forms of this expression that you will find useful are

I =
P

V
 and V =

P

I

The term “potential difference” 

implies that there is a physical 

quantity, known as “potential”, 

which can differ from point to 

point. This is indeed the case. 

Potential is a concept from field 

theory described in detail in 

Topics D.1 and D.2. Potential 

differences exist between areas of 

high potential and low potential. 

Positive charges—when free to do 

so—move from regions of high to 

low potential. Negative charges 

move from low to high potential. 
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The unit of power is the watt (W). One watt (1 W) is the power developed when 1 J 

is converted in a time interval of 1 s. This is the same definition in both mechanics 

and electricity. Another way to think of the volt is as the power transferred per unit 

current in a conductor.

Worked example 5

A 3 V, 1.5 W lament lamp is connected to a 3 V battery. Calculate:

a. the current in the lamp

b. the energy transferred in 2400 s.

Solutions

a. Electrical power P = IV, so I =
P

V
=

1.5
3

= 0.5 A

b.  The energy transferred every second is 1.5 J, so in 2400 s the energy 

transferred is 1.5 × 2400 = 3600 J.

Worked example 6

An electric motor that is connected to a 12 V supply is able to raise a 0.10 kg 

load through a distance of 1.5 m in 7 s. The motor is 40% ecient. Calculate 

the average current in the motor while the load is being raised.

Solution

The energy gained = mgΔℎ = 0.10 × 9.8 × 1.5 = 1.47 J

The power output from the motor must be 
1.47

7
= 0.21 W

The current =
P

V
=

0.21

12
= 17.5 mA. Since the motor is 40% ecient, the 

current in the motor will be 44 mA.

Practice questions 

5. A cordless drill develops a power of 270 W. A work of 

8100 J is done when a charge of 450 C ows through 

the motor of the drill. What is the current in the 

motor?

A. 9 A  B. 12 A  C. 15 A  D. 18 A

6. The temperature of 1.2 kg of water in an electric kettle 

is raised by 25 °C in one minute. The specic heat 

capacity of water is 4200 J kg−1 K−1

a. Calculate the power developed by the kettle.

b. The kettle is connected to a 230 V source. 

Calculate the current in the kettle’s heating 

element.

7. The terminal potential dierence of the battery of an 

electric car is 450 V. When the car drives at a constant 

speed of 80 km h−1, the average power transferred 

from the battery is 16 kW. The total energy stored in 

the battery is 3.6 × 108 J.

a. Calculate the average current from the battery.

b. Estimate, in km, the range of the car.

 The car’s battery is being recharged from a domestic 

230 V wall socket. The current from the socket is 

limited to 25 A.

c. Calculate the maximum power available for 

recharging.

d. The recharging process is 95% ecient. Estimate 

the minimum time needed to fully recharge the 

car’s battery.
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See page 347 in the Tools for pℎysics section for more on constructing 

circuits from circuit diagrams.
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Circuit troubleshooting is a useful skill 

to have. It is an art in itself and comes 

with experience. A possible sequence 

is as follows.

• Check the circuit: is it really set up 
as in your diagram? 

• Check the power supply (try it with 
another single component such as 
a lamp that you know is working 
properly). 

• Check that all the leads are correctly 
inserted and that there are no loose 
wires inside the connectors. 

• Check the pd across individual 
components using an extra 
multimeter with insulated test 
leads. This will indicate whether the 
live circuit is working as designed.

• Check that the individual 
components are working by 
substituting them into an alternative 
circuit that is known to be working. 

• Check that the fuses in multi-
meters are not blown when 
the meters are used in series to 
measure current.

Circuit troubleshooting

A set of agreed electrical symbols has been devised so that 

all physicists understand what is represented in a circuit 

diagram. They are shown on page 5 of the IB DP Physics 

Data Booklet. Ensure that you can draw and identify all 

of them accurately. There are conventions for drawing, 

interpreting, and using circuit diagrams. When the value 

of a particular component is important for the operation of 

the circuit, it is normal to write its value alongside it. 

There are separate symbols for cells and batteries. Most 

people use these two terms interchangeably, but there 

is a dierence. A battery is a collection of cells arranged 

positive terminal to negative terminal—the diagram for 

the battery shows how they are connected. A cell only 

contains one source of emf. 

Care needs to be taken when drawing one connecting lead 

over another. The convention is that, if two leads cross and 

are joined to each other, then a dot is placed at the junction, 

as shown in Figure 11. When there is no dot, then the leads 

are not considered to be connected to each other.

Drawing circuits

A

V

0–6 V

0–1 A

0–10 V

6 V, 300 mA

▴ Figure 11 Important values for the components 

in an electrical circuit can be written near the 

component. Connections are always shown with a 

“dot” where the wires connect.

Electric cells were one of the first 

laboratory sources of electrical 

energy. They provided the 

early scientists with reliable and 

relatively stable electrical supplies 

for their experiments. The work 

of scientists such as Georges 

Leclanché in the 1880s paved the 

way for portable torches and radio 

batteries in the early part of the 

20th century.

For example, Figure 12 shows a solar-powered lamp. It has a cell 

charged by light from the Sun. Such a lamp makes an incredible 

difference to the lives of people in remote areas of Africa. Children can 

continue to study when night has fallen and it enables their parents to 

extend their working day with all the economic benefits that this can 

bring.

The advantage of all cells is their flexibility. Some cells, such as the 

rechargable lead–acid cell, can provide short bursts of large current. 

Button cells used in wrist watches and similar devices can provide very 

small currents of around 1 mA or less and sustain these currents for years 

before being completely discharged.

What are the advantages of cells as a source of 

electrical energy?

▴ Figure 12 A solar-powered lantern.
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Measuring current and potential dierence

We often need to measure the current in a circuit and the pd across components 

in the circuit. This can be achieved with the use of meters or sensors connected 

to computers (data loggers). There are many types and varieties of meters. For 

example, an analogue meter uses a mechanical system with a coil and magnet 

to move a pointer on a scale, whereas a digital meter converts a reading into a 

digital display.

Ammeters measure the current in the circuit. As we want to know the size of the 

current in a component, the ammeter needs to be in series with the circuit or 

component. An ideal ammeter will not take any energy from the electrons as they 

flow through it, otherwise it would disturb the circuit it is trying to measure. An 

ideal ammeter has zero resistance. Figure 14 shows where the ammeter is placed 

to measure the current. 

Voltmeters measure the energy converted per unit charge that flows in a 

component or components. You can think of a voltmeter as needing to compare 

the energy of the electrons before they enter a component to when they leave it, 

rather like the turnstiles (baffle gates) to a railway station that count the number of 

people (charges) going through as they give a set amount of money (energy) to 

the rail company. To do this the voltmeter must be placed across the terminals of 

the component or components whose pd is being measured. This arrangement 

is called parallel. In an ideal world, the voltmeter will not require any energy. An 

ideal voltmeter has an infinite (large) resistance and no charge flows through it. 

Figure 14 shows how to connect voltmeter.

Electrical resistance

As an electron moves through a metal, it interacts, at the microscopic level, with 

the positive ions and transfers energy to them. At the macroscopic level, an 

electric current is observed to have a heating effect.

However, simple comparisons between different conductors show that the amount 

of energy transferred varies greatly from metal to metal or even between different 

shapes of the same metal. When there is the same current in wires of similar size 

made of tungsten or copper, the tungsten wire will heat up more than the copper. 

We need to take account of the fact that some conductors can achieve better energy 

transfers than others. The concept of electrical resistance is used for this. 

The resistance of a component is defined as 

potential difference across the component

current in the component

The symbol for resistance is R and the definition leads to a well-known equation:

R =
V

I

The unit of resistance is the ohm (symbol Ω; named after Georg Simon Ohm, a 

German physicist). In terms of its fundamental units, the Ω≡ kg m2 s−3 A−2. Using 

the ohm as a unit is much more convenient! 

Alternative forms of the equation are

V = IR and I =
V

R

When both the pd across a component and the current in the component are 

known, then it is possible to calculate the resistance of the component for that 

current.

▴ Figure 13 A conventional laboratory 

analogue multimeter and a digital 

multimeter.

Worked example 7

The current in a component is 

5.0 mA when the pd across it  

is 6.0 V. Calculate:

a. the resistance of the 

component

b. the pd across the component 

when the current in it is 150μA, 

assuming that the resistance of 

the component is the same as 

in (a).

Solutions

a. R =
V

I
=

6

5 × 10–3
= 1.2 kΩ

b.  V = IR = 1.5 × 10–4 × 1.2 × 103

= 0.18 V

▴ Figure 14 Ammeters are connected 

in series with the component whose 

current they are measuring; voltmeters are 

connected in parallel.

A

V
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Practice questions 

8. The heating element of a hair 

dryer has a resistance of 35Ω. 

The hair dryer is connected to a 

230 V power source. Calculate, 

for the hair dryer:

a. the current

b. the power developed.

9. A potential dierence of 4.5 V 

is applied to a coil of wire. The 

coil dissipates an energy of 60 J 

in a time of 20 s. Calculate:

a. the current in the coil

b. the resistance of the coil

c. the charge owing through 

the coil in 20 s.

An ideal ammeter has zero 

resistance — clearly not attainable 

in practice as the coils or circuits 

inside the ammeter have resistance.

An ideal voltmeter has an innite 

resistance — again, not a practical 

situation.

Some modern digital meters can 

get close to these ideals of zero 

resistance for ammeters and innite 

resistance for voltmeters. Digital 

meters are used more and more in 

modern science.

In questions, you can assume that 

a voltmeter or ammeter is ideal 

unless otherwise stated. As you will 

see later in this topic, you can still 

do calculations as long as you know 

the resistance of the meter.

Ideal and non-ideal 

meters

• Tool 1: Understand how to accurately measure electric current to an 

appropriate level of precision.

• Tool 3: Express quantities and uncertainties to an appropriate number of 

significant figures or decimal places.

• Tool 3: Calculate mean and range.

• Take a piece of metal wire (an alloy called constantan is a good one to 

choose) and connect it in the circuit shown in Figure 14. 

• Use a power supply with a variable output rather than a cell so that you 

can alter the pd across the wire easily. Your teacher will suggest suitable 

power supplies and meters for your experiment.

• If your wire is long, coil it around an insulator (perhaps a pencil) and 

ensure that the coils do not touch. 

• Take readings of the current in the wire and the pd across it for a range of 

currents. Your teacher will tell you an appropriate range to use to avoid 

changing the temperature of the wire. 

• For each pair of readings divide the pd by the current to obtain the 

resistance of the wire in ohm.

• Calculate an average value for the resistance, and round it to the correct 

number of significant figures based on the significant figures of your data.

Measuring the resistance of a metal wire

Electrical resistance is explained through the interaction 

of the electrons with the bulk of the solid — the lattice. 

Initially, an electron gains energy from the electric field 

that exists across a conductor because of the emf from the 

energy source (the cell). Topic D.2 goes into more detail 

about the way in which charges interact with an electric 

field. The electron interacts with the metal lattice and its 

atoms, transferring energy to them. This energy appears 

within the material as atomic vibrations. The more energy 

that electrons transfer, the greater the energy stored 

in atomic vibrational states and therefore the greater 

the average speeds of the atoms and the greater the 

temperature. It is the effectiveness of the energy transfer 

that we call resistance.

The nature and regularity of a metallic lattice lead to the 

existence of quantized acoustic waves that travel within 

the lattice. You will meet the idea of quanta in Theme E.

How does a particle model allow electrical resistance to be explained? (NOS)

How can the heating of an electrical resistor be explained using other areas of physics?
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The conversion of electrical energy into internal energy was one of the first uses 

of distributed electricity. Thomas Edison was an inventor and entrepreneur who 

worked in the US in the second half of the 19th century. He pioneered electric 

lighting, the earliest forms of which were provided by producing a current in 

a metal or carbon filament which then glowed (Figure 15). Early lamps were 

primitive, but produced a revolution in the way that homes and public spaces 

were lit. The development continues today as inventors and manufacturers 

seek more and more efficient electric lamps such as light-emitting diodes (LED). 

More developments in lighting will undoubtedly occur during the lifetime of 

this book. 

Global impact of science — Edison and his lamp

▴ Figure 15 One of the rst lamps 

developed by Thomas Edison.

Ohm’s law 

Lots of information can be obtained from a graph of the variation of pd with 

current for a component. Such a graph is known as a V I graph. Figure 16 shows 

the results from the plot of a graph of V against I for a metal wire.

–2.00

–1.50

–1.00

–0.50

0.00

0.50

1.00

1.50

2.00

–0.80 –0.60 –0.40 –0.20 0.00 0.20 0.40 0.60 0.80

pd / V

current /  A

▴ Figure 16 A typical V I graph for a metal conductor at constant temperature. 

A straight line of best fit has been drawn through the data points. For this wire, 

the resistance is the same for all values of current measured. Such a resistor is 

called an ohmic conductor. An equivalent way to say this is that the potential 

difference and the current are directly proportional (the line is straight and goes 

through the origin). In the experiment carried out to obtain these data, the 

temperature of the wire did not change. 

This behaviour of metallic wires was first observed by Georg Simon Ohm in 1826. 

It leads to a rule known as Ohm’s law. 

Ohm’s law states that the potential difference across a metallic conductor 

is directly proportional to the current in the conductor providing that the 

physical conditions of the conductor do not change

By physical conditions we mean the temperature (the most important factor as 

we shall see) and all other factors about the wire. But the temperature factor is so 

important that the law is sometimes stated with the term “temperature” replacing 

the words “physical conditions”.

Ohm’s law has its limitations 

because it only tells us about 

a material when the physical 

conditions do not change. It did 

not nd immediate favour with the 

scientic community. In contrast, 

Barlow was an English scientist 

who was highly respected for 

his earlier work and had recently 

published an alternative theory 

onconduction. People simply  

did not believe that Barlow  

could be wrong. 

This immediate acceptance of 

one scientist’s work over another 

would not necessarily happen 

today. Scientists use a system of 

peer review. Work published by 

one scientist or scientic group 

must be set out in such a way that 

other scientists can repeat the 

experiments or collect the same 

data to check that there are no 

errors in the original work. Only 

when the scientic community 

has veried the data is new work 

accepted as scientic “fact”. 

Science as a shared 

endeavour — Ohm and 

Barlow 
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Worked example 8

The graph shows how the current I varies with the potential dierence V for 

an ohmic conductor R and a non-ohmic component S.

a. Calculate the resistance of R.

b. Outline how the resistance of S varies with the potential dierence 

across it.

c. Calculate the resistance of S when the potential dierence is 6.0 V.

d. Determine the current in S when it dissipates a power of 3.6 W.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5

V / V

I /
 A

6 7 8 9 10

R

S

Solutions

a. R =
V

I
=

6.0

0.6
= 10 Ω. The ratio is constant and does not depend on the 

particular point chosen to read off the values of V and I

b. The ratio 
V

I
 increases with V (a straight line joining the origin with an 

arbitrary point on the curve becomes less steep as V increases). Hence 

the resistance of S increases with the potential difference.

c. R =
6.0

0.30
= 20 Ω

d. We need to identify I and V so that IV = 3.6 W. By examining the curve, we 

find that the correct combination is V = 9.0 V and I = 0.40 A.

4

2

20−40 0

0

−2

−4

−6

6
pd/V

current/mA

▴ Figure 17 A lamp lament does not have a constant temperature as the current in it 

increases. The V I graph which is a curve going through the origin shows this. 

• Tool 3: Construct and interpret 

tables and graphs for raw and 

processed data including 

scatter graphs and line and 

curve graphs.

• Inquiry 2: Collect and record 

sufficient relevant quantitative 

data.

Use the circuit (Figure 14) that you 

used to calculate the resistance of a 

metal wire but replace the wire by a 

lament lamp. 

• Your teacher will suggest the 

range of currents and pds to use. 

• Do the experiment twice, the 

second time with the charge 

flowing through the lamp in the 

opposite direction to the first. 

There are two ways to achieve 

this. The first is to reverse the 

connections to the power 

supply, also reversing the 

connections to the ammeter 

and voltmeter (if the meters are 

analogue). The second way 

is easier. Simply reverse the 

lamp and call all the readings 

negative because the currents 

are in the opposite direction 

through the lamp. 

• Plot a graph of V (y-axis) against 

I (x-axis) with the origin in the 

centre of the paper. Figure17 

shows an example of a V–I 

graph for a lamp.

Resistance of a lamp 

lament

This statement attributed to Ohm 

is always called a law—but is it? 

In reality, it is an experimental 

description of how a group of 

materials behave under rather 

restricted conditions. 

Does that make it a law?

Ohm’s law
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Non-ohmic behaviour 

The graph in Figure 17 is not straight (although it goes through the origin), so 

V and I are not proportional to each other unlike the metal wire at constant 

temperature. The lamp does not obey Ohm’s law and it is said to be non-ohmic. 

When the resistance is calculated using the data points it is not constant either. 

Table 1 shows the resistance values for six data points.

The data show that resistance of the lamp increases as the current increases. At 

large currents, greater changes in pd are required to change the current by a 

fixed amount. This is exactly what you can predict. Each electron transfers the 

same amount of energy to the filament. As the current increases, the drift speed 

of the electrons increases and so more energy is transferred from each electron 

every second. The energy goes into increasing the kinetic energy of the lattice 

ions and therefore the temperature of the bulk material rises too. But the more 

the ions vibrate in the lattice, the more the electrons collide with them so at 

higher temperatures even more energy is transferred to the lattice by the moving 

charges. 

Other non-ohmic conductors include semiconducting diodes and thermistors. 

These are devices made from a group of materials known as semiconductors.

Table 1 shows how the resistance of a lamp’s lament 

changes with current. Use these data to complete the 

following tasks.

It is suggested that the resistance varies according to 

the relationship R – R0 = kIn, where R is the resistance 

of the lament, R0 is the resistance at small currents 

(approaching zero), I is the current, k is a constant and n is 

an integer.

• Plot a graph of R against I and show that R0 is about 

47Ω

• Tabulate values of log(I) and log(R− R0) using R0 = 47.

• Plot a graph of log(R− R0) against log(I). Hence, show 

that a suitable value for n is 3.

• The uncertainties in the values of I can be assumed to 

be ±1 mA. Tabulate values of I3 and the uncertainties 

in I3

• Plot a graph of R against I3. Include uncertainties on 

your graph (the uncertainty in the values of R may be 

assumed to be ±1Ω).

• Add a line of best t to your graph of R against I3. Use 

this to nd a value of the constant k and an improved 

estimate of the value of R0

Data-based questions

Current / mA Resistance /Ω

20 50

34 59

41 73

47 85

52 96

55 109

▴ Table 1 How the resistance of a lamp 

lament changes with current.

Notice that the resistances in the table were calculated 

for each individual data point using R =
V

I
. They were not

evaluated using the tangent to the graph at a particular 

current. In other words, the denition of resistance is 
V

I

not in terms of 
ΔV

ΔI
, which is the value of the tangent.

Another aspect of Ohm’s law is also misunderstood. 

Our denition of resistance is that R =
V

I
 or V = IR. 

However, Ohm’s law states that:

V ∝ I 

and, including the constant of proportionality k,

V = kI

Even though R is dened in the same way as k, the 

denition of resistance does not correspond to Ohm’s  

law (which just states proportionality). Therefore, V= IR

is not a statement of Ohm’s law.

Ohm’s law and the denition of resistance
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Resistivity 

The resistance of a sample of a material depends not only on what it is made of, 

but also on the physical dimensions (the size and shape) of the sample itself. 

The resistance of a conductor is:

• proportional to its length L, R ∝ L

• inversely proportional to its cross-sectional area A (or diameter2, d2),  

R ∝ 
1

A
or 

1

d2
 .

Combining these two results suggests that R ∝ 
L

A
. This means that 

R A

L
 is constant 

for a given material and leads to a definition of a new quantity called resistivity. 

Resistivity ρ is defined as ρ =
R × A

L

The unit of resistivity is the ohm-metre (symbol Ωm). 

Resistivity is a useful quantity. The electrical resistance of an object depends not only 

on what it is made from, but also the shape of the sample. Even a constant volume 

of a material will have values of resistance that depend on the shape. However, the 

value of the resistivity is the same for all pure samples of the material. 

Resistivity is independent of shape or size just like quantities such as density 

(where the value is mass per unit volume) or specific latent ℎeat (where the value 

is related to unit mass of the material).

Take care here: the resistivity  

unit is ohm metre. It is not

ohm metre−1—a mistake frequently 

made by students. The meaning 

of ohm metre−1 is the resistance of 

one metre length of a particular 

conductor, which is a relevant 

quantity to know, but is not the 

same as resistivity.

Units of resistivity

Worked example 10

Calculate the resistance of a block of copper that has a length of 0.012 m 

with a width of 0.75 mm and a thickness of 12 mm. The resistivity of copper 

is 1.7 × 10–8Ω m.

Solution

The cross-sectional area of the block is 7.5 × 10–4 × 1.2 × 10–2 = 9.0 × 10–6 m2

The relevant dimension for the length is 0.012 m,  

so R =
ρL

A
=

1.7 × 10–8 × 0.012

9.0 × 10–6
= 0.023 m Ω

Worked example 9

A uniform wire has a radius of 0.16 mm and a length of 7.5 m. Calculate the 

resistance of the wire when the resistivity of the metal is 7.0 × 10–7Ω m.

Solution

Unless told otherwise, assume that the wire has a circular cross-section. So, 

area of wire = π(1.6 × 10–4)2 = 8.04 × 10–8 m2

ρ =
RA

L
, so R =

ρL

A
=

7.0 × 10–7 × 7.5

8.04 × 10–8
= 65 Ω
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Practice questions 

10. Two wires X and Y are made of the same material. 

Wire Y has half the length of wire X and twice the 

diameter. What is 
resistance of X

resistance of Y
?

A. 1   B. 2   C. 4   D. 8

11. The lament of a light bulb is a coil of tungsten wire of 

length 1.5 m and diameter 4.0 × 10–5 m. The resistivity 

of tungsten at the operating temperature of the 

lament is 7.4 × 10–7Ω m.

a. Calculate the resistance of the lament.

b. The light bulb is connected to a 230 V source. 

Calculate:

 i. the current in the lament

 ii. the power of the light bulb.

12. A wire of length 5.0 m and a uniform cross-sectional 

area 7.9 × 10–7 m2 carries a current of 1.5 A. The 

potential dierence across the wire is 0.25 V. 

Calculate:

a. the resistance of the wire

b. resistivity.

13. The resistance of a copper wire of length 12 m and 

uniform diameter is 0.10Ω. The resistivity of copper is 

1.7 × 10–8Ω m. Determine the diameter of the wire.

14. The graph shows how the resistance R of a wire varies 

with the length L of the wire. The wire has a uniform 

diameter of 0.75 mm.

 Determine the resistivity of the material of the wire.

0

2

4

6

8

0 0.5 1

L / m

1.5 2

R
/

 Ω

There is a simple analogy between thermal and electrical effects. 

Compare thermal conduction with electrical conduction for a wire of cross-section area A and length ΔL

Tℎermal 

The rate of transfer of internal energy Q is proportional to temperature gradient 
ΔT

Δx
:

Q

Δt
= – 

A

K

ΔT

Δx
, where K is the thermal resistivity of the material. This follows from the equation for thermal energy transfer 

in Topic B.1. Notice that the constant K is the reciprocal of k, not the same as in the earlier topic.

Electrical 

The rate of transfer of charge q (in other words, the current) is proportional to potential gradient: 
Δq

Δt
= – 

A

ρ

ΔV

ΔL
, where  

ρ is the electrical resistivity of the material. 

The thermal resistivity K of a material and the electrical resistivity ρ are analogous. The temperature gradient and the 

electric potential gradient are equivalent in the expressions. The rate at which both internal energy and charge are 

carried through the wire is related to the presence of free electrons in the metal. This is more than a similarity between 

macroscopic equations: similar physics is involved at the microscopic scale. 

Are good electrical conductors also good thermal conductors? See the data-based question on page 216, or you could 

compare the values of ρ and 
1

k
 for different metals using a book of data or values from the internet.

What are the parallels in the models for thermal and electrical conductivity? (NOS)
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• Tool 3: Select and manipulate equations.

• Inquiry 1: Demonstrate creativity in the designing, 

implementation or presentation of the investigation.

• Inquiry 2: Collect and record sufficient relevant 

quantitative data.

Graphite is a semi-metallic conductor and is a constituent 

of the lead in a pencil. Another constituent in the 

pencil lead is clay. It is the ratio of graphite to clay that 

determines the “hardness” of the pencil. This experiment 

enables you to estimate the resistivity of the graphite.

pencil

V

A

▴ Figure 18 A circuit to estimate the resistivity of graphite.

• Take a B grade pencil (also known as  1 grade in the 

US) and remove about 1.5 cm of the wood from each 

end leaving a cylinder of the lead exposed. Attach a 

crocodile (alligator) clip firmly to each end. 

• Connect the pencil in a circuit to measure the 

resistance of the lead. Expect the resistance of the 

pencil lead to be about 1Ω when choosing your 

power supply and meters.

• Determine the resistance of the lead.

• Measure the length of pencil lead between the 

crocodile clips.

• Measure the diameter of the lead using a micrometer 

screw gauge or digital callipers to enable you to 

calculate the area of the lead.

• Use your data to calculate the resistivity of the lead. 

The accepted value of the resistivity of graphite is 

about 30μΩm but you will not expect to get this 

value because the clay in the lead changes the value.

You can take the experiment one step further with this 

challenge:

• Use your pencil to shade a 10 cm by 2 cm area on a 

piece of graph paper as uniformly as possible. This 

will make a graphite resistance film on the paper. 

• Devise a way to attach the graphite film to a suitable 

circuit. Then measure the resistance of the film. Knowing 

the resistance and the dimensions of your shaded area 

should enable you to work out how thick the film is.

(Hint: in the resistivity equation, the length is the distance 

across tℎe lm, and the area is widtℎ of tℎe lm × tℎickness 

of tℎe lm.) 

Resistivity of pencil lead

Combining resistors 

Electrical components can be linked together in two ways in an electrical circuit: 

• in series, where the components are joined one aer another like the 

ammeter, the cell and the resistor in Figure 14, or 

• in parallel like the resistor and the voltmeter in the same gure. 

Components connected in series (the power supply and the ammeter in 

Figure14) have the same current in each. The number of free electrons leaving 

the first component must equal the number entering the second component. If 

free electrons remained in the first component, then it would become negatively 

charged and would repel further electrons, preventing them from entering it. The 

flow of charges would rapidly stop. 

In series the potential differences (pds) add. As the charge travels through 

two components, the total energy lost is equal to the sum of the two separate 

amounts of energy in the components. Because the same charge flows through 

both (they are in series), the sum of the pds is equal to the total drop in pd across 

them. 

Components connected in parallel (the voltmeter and the resistor in Figure14), 

on the other hand, have the same pd across them, but the currents in the 

components differ when their resistances are different. 
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Consider two resistors of different resistance values, in parallel with each other 

and connected to a cell with no resistance of its own. When one of the resistors 

is temporarily disconnected, then the current in the remaining resistor is given by 

emf of the cell 

resistance
. This will also be true for the other resistor when connected alone. 

When both resistors are now connected in parallel with each other, both resistors 

have the same pd across them because a terminal of each resistor is connected 

to one of the terminals of the cell. The cell will have to supply more current than 

when either resistor was there alone. To be precise, it supplies the sum of the 

separate currents. 

These rules about currents and potential differences in series and parallel 

components are important for you to understand and to be able to use. 

• Inquiry 1: Demonstrate independent thinking, 

initiative, or insight.

• Inquiry 2: Collect and record sucient relevant 

quantitative data.

• Inquiry 3: Relate the outcomes of an investigation to 

the stated research question or hypothesis.

For this experiment you need six resistors, each one with 

a tolerance of ±5%. Two of these resistors should be the 

same. The tolerance figure means that the manufacturer 

only guarantees the value to be within 5% of the nominal 

value. “Nominal” means the value marked on the resistor. 

Your resistors may have the nominal value written on them 

or you may have to use the colour code printed on them. 

The code is easy to decipher (Figure 19). 

silver
gold
black
brown
red 2
orange
yellow
green
blue
violet

0.01

2

multiplier tolerance

0.1
1

10
100

1 k
10 k

100 k

10%

5%

1%

2%

0.5%

1 M
10 M

grey
white

0
1

3
4
5
6




 ×1k ±5% = 2kΩ ±5%

▴ Figure 19 The colour code used to mark resistors.

You also need a multimeter set to measure resistance 

directly and a way to join the resistors together and 

connect them to the multimeter. 

• Measure the resistance of each resistor alone and 

record this in a table. 

• Take the two resistors that have the same nominal value 

and connect them in series. Measure the resistance of 

the combination. Can you see a rule for the combined 

resistance of two resistors? 

• Repeat with ve of the possible combinations for 

connecting resistors in series. 

• Now measure the combined resistance of the two 

resistors with the same nominal value when they are 

in parallel. Is there an obvious rule this time? 

• One way to express the rule for combining two 

resistors R1 and R2 in parallel is that the combined 

resistance is 
R1 R2

R1 + R2

. Test this relationship for ve 

combinations of parallel resistors. 

• Test your two rules together by forming combinations 

of three resistors such as:

and

Combining resistors in series and parallel

Currents…
Potential 

dierences…

In series … are the 

same

… add

In parallel … add … are the same

▴ Table 2 A summary of currents and pds 

in series and parallel.
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Resistors in series 
Three resistors R1, R2 and R3 are in series in Figure 20. 

I

R2 R3R1

V1 V2

V

V3

▴ Figure 20 A single resistor is to replace the three series resistors. The value of this single 

resistor must be equal to the sum of the three resistance values.

What is the resistance of the single resistor that can replace them so that the 

resistance of the single resistor is equivalent to the combination of all three? 

The resistors are in series and therefore the current I is the same in each resistor. 

The definition of resistance tells us that the pd across each resistor, V1, V2 and V3 is 

V1 = IR1, V2 = IR2 and V3 = IR3

The single resistor with a resistance R must be indistinguishable from the three in 

series. In other words, when the current through this single resistor is the same as 

that through the three, then it must have a pd V across it such that V = IR. As the 

three resistors make up a series combination, the potential differences add,  

so V = V1 + V2 + V3  Therefore IR = IR1 + IR2 + IR3 and so

in series

Rs = R1 + R2 + … + Rn

When resistors are combined in series, the resistances add to give the  

total resistance.

Resistors in parallel 
Three resistors in parallel (Figure 21) have the same pd V across them. 

The current in the connecting lead is equal to the sum of the currents in the three 

separate resistors. Therefore I = I1 + I2 + I3. Each current can be written in terms of 

V and R using the definition of resistance: 
V

R
=

V

R1

+
V

R2

+
V

R3

. Finally, both sides of 

the equation are divided by V, so

in parallel

1

R
p

=
1

R
1

+
1

R
2

+ ... + 
1

R
n

In parallel combinations of resistors, the reciprocal of the total resistance is 

equal to the sum of the reciprocals of the individual resistances.

The parallel equation needs some care in calculations. The steps are: 

• Calculate the reciprocals of each individual resistor.

• Add these reciprocals together. 

• Take the reciprocal of the answer. 

A frequent error is to ignore the last step; Worked example 11 shows the correct 

approach. 

I
R2

R3

R1

I1

I2

I3

V

▴ Figure 21 The single resistance value 

that can replace the three resistors in parallel 

is the reciprocal of the sum of the individual 

reciprocal resistances. O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



Topic B.5 Current and circuits

318

Worked example 13

Four resistors, each of resistance 1.5 Ω, are connected as 

shown. Calculate the combined resistance of these resistors.

Solution

Two 1.5 Ω resistors in parallel have a resistance given 

by 
1

R
=

1

1.5
+

1

1.5
=

2

1.5
. So R = 0.75 Ω

Two 0.75 Ω resistors in series have a combined resistance of 0.75 + 0.75 = 1.5 Ω

Worked example 14

Three resistors of resistances 100Ω, 200Ω and 300Ω are connected in series to a cell of emf 12 V. Calculate:

a. the current in each of the resistors    b. the potential difference across the 100Ω resistor.

Solutions

a. The total resistance of the circuit is 100 +200 + 300 = 600Ω. The current is the same  

in each resistor and equal to the overall current in the circuit, I =
12

600
= 0.020 A.

b. V = IR = 0.020 × 100 = 2.0 V. Note that the overall potential difference of 12 V is divided  

between the individual resistors in the proportion of their resistances. 100 Ω is 
1

6
 of the  

combined resistance, and therefore the pd across the 100 Ω resistor is 
1

6
 of the emf of the cell.

Worked example 12

2.0 Ω, 4.0 Ω and 8.0 Ω resistors are connected as shown. 

Calculate the total resistance of this combination.

Solution

The two resistors in parallel have a combined resistance of 

1

R
=

1

R1

+
1

R2

=
1

4
+

1

8
=

3

8
. So R =

8

3
= 2.67 Ω.

This 2.67 Ω resistor is in series with 2.0 Ω, so the total combined resistance is 2.67 + 2.0 = 4.7 Ω

Worked example 11

Three resistors of resistance 2.0Ω, 4.0Ω and 6.0Ω are connected. Calculate the  

total resistance of the three resistors when they are connected

a. in series    b. in parallel.

Solutions

a. In series, the resistances are added together, so 2 + 4 + 6 = 12 Ω.

b. In parallel, the reciprocals are used:

1

R
=

1

R1

+
1

R2

+
1

R3

=
1

2
+

1

4
+

1

6
=

6 + 3 + 2

12
=

11

12

The final step is to take the reciprocal of the sum, so R =
12

11
= 1.1 Ω.

When the networks of resistors are more complicated, then the individual parts of the network  

need to be broken down into the simplest form. Do this in the following order: parallel then series.

2.0 Ω

4.0 Ω

8.0 Ω
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Practice questions 

15. Calculate the combined resistance of each of the 

following arrangements of resistors.

a. 200 Ω

100 Ω

300 Ω

b. 200 Ω 100 Ω

300 Ω

16. A potential dierence of 6.6 V is applied between 

points X and Y in each of the arrangements in  

question 15. 

 Determine, for each arrangement, the current in the 

100Ω resistor and the potential dierence across it.

17. Ten identical lamps of resistance 30Ω each are 

connected in parallel to a 12 V voltage source as 

shown in the diagram.

12 V

A

 a. Calculate:

 i. the current in each of the lamps

 ii. the total resistance of the circuit

 iii. the reading of the ammeter.

 b.  One of the lamps fails. Deduce, without any 

further calculation, how the reading of the 

ammeter will change.

18. A resistor of resistance R and a light emitting diode are 

connected in series to a 3.0 V cell, as shown. 

3.0 V

A

R

 The diagram shows the variation of the current I in the 

diode with the potential dierence V across it.

0

20

10

40

30

50

0 0.5 1

V / V

1.5 2.5 32

I /
 m

A

 a.  The current in the circuit is 20 mA. State the 

potential dierence across:

 i. the diode ii. the resistor.

 b. Calculate R

Worked example 15

A 250Ω resistor is connected in series with a 500Ω resistor and a 6.0 V battery.

a. Calculate the pd across the 250Ω resistor.

b.  Calculate the pd that will be measured across the 250Ω resistor if a voltmeter  

of resistance 1000Ω is connected in parallel with it.

Solutions

a. The pd across the 250Ω resistor =
V × R1

(R1 + R2)
=

6 × 250

(250 + 500)
= 2.0 V.

b. When the voltmeter is connected, the resistance of the parallel combination is R =
R1 R2

(R1 + R2)
=

250 × 1000

1250
= 200Ω

 The total resistance is now 700 Ω, so the pd across the parallel combination is V =
200 × 6

700
= 1.7 V
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Variable resistors

Some resistors are designed so that their resistance can be changed to a required 

value. This can be done by changing the dimensions of the resistor or by using a 

property of the material that it is made from that varies in a predictable way (as in 

a thermistor or a light-dependent resistor). 

Thermistors 

Thermistors (as their name implies) are devices whose electrical resistance varies 

with temperature. They are made from one of two chemical elements that are 

electrical semiconductors: silicon and germanium. There are several types of 

thermistor, but we will only consider the negative temperature coefficient type 

(ntc). As the temperature of an ntc thermistor increases, its resistance falls. This is 

the opposite behaviour to that of a metal. 

Semiconductors have many fewer free electrons per cubic metre than metals. 

Their resistances are typically 105 times greater than those of metals with similar 

sizes. However, unlike a metal, the charge density in semiconductors depends 

strongly on the temperature. The higher the temperature of the semiconductor, 

the more charge carriers are made available in the material. 

As the temperature rises in a semiconductor: 

• The lattice ions have an increased vibration and impede the movement of the 

charge carriers more strongly. This is the same eect as in metals and leads to 

an increase in resistance. 

• However, more and more charge carriers become available to conduct 

because the increase in temperature provides them with enough energy to 

break away from their atoms. This is not the case in a metal. This leads to a 

large decrease in resistance. 

• The second eect is much greater than the rst and so the net eect 

is that conduction increases (resistance falls) as the temperature of the 

semiconductor rises. 

Light-dependent resistors

Light dependent resistors (LDRs) are devices that, like thermistors, are made 

from semiconductor materials. This time, however, the LDRs are affected not by 

temperature but by light. Photons that arrive at the surface of the LDR transfer 

energy to the material and release electrons from the lattice in a similar way to the 

thermal release of electrons in the thermistors.

The greater the intensity of light falling on the surface of the LDR, the smaller the 

resistance of the LDR. Figure 22 shows the typical variation of resistance with light 

intensity for an LDR.

Worked example 16

An ammeter with a resistance of 5.0 Ω is connected in series with a 3.0 V cell and  

a lamp rated at 300 mA, 3 V. Calculate the current that the ammeter will measure.

Solution

Resistance of lamp =
V

I
=

3

0.3
= 10 Ω. Total resistance in circuit = 10 + 5 = 15 Ω. 

So current in circuit =
V

R
=

3

15
= 200mA. This assumes that the resistance of the lamp 

does not vary between 0.2A and 0.3A.

light intensity

re
si

st
a

n
c

e

▴ Figure 22 A graph of the variation of 

resistance with light intensity for a light-

dependent resistor.
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• Inquiry 1: Demonstrate independent thinking, 

initiative, or insight.

• Tool 3: Construct and interpret tables and graphs for 

raw and processed data including scatter graphs and 

line and curve graphs.

• Inquiry 1: Demonstrate creativity in the designing, 

implementation or presentation of the investigation.

• Inquiry 1: Develop investigations that involve hands-on 

laboratory experiments, databases, simulations and 

modelling.

You need a set of wires made from the same metal or 

metal alloy. The wires should have a circular cross-section 

and be available in a range of different diameters. You will 

also need to devise a way to connect the wires into the 

circuit and a way to vary the length of one of the wires. 

Use the circuit in Figure 14 as a guide.

• How does the resistance R of one of the wires vary 

with length l? 

• How does the resistance R of the wires vary with 

diameter d when the wires all have the same length? 

Try to make things easy for your analyses. In the rst 

investigation, begin by doubling and halving the length 

of the wire to see what dierence this makes to the 

resistance. Is there an obvious relationship? When you 

think you know what this is, plot a graph on suitable axes 

to test your idea.

In the second investigation, the diameter of the wire 

may be more dicult to test in this way, but a graph of 

resistance against diameter should give you an immediate 

clue. 

You may decide that the best way to answer these 

questions is to plot graphs of R against l and R against 
1

d2

Investigating the dependence of resistance in a metal on the size and shape of 

the conductor

Variable resistors, potential dividers and potentiometers

Variable resistor
A variable resistor circuit is shown in Figure 23(a). It consists of a power supply, an 

ammeter, a variable resistor, and a fixed resistor. 

When the variable resistor is set to its minimum value of zero, then there will be a 

pd of 2 V across the fixed resistor and a current of 0.2 A in the circuit. 

When the variable resistor is set to its maximum value, 10Ω, then the total 

resistance in the circuit is 20 Ω, and the current is 0.1 A. 

This means that with 0.1 A in the 10 Ω fixed resistor, only 1 V is dropped across it. 

Therefore, the range of pd across the fixed resistor can only vary between 1 V and 

2 V — half of the available pd that the power supply can, in principle, provide. You 

should be able to predict the range across the variable resistor too.

This reduced range of pd is a significant limitation in the use of a variable resistor. 

To achieve a better range, we could use a variable resistor with a much higher 

range of resistance. To get a pd of 0.1 V across the fixed resistor, the resistance of 

the variable resistor must be about 200Ω. But when the fixed resistor has a much 

greater resistance, then the variable resistor needs an even higher value and this 

limits the current available from the circuit.

Potential divider
The arrangement known as the potential divider (Figure 23(b)) allows a much 

greater range of pd to a component than a variable resistor in series with the 

component .

A potential-divider arrangement uses a piece of equipment known as a 

potentiometer; this involves a three-terminal variable resistor such as the one 

2 V

A

fixed resistor

10 Ω

variable

resistor

0–10 Ω

(a)   variable resistor

0 V

1 V V

2 V

fixed resistor

10 Ω

slider

(b)   potential divider

2 V

▴ Figure 23 A comparison between (a) 

a variable resistor arrangement and (b) a 

potential divider.
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shown in Figure 24. One lower terminal of the variable resistor is connected to 

one side of the cell in Figure 23(b). The other lower terminal is connected to the 

other terminal of the cell. The upper terminal attached to the slider contact is 

connected to the rest of the circuit.

The potential at any point along the resistance winding depends on the position 

of the slider (or wiper) that can be swept across the windings from one end to 

the other. Typical values for the potentials at various points on the windings are 

shown for the three blue slider positions on Figure 23(b)). The component that is 

under test (again, a fixed resistor) is connected in a secondary circuit between one 

terminal of the resistance winding and the slider on the rheostat. When the slider is 

positioned at one end, the full 2 V from the cell is available to the resistor under test. 

When at the other end, the pd between the ends of the resistor is 0 V (the two leads 

to the resistor are effectively connected directly to each other). 

▴ Figure 24 A variable resistor; also 

called a rheostat. It has three terminals: 

one at each end of the resistance coil and 

one connected to a slider that touches the 

resistance coil.

• Set up the two circuits shown in Figure 23. Match the 

value of the fixed resistor to the variable resistor. They 

do not need to be exactly the same but should be 

reasonably close. 

• Add a voltmeter connected across the fixed resistor 

to check the pd that is available across it. 

• Make sure that the maximum current rating for the 

fixed resistor and the variable resistor cannot be 

exceeded. 

• Check the pd available in the two cases and convince 

yourself that the potentiometer gives a wider range of 

voltages. 

Variable resistor or potentiometer?

Worked example 17

A light sensor consists of a 6.0 V battery, a 1800 Ω resistor and a light-dependent resistor in series. 

When the LDR is in darkness, the pd across the 1800 Ω resistor is 1.2 V.

a.  Calculate the resistance of the LDR when it is in darkness.

b.  When the sensor is in the light, its resistance falls to 2400 Ω. Calculate the pd across the LDR.

Solutions

a.  As the pd across the 1800 Ω resistor is 1.2 V, the pd across the LDR must be 6 − 1.2 = 4.8 V. The current 

in the circuit is I =
V

R
=

1.2

1800
= 0.67 mA. The resistance of the LDR is 

V

I
=

4.8

0.67 × 10–3
= 7200 Ω

b.  The ratio of 
resistance across LDR

resistance across 1800 Ω
=

2400

1800
= 1.33. This is the same value as 

pd across LDR

pd across 1800 Ω
.  

For the ratio of pds to be 1.33, the pds must be 2.6 V and 3.4 V with the 3.4 V across the LDR.

Worked example 18

A thermistor is connected in series with a xed resistor and a battery. Describe and explain how the pd 

across the thermistor varies with temperature.

Solution

As the temperature of the thermistor rises, its resistance falls. The ratio of the pd across the fixed resistor to 

the pd across the thermistor rises too because the thermistor resistance is dropping. As the pd across the 

fixed resistor and thermistor is constant, the pd across the thermistor must fall.

The change in resistance in the thermistor occurs because more charge carriers are released as the 

temperature rises. Even though the movement of the charge carriers is impeded at higher temperatures, 

the release of extra carriers means that the resistance of the material decreases.
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Practice questions 

19. A circuit consists of a xed 10.0 kΩ resistor and a light-

dependent resistor (LDR) connected in series with a 

cell of emf 5.00 V. When the LDR is in darkness, it has a 

resistance of 1.20 MΩ

5.00 V

10.0 kΩ

A

V

a. Calculate the minimum current in the ammeter.

b. Calculate the reading on the voltmeter when the 

LDR is in darkness.

c. When the LDR is in daylight, the voltmeter reads 

4.96 V. Calculate:

 i. the resistance of the LDR in daylight

 ii. the reading on the ammeter.

20. A xed resistor R and a thermistor are connected 

in series with a cell of a constant terminal potential 

dierence. The resistance of the thermistor decreases 

with temperature.

R

A

V

   What is the change in the voltmeter reading and in 

the ammeter reading when the temperature of the 

thermistor is increased?

Voltmeter reading Ammeter reading

A. increases increases

B. increases decreases

C. decreases increases

D. decreases decreases

21. A xed 30Ω resistor is in a circuit with a potentiometer 

AB and a cell of emf 9.0 V. 

9.0 V

30 Ω

slider

A

A

B

 Determine the range of currents that the ammeter will 

measure as the slider of the potentiometer is moved 

from A to B.

Worked example 19

Calculate the power dissipated 

in a 250 Ω resistor when the pd 

across it is 10 V.

Solution

P =
V2

R
=

102

250
= 0.40 W

Heating eect equations 

The power P dissipated in a component is related to the pd V across it and the 

current I in it. The use of V = IR gives two other useful equations:

P = IV = I2 and R =
V 2

R

The energy E converted in time Δt is E = IV Δt. When either V or I are unknown, 

then two more equations become available: E = IV Δt = I2 and RΔt =
V 2

R
Δt.

These equations will allow you to calculate the energy converted in electrical 

heaters and lamps. Applications include heating calculations and determining 

the consumption of energy in domestic and industrial situations.
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Worked example 21

Calculate the resistance of the 

heating element in a 2.0 kW 

electric heater that is designed for 

a 110 V mains supply.

Solution

P =
V2

R
; R =

V2

P
=

1102

2000
= 6.1 A

Worked example 20

A 9.0 kW electrical heater for a 

shower is designed for use on a 

250 V mains supply. Calculate the 

current in the heater.

Solution

P = IV, so I =
P

V
=

9000

250
= 36 A

Practice questions 

22. A 150Ω resistor is connected to a battery. The resistor dissipates 32 J of 

thermal energy in 60 s. Calculate the emf of the battery.

23. A oor heating system consists of a resistive wire that transfers electrical 

energy at a rate of 800 W when the current in it is 3.5 A. Calculate:

a. the resistance of the wire

b. the potential dierence across it.

The wire has a length of 48 m and is made of a metal of resistivity 1.5 × 10–6Ω m. 

c. Determine the diameter of the wire.

24. A radiant heater dissipates a power of 1200 W when connected to 230 V 

mains supply. Calculate the power dissipated by the same heater when 

connected to 110 V mains supply.

25. A wire of length L and a uniform cross-sectional area converts electrical 

energy at a rate of 200 W when connected across a certain potential 

dierence. The wire is cut in half and one of these pieces of length 
L

2
is connected across the same potential dierence. What is the rate of 

energy conversion in the shorter wire?

A. 50 W   B. 100 W   C. 400 W   D. 800 W

26. Circuit 1 is formed by connecting two identical resistors in parallel with 

a cell. Circuit 2 is formed by connecting the same two resistors in series 

with the cell.

circuit 1 circuit 2

What is 
power dissipated in circuit 1 

power dissipated in circuit 2
?

A. 
1

4
B. 

1

2
C. 2   D. 4

Cells and batteries

Electric currents can produce a chemical effect. This has great importance 

in chemical industries as it can be a method for extracting ores or purifying 

materials. However, in this course we do not investigate this aspect of the 

chemical effect. Our emphasis is on the use of an electric cell to store energy in a 

chemical form and then release it as electrical energy to perform work elsewhere.

Cells operate as direct-current (dc) devices which means that the cell drives 

charge in one direction. The electrons (the charge carriers) leave the negative 

terminal of the cell. After passing around the circuit, the electrons re-enter the 

cell at the positive terminal. The positive terminal has a higher potential than the 

negative terminal. So electrons appear to gain energy (whereas positive charge 

carriers would appear to lose it). 

The chemicals in the cell react as charge flows and, because of this reaction, 

energy is transferred to the electrons moving through the cell.
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Chemical cells and solar cells as energy sources

Chemical cells
Many of the portable devices we use today, such as torches and music players, 

can operate with internal cells, either singly or in batteries. In some cases, the 

cells are used once until they are completely discharged and are then thrown 

away. These are primary cells. The chemicals have completely reacted; the cell 

cannot be recharged. 

Other devices such as laptops use rechargeable cells. When the chemical 

reactions have finished, the original chemicals can be re-formed by sending 

charge through the cell in the reverse direction. The cell is then again available 

as a chemical-energy store. Rechargeable cells are secondary cells. Secondary 

cells include lead–acid accumulators, nickel–metal-hydride (NiMH), and lithium–

ion cells. These can be recharged many times. As the recharge is cheap, the 

overall cost is lower than that of buying many primary cells. 

Solar cells
The first solar “photocells” were developed around the middle of the 19th 

century by Alexandre-Edmond Becquerel (the father of Henri, the discoverer of 

radioactivity). For a long time, solar cells, based on the element selenium, were only 

used in photography. However, when semiconductor technology was developed, it 

led to the invention of photovoltaic (solar) cells to power everything from calculators 

to satellites. In many parts of the world, solar panels are mounted on the roofs of 

houses. These panels not only supply energy to the house, but excess energy 

transferred during sunny days is often sold to the local electricity supply company. 

The photovoltaic materials in the solar panel convert electromagnetic radiation 

from the Sun into electrical energy. When a photon is incident on the cell, 

electrons are released and gain energy to move. The electrons transfer this 

energy into the external circuit and do useful work. A full explanation of the way in 

which this happens goes beyond the IB syllabus. 

One single cell has a small emf of about 1 V (this is determined by the nature of 

the semiconductor) and so banks of cells are manufactured to produce usable 

currents on both a domestic and commercial scale. 

The efficiencies of present-day solar cells are about 25% or a little higher. However, 

extensive research and development are being carried out in many countries and 

it is likely that these efficiencies will rise significantly over the next few years.

Comparing energy sources
Different energy sources have different advantages and disadvantages:

• Primary chemical cells. These can be cheap and with a small mass. However, 

they can only be used once.

• Secondary chemical cells. These can also be small mass for some 

applications but when high currents are required, then batteries of the cells 

need a large mass and large volume. This has disadvantages for applications 

involving transport. The cells can be recharged many times, although not 

indenitely, and the replacement cost can be high.

• Solar cells transfer solar energy so rely on sunlight for their operation. The 

cost of the panels can be high, although it is dropping steadily. The lifetime 

of the cells can be limited. Solar cells oen require a battery of secondary 

cells for their use to be eective at times when it is cloudy or at night. 

Rechargeable batteries are used in 

many devices, from mobile phones to 

electric cars. These batteries are often 

made using lithium. However, the 

world’s reserves of lithium are limited. 

As our use of renewable resources 

increases, the need for batteries to 

store this energy will also increase.

▴ Figure 25 A lithium–ion battery for a 

mobile phone. 

Global impact of science
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The model of a cell with a fixed 

internal resistance and a constant 

emf is an example of modelling. In 

this case, the model is a simple one 

that cannot be realized in practice. 

Scientists frequently begin with a 

simple model of a system and then 

explore the possibilities that this 

model can offer in terms of analysis 

and behaviour. The next step is to 

make the model more complicated 

(but without being too intricate!) 

and to see how much complexity 

is needed before the model 

resembles the real system that is 

being modelled. 

Do the simplifications and 

assumptions of ideal behaviour 

form a suitable basis for modelling?

Modelling — Simple 

assumptions
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Internal resistance and emf of a cell 

The materials from which cells are made have electrical resistance in just the same 

way as the metals in the external circuit. This internal resistance has an important 

effect on the total resistance and current in the circuit. Figure 26(a) shows a 

simple model for a cell. 

(a)

r
ε

(b)

r
ε

R

▴ Figure 26 (a) A simple model of an electrical cell with a constant source of emf in series 

with a xed internal resistance. (b) The cell model connected in series with a resistor R.

Inside the dotted box is an “ideal” cell that has no resistance of its own. Also 

inside the box is a resistance symbol that represents the internal resistance of the 

cell. The two together make up our model for a real cell. The model assumes that:

• the internal resistance is constant (for a practical cell it varies with a number of 

factors)

• the emf is constant (which can also vary for a real cell). 

Our model cell has an emf ε and an internal resistance r in series with an external 

resistance R. The current in the circuit is I. 

We can apply conservation of energy to this circuit: 

• The emf of the cell supplying energy to the circuit = ε.

• The sum of the pds = IR + Ir.

• This means that ε = IR + Ir.

• Or more simply, ε = I (R + r).

• When the pd across the external resistor is V, then ε = V + Ir or V = ε – Ir.

It is important to realize that V, which is the pd across the external resistance, is 

equal to the terminal pd across both the ideal cell and the internal resistance in 

series in our model (in other words, between A and B). 

The emf of a cell is the open circuit pd across the terminals of a power 

source—in other words, the terminal pd when no current is supplied.

The pd between A and B is less than the emf unless the current in the circuit is 

zero. The difference between the emf and the terminal pd (the measured pd 

across the terminal of the cell) is sometimes referred to as the “lost pd” or the 

“lost volts”. These lost volts represent the energy required to drive the charge 

carriers—the electrons—through the cell itself. Once the energy has been used in 

the cell in this way, it cannot be available for conversion in the external circuit. You 

may have noticed that, when a cell is being charged, or when a cell is discharging 

at a high current, it becomes warm. The energy required to raise the temperature 

of the cell has been transferred in the internal resistance.
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Worked example 22

A cell of emf 6.0 V and internal resistance 2.5Ω is connected to a 7.5Ω resistor. Calculate:

a. the current in the cell

b. the terminal pd across the cell

c. the energy lost in the cell when charge ows for 10 s.

Solutions

a.  Total resistance in the circuit is 10Ω, so current in circuit =
6

10
= 0.60 A

b. The terminal pd is the pd across cell = IR = 0.6 × 7.5 = 4.5 V

c.  In 10 s, 6 C flows through the cell and the energy lost in the cell is 1.5 J C–1. The energy lost is 9.0 J.

Worked example 23

A battery is connected in series with an ammeter and a variable resistor R. When R = 6.0 Ω, the 

current in the ammeter is 1.0 A. When R = 3.0 Ω, the current is 1.5 A. Calculate the emf and the 

internal resistance of the battery.

Solution

Using V = ε – Ir and knowing that V = IR gives two equations:

 6 × 1 = ε – 1 × r and 3 × 1.5 = ε – 1.5 × r.

These can be solved simultaneously to give (6 – 4.5) = 0.5r or r = 3.0Ω and ε= 9.0 V.

Practice questions 

27. A 100Ω resistor is connected to a cell of emf 5.0 V. 

The potential dierence across the resistor is 4.9 V. 

a. Calculate the internal resistance of the cell.

b. Calculate the terminal pd across the cell when 

the resistor is replaced by one of resistance 20Ω. 

Assume that the internal resistance of the cell is 

constant.

28. Which statement is correct about the terminal pd 

across a real cell?

A. It is constant.

B. It increases with the load resistance.

C. It increases with the current in the cell.

D. It is zero when no current is in the cell.

29. A variable resistor is 

connected to a cell as 

shown in the diagram. 

The ammeter and the 

voltmeter are ideal.

 The graph shows how the potential dierence V

across the resistor varies with the current I in the 

ammeter.

7.0

7.5

8.0

8.5

9.0

9.5

10.0

0 50 100 150 200 250

I / mA

V
 /

 V

300 350 400 450 500

a. State the emf of the cell.

b. Determine the internal resistance of the cell.

c. Calculate the resistance of the variable resistor 

when the current is 500 mA.A
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• Tool 1: Understand how to accurately measure 

electric current and electric potential difference to an 

appropriate level of precision.

• Tool 3: Construct and interpret tables and graphs for 

raw and processed data including scatter graphs and 

line and curve graphs.

• Inquiry 2: Collect and record sufficient relevant 

quantitative data.

The method given here works for any type of electric 

cell. However, for novelty, a citrus fruit cell (orange, 

lemon, lime, etc.) or even a potato can be used for the 

measurement. The ions in the flesh of the fruit react with 

two different metals to produce an emf. With an external 

circuit that only requires a small current, the fruit cell can 

discharge over surprisingly long times. 

• To make the cell, take a strip of copper foil and a strip 

of zinc foil, both about 1 cm by 5 cm, and insert these, 

about 5 cm apart, deep into the fruit. You may need 

to use a knife to make an incision unless the foil is stiff. 

(Other metals can be used, for example the zinc foil 

can be replaced with some magnesium ribbon or 

even an iron nail. A copper coin can be used instead 

of copper foil.)

V

A

lemon

▴ Figure 27 A circuit to measure the internal resistance and 

emf of a fruit cell.

• Connect the circuit shown in Figure 27 using a 

suitable variable resistor. (Ideally the variable resistor 

should have a range up to about 100 kΩ.)

• Measure the terminal pd across the fruit cell and the 

current in the cell for the largest range of pd you can 

manage. 

• Compare the equation V = ε Ir with the equation for 

a straight line y = c + mx. 

Terminal pd / V Current / A

1.13 0.05

1.01 0.10

0.89 0.15

0.77 0.20

0.65 0.25

0.53 0.30

0.41 0.35

0.29 0.40

0.17 0.45

0.05 0.50

• A plot of V on the y-axis against I on the x-axis should 

give a straight line with a gradient of r and an 

intercept on the V-axis of ε. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

te
rm

in
al

 p
d

/
V

0 0.1 0.30.2 0.4 0.60.5

current / A

▴ Figure 28 A graph of V against I for a cell. The intercept 

for this graph, and therefore the emf of the cell, is 1.25 V. The 

gradient is 2.4 which gives an internal resistance for the cell 

of 2.4Ω. You should check these results for yourself.

Measuring the internal resistance of a fruit cell
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Power supplied by a cell 

The total power supplied by a non-ideal cell is equal to the power delivered to 

the external circuit plus the power wasted in the cell. 

Algebraically, P = I2 R + I2 r using the notation used earlier. 

ε
2

(R + r)2
× R

Figure 29 shows how the power delivered to the external circuit varies with R. 

The peak of this curve is when r = R, in other words, when the internal 

resistance of the power supply is equal to the resistance of the external circuit. 

The load and the supply are “matched” when the resistances are equal in 

this way. This matching of supply and circuit is important in several areas of 

electronics.

Worked example 24

A battery of emf 9.0 V and internal resistance 3.0 Ω is connected to a  

load resistor of resistance 6.0 Ω. Calculate the power delivered to the 

external load.

Solution

Using the equation 
ε

2

(R + r)2
× R leads to 

92

(6 + 3)2
× 6 = 6.0 W

p
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R

0 r

load resistance R

▴ Figure 29 The power supplied by a cell is at a maximum value when the external 

resistance and the internal resistance of the cell are equal.
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Theme B      End-of-theme questions

Theme B — End-of-theme questions
1. The Sun has a radius of 7.0 × 108 m and is a distance  

1.5 × 1011 m from Earth. The surface temperature of the 

Sun is 5800 K.

a. Show that the intensity of the solar radiation 

incident on the upper atmosphere of Earth is 

approximately 1400 W m−2

b. The albedo of the atmosphere is 0.30. Deduce that 

the average intensity over the entire surface of Earth 

is 245 W m−2

c. Estimate the average surface temperature of Earth.

2. The average temperature of ocean surface water is 

289 K. Oceans behave as black bodies.

a. Show that the intensity radiated by the oceans is 

about 400 W m−2

b. Explain why some of this radiation is returned to the 

oceans from the atmosphere.

c. The intensity in b. returned to the oceans is 

330 W m−2. The intensity of the solar radiation 

incident on the oceans is 170 W m−2

  i.   Calculate the additional intensity that must be 

lost by the oceans so that the water temperature 

remains constant.

  ii.   Suggest a mechanism by which the additional 

intensity can be lost.

3. A mass of 1.0 kg of water is brought to its boiling point of 

100 °C using an electric heater of power 1.6 kW. A mass 

of 0.86 kg of water remains aer it has boiled for 200 s.

a. i. Estimate the specic latent heat of vaporization of 

water. State an appropriate unit for your answer.

 ii. Explain why the temperature of water remains 

at 100 °C during this time.

b. The heater is removed and a mass of 0.30 kg of 

pasta at −10 °C is added to the boiling water.

   Determine the equilibrium temperature of the pasta 

and water aer the pasta is added. Other heat 

transfers are negligible.

  Specic heat capacity of pasta = 1.8 kJ kg−1 K−1

  Specic heat capacity of water = 4.2 kJ kg−1 K−1

c. The electric heater has two identical resistors 

connected in parallel.

   The circuit transfers 

1.6 kW when switch 

A only is closed. The 

external voltage is 

220 V.

 i. Show that each resistor has a resistance of 

about 30 Ω

 ii. Calculate the power transferred by the heater 

when both switches are closed.

4. a. State what is meant by the internal energy of an 

ideal gas.

b. A quantity of 0.24 mol of an ideal gas of constant 

volume 0.20 m3 is kept at a temperature of 300 K.

 i. Calculate the pressure of the gas.

 ii. The temperature of the gas is increased to 

500 K. Sketch a graph to show the variation 

with temperature T of the pressure P of the gas 

during this change.

c. A container is lled with 1 mole of helium (molar 

mass 4 g mol−1) and 1 mole of neon (molar mass 

20 g mol−1). Compare the average kinetic energy of 

helium atoms to that of neon atoms.

5. An ideal gas consisting of 0.300 mol undergoes a 

process ABCD. AB is an adiabatic expansion from 

the initial volume VA to the volume 1.5VA. BC is an 

isothermal compression. The pressures at C and D are 

the same as at A.

pressure/kPa

0
0 volume

D C

B

A

1.5VAVA

250

 The following data are available: 

 Pressure at A = 250 kPa

 Volume at C = 3.50 × 10–3 m3

 Volume at D  = 2.00 × 10–3 m3

a. i. Show that the pressure at B is about 130 kPa.

 ii. Calculate the ratio 
VA

VC

A
H
L

220V

B

A
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B. End-of-theme questions

b. The gas at C is further compressed to D at a 

constant pressure. During this compression the 

temperature decreases by 150 K.

  For the compression CD:

 i. Determine the thermal energy removed from 

the system.

 ii. Explain why the entropy of the gas decreases.

 iii. State and explain whether the second law of 

thermodynamics is violated.

6. A photovoltaic cell is supplying energy to an external 

circuit. The photovoltaic cell can be modelled as a 

practical electrical cell with internal resistance. 

 The intensity of solar radiation incident on the 

photovoltaic cell at a particular time is at a maximum for 

the place where the cell is positioned. 

 The following data are available for this particular time:

Operating current = 0.90 A

   Output potential dierence to = 14.5 V

               external circuit 

Output emf of photovoltaic cell = 21.0 V

Area of panel = 350 mm × 450 mm

a. Explain why the output potential dierence to 

the external circuit and the output emf of the 

photovoltaic cell are dierent.

b. Calculate the internal resistance of the photovoltaic 

cell for the maximum intensity condition using the 

model for the cell.

c. The maximum intensity of sunlight incident on the 

photovoltaic cell at the place on Earth’s surface 

is 680 W m−2. A measure of the eciency of a 

photovoltaic cell is the ratio

energy available every second to the external circuit

energy arriving every second at the photovoltaic cell surface

 Determine the eciency of this photovoltaic cell when 

the intensity incident upon it is at a maximum.

7. A lighting system 

consists of two long 

metal rods with a 

potential dierence 

maintained between 

them. Identical lamps 

can be connected between the rods as required.

 The following data are available for the lamps when at 

their working temperature.

Lamp specications 24 V, 5.0 W

Power supply emf 24 V 

Power supply maximum current 8.0 A 

Length of each rod 12.5 m 

Resistivity of rod metal 7.2 × 10–7Ω m

a. Each rod is to have a resistance no greater than 0.10 Ω. 

Calculate, in m, the minimum radius of each rod.

b. Calculate the maximum number of lamps that can 

be connected between the rods. Neglect the 

resistance of the rods.

c. One advantage of this system is that if one lamp 

fails then the other lamps in the circuit remain lit. 

Outline one other electrical advantage of this 

system compared with one in which the lamps are 

connected in series.

8. The graph shows how current I varies with potential 

dierence V across a component X.

0
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a. Outline why component X is considered non-ohmic.

b. Component X and a cell of negligible internal 

resistance are placed in a circuit. A variable resistor 

R is connected in series with component X. The 

ammeter reads 20 mA.

  Determine the resistance of the variable resistor.

c. Calculate the power dissipated in the circuit.

24 V, 5.0 W

rod

rod

power supply

4.0V

R

A

X
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Introduction

Tools for physics

The nature of science is that it seeks through experiment and theory to link the 

observed behaviour of the universe to a set of principles. In order to do this, 

physicists require a set of tools, both experimental and mathematical. This section 

of the book sets out some of these principles.

Science is inquiry-based. This is another aspect to its nature. The inquiry process 

itself is described at the end of this book. But access to this inquiry process 

requires scientic skill (Figure 1). Some of these skills you have when you begin 

the course. Others will be developed as you study IB Diploma physics. 

This chapter contains three sections. These outline the skills required for the 

inquiry process:

• Mathematical tools for physics

• Experimental tools for physics

• Handling data and modelling physics

The whole chapter is a series of short sections arranged for reference purposes. 

You may wish to refer to it repeatedly as you carry out practical and arithmetic 

work and develop your skills during the course.

The Inquiry process and internal assessment (IA) chapter at the end of the book 

suggests how you can best demonstrate your understanding of these skills in the 

internal assessment which you undertake towards the end of your IB Diploma 

Programme physics course.

332

▸ Figure 1 The skills required for the 

inquiry process are in three groups: 

mathematical techniques, experimental 

techniques and technology skills.

inputs to the

inqury process

technologymathematics

experimental

techniques
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Mathematical tools for physics

• quantities and variables, both discrete  

and continuous 

• units and the unit system used in science

• dimensional analysis

• significant figures and orders of magnitude

• estimation and approximations

• correlation and proportionality

• vectors and scalar arithmetic.

In this section, you will learn about:

You will be provided with an IB Physics data booklet in your examinations.  

This contains a list of the fundamental constants, conversions between units,  

and  equations. So you do not need to learn these.

Symbols, units and numerical values

Quantities

Physicists use measurable quantities such as time, length and mass. These quantities 

are linked by relationships such as speed =
distance travelled

time taken
. Algebra transforms 

this to v=
s

t
, where v, s and t are the speed, distance travelled and time taken. 

Quantities also require units that can be used for the measurements: metres (m) and 

seconds (s), so speed is in metres per second (m s−1).

Quantities are written using italic symbols (for example, s for distance rather than 

s for time), whereas a unit is written using Roman (upright) symbols. It is important 

to identify symbols from your textbooks correctly. When m appears in this book 

and in your examinations it represents “mass”, but m stands for the unit “metre”. 

It is important to be clear about the context in which a symbol is being used. 

Forexample, d can mean a distance in Theme A, but it means slit separation in 

Topic C.3. 

Variables and constants

Fundamental constants have xed values. The speed of light in a vacuum c is an 

example. The value of c does not change.

Other constants include numbers that occur as a result of the way we dene the 

shape of the world and our mathematical system. The irrational number pi (π) is an 

example of this, so is e, the base of natural logarithms. 

A third set of constants arise from physical theory and represent the properties 

of individual substances or the natural world. Unlike fundamental constants they 

vary from place to place or material to material. Examples here include:

• g, the acceleration due to gravity at Earth’s surface. This varies with position 

on the surface due to local density variations in Earth and variations in 

Earth’sradius.
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• ρ, electrical resistivity. This changes from material to material and is 

temperature dependent. However, it does not depend on the dimensions 

of the material and is therefore more useful to an engineer than the electrical 

resistance of a particular sample.

Continuous and discrete variables

Quantities that can change in physics are known as variables. The variables you 

use in your practical and theoretical work fall into two categories.

• Continuous variables are data that can take any value. The temperature of 

a room is an example of continuous data when a thermometer is used to 

record the variation throughout the day.

• Discrete variables are data that can only take certain values. The number 

of electrons emitted in a photoelectric experiment, for example, is discrete 

because only integer numbers of emitted electrons are possible. Half an 

electron is never observed.

Système Internationale d’Unités (SI)
Science needs a common language for its communication. To aid this, there is an 

internationally agreed system of units called, for short, the SI.

The SI denes units for quantities that are either:

• base (fundamental) units

• derived units, that are combinations of base units

• supplementary units, such as the radian (rad).

Base units

SI gives seven base units

• second (s)

• meter (m)

• kilogram (kg)

• ampere (A)

• kelvin (K)

• mole (mol)

• candela (not used in this course)

These base units are dened in terms of seven fundamental constants (one is not 

given here):

• the speed of light in a vacuum: c= 299 792 458 m s 1

• the Planck constant: h= 6.626 070 15 × 10 34 J s

• the charge on the electron: e= 1.602 176 634 × 10 19 C

• the Boltzmann constant: k= 1.380 649 × 10 23 J K 1

• the Avogadro constant: N
A
= 6.022 140 76 × 1023 mol 1

• the hyperne transition frequency of cesium-133: Δ휈
Cs
= 9192 631 770 Hz.

Discrete data are oen displayed 

using bar charts, pie charts or 

histograms. Histograms are 

explained more on page 353.

The way that some base units 

were dened underwent an 

important change in May 2019. 

Books older than this may use 

the old denitions. The change 

in 2019 began with the creation 

of dened constants, the values 

of which were based on the best 

estimate at the time.
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See page 115 in Topic A.3 for 

more about the equation for 

kinetic energy.

Conversions between these and 

other units are provided in the IB 

Physics data booklet.

You can see another example 

of unit conversion on page 518. 

There are others in the book.

See page 519 in Topic D.2 for 

more about the electronvolt (eV) 

and page 693 in Topic E.5 for a 

discussion of units in astronomy.

The kilogram (kg) is the SI unit of 

mass, but in atomic and nuclear 

physics it is convenient to express 

mass in the unied atomic mass 

unit (u) or in the units of MeVc 2. 

See page 596 and worked 

examples in Topic E.3.

Each base unit is dened in terms of one or more fundamental units so that,  

for example,

• the metre is dened to be the distance travelled by light in a vacuum in 

1

299 792 458
 th of a second, and

• the kilogram is dened to be the mass whose rest energy is equal to the 

energy of a collection of photons of a combined frequency of 1.356 392 

489 652 × 1050 Hz. This denition uses E = mc2 = hf leading to an energy 

equivalence to mass of 
h × Δ휈

Cs

c2

Prexes

Units can be modied by the use of the prexes allowed in SI (Table 1). 

Derived units

Most units are known as derived units because they are combinations of the 

seven base units. For example, the equation for kinetic energy is E
k
=

1

2
mv2, 

where m is the mass of the moving object and v is its speed. This can be written 

in unit terms as mass × speed2; the 
1

2
 is dropped here because it is a scale factor 

without units. 

Speed has the units 
distance

time
, so the whole unit for E

k
 is mass × speed2 which is 

mass × (distance

time )
2

 which, reverting to the unit symbols, is kg m2 s 2. This is the 

unit for energy — the joule (J) — expressed in base units.

It is important to develop the skill of converting between derived units and their 

fundamental equivalents. 

Non-SI units

Not all units that you will meet are part of the SI. Some used in the course are 

allowed because of their convenience to physicists working in particular elds. 

For example, the kilowatt hour (kW h) and the electronvolt (eV). Astronomy, in 

particular, uses non-SI units, for example, light year (ly), the astronomical unit (AU) 

and the parsec (pc)) because the distances are so large. Even Celsius (°C) for 

temperature is not strictly part of the SI and kelvin (K) should properly be used as 

much as possible.

Radians and degrees 

Calculations of circular motion involve the use of angles. In the science you 

 studied before starting this course, you will almost certainly have measured all 

your angles in degrees. In some areas of physics (including circular motion), there 

is an alternative measure of angle that is much more convenient: the radian. 

 Radians are based on the geometry of the arc of a circle. 

Prex Abbreviation Value

peta P 1015

tera T 1012

giga G 109

mega M 106

kilo k 103

hecto h 102

deca da 101

deci d 10−1

centi c 10−2

milli m 10−3

micro µ 10−6

nano n 10−9

pico p 10−12

femto f 10−15

▴ Table 1 Prexes for SI units.
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An angle measured in radians (Figure 1) is dened as the circumference s of an arc 

of a circle divided by the radius r of the circle. In symbols θ (in radians) =
s

r

The radian is abbreviated as “rad” in SI. However, as it is a ratio, it is strictly 

speaking not a unit.

Going around a circle once means travelling all the way round the circumference. 

This is a distance of 2πr. The angle θ in radians subtended by the whole circle is 

2πr

r
= 2π rad.

So 360° ≡ 2 × π = 2 × 3.14… = 6.28 rad and 1.00 rad = 57.3°.

Sometimes, the radian numbers are le as fractions, for example 90° =
π

2

To convert other values for yourself, use the equation:

angle in degrees

360
=

angle in radian

2π

Finally, a practical point: scientic and graphic calculators work happily in either 

degrees or radians, but the calculator must know what to expect! Always check 

that your calculator is set to work in radians if that is what you want, or in degrees 

when those are the units you are using. 

Dimensional analysis

Dimensional analysis is a technique that you may nd useful when planning 

your internal assessment and when checking expressions. The principle is to 

use a knowledge of the dimensions (units) of a quantity to establish its algebraic 

relationship to other variables. The dimensions are oen written in square 

brackets to make it clear that these are not variables in their own right. Thus, 

speed will be written as [length] [time] 1 and force will be written as  

[mass] [length] [time] 2 (using Newton’s second law of motion). A dimensional 

analysis cannot give you any constants of proportionality. They need to be 

determined by experiment.

s

r

θ

s

r
θ =

▴ Figure 1 Denition of the radian.

You already know the equation for the time period of a pendulum from  

Topic C.1 but it is possible to derive part of it using dimensional analysis. 

Some factors that you might expect to aect the time period of a pendulum 

are the length l, the mass of the pendulum bob m and the gravitational eld 

strength g. These lead to the equation 

[time]1
= [length] x × [gravitational eld strength] y × [mass] z

The term [gravitational eld strength] needs to be split into its separate 

dimensions [length × time 2] so that (collecting terms) 

[time]1
= [length] x+y × [time] 2y × [mass] z. 

Looking at each dimension separately gives z = 0, y = −
1

2
 and x = +

1

2
.  

The predicted equation for the time period is T ∝  l
g

. As before, this analysis 

cannot give the 2π constant.

You can now carry out an experiment to conrm the constant of 

proportionality. Vary l and measure T. Find g using an independent method. 

Careful measurements can produce a value that is less than 1% away from the 

actual value.

Revisiting the simple pendulum
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Signicant gures 

Oen numerical results from calculators or spreadsheets will appear as a long 

string of numbers. It is important only to quote the numbers that have meaning 

in the context of the problem or experiment. These are called the significant 

figures, oen abbreviated to “s.f.” or “sf”.

When you write a number, such as 1.602, “1” is the most signicant digit, “2” 

is the least signicant digit. When the number is between 0 and 1, such as 

0.001 352, the same is true, so that “1” is the most signicant digit. 

The following are rules for the use of signicant gures.

• A non-zero digit is always signicant: 789 is 3 s.f.

• A zero between two non-zero digits is always signicant: 709 is 3 s.f.

• Leading zeros are never signicant: 0.0123 is 3 s.f.

• Trailing zeros are not signicant when there is no decimal point: 54 800 is 3 s.f.

• Zeros to the le of a decimal point are signicant: 54 800. is 5 s.f.

• Zeros to the right of a decimal point and to the right of a non-zero digit are 

signicant: 0.009 is 1 s.f; 0.023 is 2 s.f.; 0.175 is 3 s.f.; 0.175 00 is 5 s.f.

Worked example 1

A student wants to know how the speed v of a surface water wave in the 

deep ocean varies with other variables.

Step 1. What could the wave speed depend on? Possible variables could 

be density of water ρ, wavelength of the wave λ, depth of the ocean D, 

acceleration due to gravity g, water temperature, salinity of thewater etc.

The water temperature and salinity can be eliminated because the wave 

speed must eventually have the dimensions of [length] [time] 1 and these 

variables have the dimensions of [temperature] and [quantity], respectively. 

The ocean depth is unlikely to be important because a deep ocean will 

probably not influence the behaviour of a wave at the surface. Therefore, 

the student can assume that the relationship between wave speed and its 

variables is v= ρx × gy × λz where they wish to determine x, y and z. 

Step 2. Write this expression in full with all the dimensions to give  

[length]1 [time] 1 = [mass]x [length] 3x × [length]y [time] 2y × [length]z

Step 3. The dimensions must match on each side of the equation. 

Therefore, collecting powers together for each dimension separately: 

[mass]: 0 = x   [length]: 1 = −3x + y + z    [time]: −1 = −2y

These can be solved as three simultaneous equations. Clearly, x = 0 

and so the density is not part of the relationship. Then y =
1

2
 from the 

third equation, leading to z =
1

2
 also from the second equation. The final 

relationship is that ν ∝ gy λz
 = g

1

2 λ
1

2 = √√gλ. This suggests that the wave speed 

depends only on the wavelength and acceleration due to gravity.

As examples of the use of 

signicant gures, compare 

Worked examples 3 and 4 in 

Topic D.1. Worked example 3 has 

data all to 3 sf. The nal answer 

from a calculator is 9.81344… but 

is quoted only to 3 sf here. Had 

one piece of data (say, the radius 

of Earth) only been given to 2sf, 

then 2 sf would be appropriate 

for the nal answer.

In Worked example 4, all the  

data and the nal answer are 

given to 2 sf.

Worked example 2

The distance s travelled in time t by 

an object accelerating uniformly 

from rest is given by s = 
1

2
at2, 

where a is the acceleration. 

Acart starts from rest and travels 

1.45 m in the first 0.90 s of motion. 

Calculate the acceleration of  

the cart, stating the answer  

to an appropriate number of 

significant figures.

Solution

a =
2s

t
2

 = 
2 × 1.45

(0.90)2
 = 3.5802... m s−2. 

The distance is given to 3 sf but the 

time of travel is only to 2 sf. The result 

of the calculation should be rounded 

to the lowest number of significant 

figures in the input data, which in this 

case is 2 sf. Therefore, a = 3.6 m s−2.
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Whenever you do a calculation (in a lesson, exam or experiment), carefully 

choose how many signicant gures to write each number to using the 

followingrules.

• When all the data are supplied to 3 s.f. then give your answer to 3 s.f. 

• If there are mixed s.f., usually this will be 2 or 3, then quote your answer to 

the lowest number of s.f.

• Sometimes in nuclear masses or binding energies you will be given up to 5 or 

6 s.f. in some data because there are subtractions involved in the calculations 

that reduce the number of s.f. In this case, it is safe to quote to a level of 3 s.f.

• Finally, there is a group of problems in which you can be asked to “Show 

that” a particular answer is correct. In this case, you must quote your answer 

to one s.f. better than the s.f. used in the question. When the data are quoted 

to 3 s.f., give your answer to 4 s.f. or more. This is to show that you have 

 carried through all the steps of the problem, including the nal calculation.

Orders of magnitude

Whenever you arrive at a nal numerical answer at the end of a calculation or an 

experiment, take a moment to think about the result. Is it credible? Any result 

that indicates that the mass of person is 2000 kg is unlikely to be correct. 

Atemperature of 10 million K is only found in the interior of a star. Answers 

should be of the right order of magnitude. If they are not, check your data and 

working carefully.

An answer is given as an order of magnitude when it is expressed to the 

nearest power of ten. A sweep second hand of an analogue clock takes 

60 s — roughly 102 s — to go round once. A feature lm lasts about two 

hours – 7200 s or roughly 104 s. The orders of magnitude of these two 

time periods are 2 and 4. The  dierence in the order of magnitude is 

4 − 2 = 2. 

Approximation and estimation

It is helpful to estimate values when it is not possible to know the exact value or 

when a rough value is all that is required. Estimation may provide an answer to 

better than an order of magnitude, but this depends on the particular estimation 

that is being carried out.

Estimation can be practical or theoretical. For example:

• Using a lens to magnify a scale. A metre ruler is calibrated to the nearest 

millimetre, but a magnifying glass will enable you to make an estimate of a 

length to the nearest tenth of a millimetre where necessary. This can be done 

with most analogue scales.

• Estimating the area under a graph. A reasonable count of the number of grid 

squares allowing for incomplete squares is required. When this is combined 

with the known size of one grid square, a surprisingly close value to the true 

value can usually be obtained. 

• Planning an experiment. Theoretical estimates are of great value for giving 

you a rough idea of the magnitudes of the measurements that you will need 

to make. In making such estimates, always use rounded data: human beings 

are about 2 m tall, a car has a mass of about 1000 kg and room temperatures 

are about 300 K.

Practice questions

Calculate the following quantities, 

giving the answer to an appropriate 

number of significant figures:

1. The speed v of a football of mass 

m = 0.450 kg, when the kinetic 

energy of the football is Ek = 35 J. 

Use the equation Ek = 
1

2
mv 2

2.  The volume V of an ice 

cube of mass m = 1.00 × 102 g. 

Thedensity of ice is 

ρ = 0.917 g cm−3. Use the 

equation ρ =
m

V

3. The current I in a resistor of 

resistance R = 1.00 × 102 Ω

when the resistor is dissipating 

a power of P = 1.35 W. Use the 

equation P = I 2R

Practice questions

Consider these estimates. Don’t use 

any measuring instruments.

4. A girl jumps off a wall. Estimate 

the force that she exerts on the 

ground as she lands.

5. What is the total weight of the 

house or apartment block in 

which you live?

6. How many key depressions 

were involved in typing out the 

manuscript for this book?

7. What is the total floor area of 

your school?

8. What is the total length of wire in 

a grand piano?

When you carry out a multi-step 

calculation, avoid rounding o 

intermediate values and only 

round the nal answer to the 

required number of s.f. Worked 

example 15 in Topic A.1 illustrates 

a typical multi-step calculation 

that requires intermediate values 

to be kept to a higher precision 

than the input data.
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In making estimates, you oen need to make assumptions because some eects 

may not make a large dierence to the answer. For example, air resistance is oen 

ignored in mechanics problems when speeds are small (of the order of 100 m s 1)

At high speeds (around 103 m s 1), this would be an unreasonable assumption and 

the frictional drag would need to be included in an estimate.

Correlation

An aim of physics experimentation is to conrm correlations between variables. 

This means to establish the extent to which one quantity varies with another. 

Always remember that correlation does not prove causality. Just because a graph 

of x against y is a straight line going through the origin, it does not mean that the 

change in x is necessarily the cause of the change in y. There are many examples 

in medical and other sciences where correlation and cause have been confused. 

When there is a physical reason why the increase in one quantity causes a change 

in another quantity, there is said to be a causal relationship

Correlations can be:

• positive; meaning that as the independent variable increases, the 

dependent variable tends to increase

• negative; meaning that as the independent variable increases, the 

dependent variable tends to decrease.

Direct and inverse proportionality

There are two types of correlation that have particular importance in science: 

direct and inverse proportionality. Both types are easily identied on graphs or 

bycalculation.

Two variables x and y have a correlation that is direct proportion when y = kx, 

where k is a constant. This will be represented on a graph of the variation of y with 

x by a straight line with gradient k that goes through the origin (Figure 2). 

The two variables x and y are in inverse proportion when y =
k

x
 and k is a 

 constant. This time the graph of y against x is no longer a straight line (Figure2), 

but the relationship can be identied relatively easily because x × y = k. A series 

of data pairs when multiplied together should give a product that does not 

change (within experimental error).

Scalars and vectors

Scalars are quantities with magnitude only. They obey the rules of algebra and 

can be added, subtracted, multiplied and divided as with normal numbers. 

Scalars retain their units under addition and are combined when multiplied. A 

distance of 50 m added to a distance of 30 m is 80 m and when it takes 20 s to 

cross this distance, the speed is 4.0 m s 1

Vectors have magnitude and direction. Vector algebra is required so that both 

elements of the vector can be combined correctly. Vectors are sometimes 

given their own name to distinguish them from scalar equivalents: distance and 

displacement (Topic A.1) are examples of this.

You can multiply or divide a vector by a scalar. Suppose the displacement 80 m 

due north takes 20 s, then the velocity is 4.0 m s 1 due north. The direction is 

unaected when multiplying or dividing by a scalar quantity. The scalar scales the 

vector quantity in a ratio-like way.

4

6

y

x

2

2 4

y =

2
x

y = 2x

▴ Figure 2 The graph shows a direct 

proportional relationship (straight red line) 

and an inverse proportional relationship 

(blue line).

Worked example 16 in Topic A.1 

shows how the distance travelled 

can be estimated using the area 

under a speed–time graph.

One type of estimate is known 

as a Fermi question; the physicist 

Enrico Fermi was well known for his 

ability to make estimates. He based 

his estimates on either little or no 

data, or on a method that seemed 

remote from the problem in hand. 

A famous example is Fermi’s 

estimate of the energy released 

in an explosion. He did this by 

releasing pieces of paper as the air 

blast from the explosion reached 

him and then observing the 

distances travelled horizontally by 

the blast. His estimate was within a 

factor of 2 of the true result. In every 

Fermi estimate, the scientist needs 

to make an educated guess at the 

value of one or more variables in 

the calculation or measurement.

Fermi questions
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Tables 2 and 3 give some of the scalars and vectors used in this course together 

with their usual symbols.

Drawing and representing vectors

A vector can be represented on a scale diagram using a line with a direction 

given by an arrow (Figure 3).

Relative to other vectors in the diagram:

• The length of the line gives the size (magnitude) of the vector.

• The direction gives the direction of the vector (its line of action).

The starting point of the vector is the point at which it acts: its point of 

 application.

Vector addition and subtraction

Collinear addition

When only one dimension is involved, the problem of vector combination 

 whether addition or subtraction is straightforward. The example is of subtraction.

Figure 4 shows an object suspended by a spring (which is not shown for clarity).

tension = 20 N upwards

resultant = 5 N upwards

weight = 15 N downwards

▴ Figure 4 When vectors are collinear, the overall direction does not change. For 

subtraction the magnitudes are subtracted using normal arithmetic.

The weight of the object is 15 N downwards. The upwards force on the object 

from the spring is 20 N. The point of application of both vectors is at the centre of 

mass of the object and the vectors act in opposite directions. 

Although a vector diagram can be drawn here, it is simple to imagine a line down 

of scale length 15 and a line upwards of scale length 20. The sum of these two 

forces is 5 length units upwards. In other words, the subtraction of the vectors 

gives a force of 5 N upwards.

Addition when non-collinear

When vectors are not collinear, then the problem is slightly more complicated. 

Figure 5 shows two vectors not acting along the same line.

▴ Table 2 Scalar quantities and symbols.

▴ Table 3 Vector quantities and symbols.

Scalar quantity Symbol

distance s, d, l

speed u, v

time t

mass m

volume V

temperature T, θ

density ρ

pressure P

energy E

power P

electric current I

resistance R

gravitational potential V
g

electric potential V
e

magnetic ux Φ

Vector quantity Symbol

displacement s

velocity u, v

acceleration a

momentum p

force F

gravitational eld 

strength
g

electric eld strength E

magnetic eld 

strength
B

area A

5.0 N

this vector can represent a force 

of 5.0 N in the given direction

(using a scale of 1 cm representing

1 N, it will be 5 cm long)

▴ Figure 3 This vector is drawn at half-

scale. It represents a force of 5.0 N in the 

given direction. 1 cm scale represents 

0.50 N.
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Table 3 uses the notation 

introduced on page 550 where 

the symbols for vector quantities 

are emboldened. Generally, in 

this book, there is no distinction 

made in equations between 

vector and scalar quantities.

There is another method of 

linking vectors shown on  

page 53. In this approach, the 

vectors are “slid” along the page 

until they link nose to tail. In the 

work on page 53 the vectors form 

a closed loop indicating that they 

sum to zero.

Figure 5(a) shows two vectors that need to be added. The steps to achieve this 

by scale drawing are as follows.

▴ Figure 5 Two non-collinear vectors can be added using a scale drawing.

V

V2

V1

V2

V1

• Choose a suitable scale for the vectors so that they t on the drawing page.

• Draw the vectors at their scaled length and in their correct direction so that 

the point of application of one vector (V
2
 in this case) is at the end of the other 

vector. This forms two sides of a parallelogram (Figure 5(b)). 

• The vector sum is the diagonal of the parallelogram that stretches from the 

point of application of V
1
 to the end of the V

2
 vector. Construct this line which 

is the resultant vector of V
1
+ V

2

Subtraction when non-collinear

To subtract two vectors, all that is needed is to form the negative of one of 

them. The negative of a vector is simply a vector with the same magnitude, but 

opposite in direction.

Figure 6 shows two vectors V
1 
and V

2
. We want to nd the vector V

2
− V

1

V2

–V1

V1

V2

V2

–V1

–V1

V2 – V1

V2 – V1

▴ Figure 6 Subtracting two vectors.

• Form −V1 by reversing the arrow on the vector (Figure 6(a)).

• Use the earlier technique to add the new vector to V
2
 (Figure 6(b)).

• Notice that the order in which the vectors are added does not matter  

(Figure 6(c)). This is because vector addition is commutative, so that  

a + b = b + a.

You can be asked to add up to three vectors all in the same plane. This can be 

achieved by drawing the sum of two of the vectors and then redrawing with 

the third vector added to the sum. Again, the order in which this is done does 

notmatter.

(a) (b)

(c)
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v2

v1

v2

v1

θ

▴ Figure 7 Pythagoras’ theorem gives the magnitude (length) of the summed vector 

while trigonometry gives θ

Manipulating vectors algebraically

Two perpendicular vectors 

This is a common situation (oen there is a horizontal and a vertical vector to be 

added) and is a straightforward application of Pythagoras’ theorem.

Vectors V
1 
and V

2
 are to be added (Figure 7(a)).

Our drawing method would give a solution that looks like Figure 7(b). Because 

the angle between the vectors is a right angle, the parallelogram is a rectangle.

(a) (b)

Worked example 6 in Topic D.2 

shows an application of this 

technique to electric elds.

Resolving vectors into 

perpendicular components is 

essential in many mechanics 

problems, such as Worked 

examples 6, 13 and 25 in 

TopicA.2.

FFsin θ

θ

Fcos θ

▴ Figure 8 Vector F is resolved into two 

components at right angles to each other. 

The enclosed angle θ gives the cos θ

component. The other angle is 90 − θ and 

cos (90 − θ) is sin θ

Therefore, the resultant vector has:

V 2
1
+ V 2

2

• an angle θ to vector V1 that is given by tan θ = (V2

V1
), so that θ = tan 1 (V2

V1
)

Resolving vectors

Sometimes a single vector needs to be deconstructed into two component 

vectors at right angles to each other. This is called resolving a vector. The single 

vector is the resultant of the two new vectors. Resolution into two perpendicular 

components is helpful because in many situations the two vectors can be treated 

independently. This is used in projectile motion in Topic A.1.

The work on adding vectors shows that this is vector addition in reverse 

 (Figure8).

Vector F has to be resolved horizontally and vertically. It is at an angle θ to the 

horizontal.

In trigonometry, sin =
opposite side

hypotenuse
 and cos =

adjacent side

hypotenuse
 so that:

• The horizontal component = F × cos θ

• The vertical component = F × sin θ

As a check, F F 2 sin2 θ + F 2 cos2 θ , which it does because  

sin2 θ + cos2 θ = 1.
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Experimental tools for physics

• measuring and controlling variables

• using data loggers

• safe working in a laboratory

• practical electrical work.

In this section, you will learn about:

Measuring variables

Measurements of physical quantities need to be made to an appropriate level of 

precision. Precise measurements have very little spread about the mean value 

and the degree of precision usually depends on the type of instrument used for 

the measurement. 

It is important to use the right measuring tool for the job. Imagine measuring 

the oor area of your laboratory. The appropriate instrument here (Figure 1) is a 

measuring tape. In principle, this can measure to about ±2 mm (remembering 

that there is 1 mm error at each end of the tape). A single metre ruler would be 

inappropriate because it would need to be moved several times during the 

measurement with a consequent error at each replacement. Something like a 

vernier calliper would be completely inappropriate because it is not designed for 

linear measurements of this sort. 

An alternative to the measuring tape would be a digital rangender in which the 

time taken for a laser beam to reach a distant wall and return is converted into a 

distance using the speed of light. 

Table 1 gives some of the common quantities you may need to measure in your 

laboratory and some of the alternative techniques that you can use. Your teacher 

will tell you which instruments are available.

▴ Figure 1 A metal tape measure and a digital rangender.
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Quantity Measurement instrument or technique Comments

mass

analytical (chemical) balance reads to a few mg

digital kitchen scale reads to 1 g or 0.1 g

analogue or digital bathroom scales reads to 0.1 kg

digital oor scale up to 3000 kg to a resolution of 0.5 kg

time

electronic laboratory timer or mobile phone reading to 1 ms; can be connected electronically 

to avoid human reaction time errors

mechanical stop watch to 0.05 s but subject to human reaction time

clock or wrist watch to 0.5 s

volume

calculation from measured lengths most suitable for regular solids; appropriate 

instruments should be chosen

displacement methods most suitable for irregular solids

temperature

thermometer 

examples of dierent types:

• liquid-in-glass thermometer

• digital thermometer

• thermocouple (temperature-varying emf 

between dissimilar metals)

• resistance thermometers (variation of 

 resistance with temperature)

several types can be linked to a data logger  

to collect temperature data automatically  

or quickly

force

simple spring balance (newton meter)

strain gauge in which the compression/extension of a metal 

wire changes its electrical resistance

load cell in which compression or extension of the device 

changes another electrical property

angle

plastic or engraved metal protractor normally to 0.5°

digital angle rule 0.1°

digital rotation sensor for example, simple electrical potentiometer, 

Hall eect sensor that responds to magnetic 

eld, rotary encoders

sound intensity

analogue microphone and cathode-ray 

 oscilloscope or digital oscilloscope

for absolute intensity measurements, careful 

calibration is oen required; relative intensities 

are more straightforwarddigital sound sensor and data logger

light intensity
direct reading analogue light meter 

digital light sensor 

electric potential 

dierence and 

electric current

these are discussed in a separate section — see 

Topic B.5.

▴ Table 1 Techniques for measuring quantities.
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Some of the data-based questions 

in this book use experimental 

data from a smartphone data 

logger. You may decide to use a 

smartphone data logger in your 

own IA.

Data loggers can have many 

advantages but the quantity of 

data that they can record may be 

overwhelming unless you design 

your experiment and set up the 

logger carefully.

Try an experiment with a 

smartphone sensor. Measure the 

light intensity at varying distances 

from a light bulb (or other light 

source). Can you show that the 

intensity obeys an inverse square 

law? (See Topics B.2 and E.5). 

Consider how the sensor readings 

can be used to give an average 

intensity as well as the uncertainty 

at each value.

Another example is the data-based 

question on page 451. You could 

try to reproduce this experiment 

yourself. If you allow the data 

logger to take data for 30 s, how 

will you process the data?

Using a smartphone 

as a data logger

Using data loggers

Put in its simplest terms, a data logger is a computer with the specialist function of 

recording and storing data. It can be programmed to read one or more series (or 

channels) of data in various ways:

• as one-o measurements or one or more quantities at the press of a button —  

although this is not usually eective as the set-up time for the apparatus and 

the data logger could be prohibitive

• as a series of measurements either with regular time intervals between them 

or with the reading triggered by external events such as a light switching on 

or a temperature change. 

The main advantages of data logging are:

• reduction in error while taking readings

• ability to capture data at both very fast and very slow rates that are outside 

the normal range of human capability

• data storage both in terms of accuracy of storage and volume of material

• near-simultaneous logging of several pieces of data

• ability to capture data in remote or dangerous situations, a cold freezer or 

dark environments, for example.

The only real disadvantage of a data logger is the risk that the equipment may 

develop a fault which may not be apparent until data are analysed.

Many types of data logger are available — your teacher will help if you need to 

use a particular data logger for experimental work or for your internal assessment. 

Modern data loggers are either:

• completely self-contained so that they have their own purpose-designed 

computing hardware and soware, or

• designed to connect to an existing computer and to act as an interface 

 between sensors and the computer.

Self-contained data loggers in schools are oen designed to plot the data 

 graphically as a function of time or as variable against variable. 

It is unusual for data loggers to have particular sensors attached to them. You will 

need to be able to select and attach the sensors to the data logger correctly.

An important aspect of sensor use is the possible need for sensor calibration. A 

preliminary experiment may need to be performed to adjust the output of the 

sensor to suit a particular set or sets of stimuli. The sensor instructions will state 

the need for this and show how it should be performed.

Sensors divide into two broad groups:

• Analogue sensors where a varying voltage or current is output by the sensor 

in response to changes in the experiment. An example is a current sensor 

which can be as simple as a calibrated resistor. When charge ows through 

the resistor, the pd across it can be measured and transferred to the data 

 logger which reads the pd at predetermined intervals.
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• Digital sensors undertake some pre-processing of the signal and output 

a digital code that is detected by the logger. A simple example is a push 

switch that is either on or off and this can be sent as a binary 1 or 0 to 

the logger, perhaps to pause the data-logging operation. More 

 sophisticated digital  devices include digital temperature sensors that 

output the temperature value in digital code. These can be more 

 accurateand have higher resolution than analogue temperature sensors 

suchas thermistors.

Sensors are available for many quantities. The most important for your use include 

light sensors, including light gates; electrical sensors: current, pd, power; sound 

sensors; pressure and stress sensors; temperature sensors; accelerometers; 

magnetic sensors (using the Hall eect); load cells (for force measurements); 

strain sensors.

Your mobile phone is oen a convenient source of sensors for data logging. 

There are a number of apps available for both iOS and Android devices that 

will exploit the built-in phone sensors to make logging measurements over 

time. Typical sensors found in mobile phones detect motion: tilt, shake, 

rotation; environmental change: temperature, moisture, pressure; position: 

accelerometer, geomagnetic eld; light; proximity; gyroscope; compass.

You may also own a graphical calculator that can accept the input from a  sensor. 

These can be used with a wide variety of sensors in physics and other sciences.

One example of the use and convenience of data logging 

is that of plotting the electrical characteristic (the IV curve) 

for a lament lamp. 

To perform this experiment without a data logger, you 

would have to reset the position of the potential divider by 

hand and manually note down the current and pd readings 

shown on the meters. Figure 2 shows an arrangement that 

will allow automated recordings of the data.

▴ Figure 2 The two sensors act as inputs to the data logger. 

It is also possible for a change in one sensor input to trigger the 

beginning of the data-acquisition sequence.

potential

divider

arrangement

filament
lamp

current
sensor

voltage

sensor

data logger

A

V

• Connect the two sensors, voltage and current, into 

the circuit. The instructions for your sensors will 

indicate how this should be done. 

• The data logger can be set up so that any change 

in the sensed voltage will start the data collection. 

All you then need to do is slide the wiper on the 

potential divider from one end to the other.

• Before beginning the experiment, you will need to 

decide how many readings to take. Usually, you can 

either specify a total number or you can program the 

data logger with a time interval between readings. 

This is your choice, but a decision to take as many 

readings as possible may not be sensible. Data 

loggers have nite memory storage for data and you 

must take account of this — though this may be more 

important when the readings are taken over long time 

periods of days or weeks.

• Having varied the pd across the lamp, you should 

now have data waiting in the data logger. You can 

then choose to download the data to a computer or 

use the data logger itself to display the characteristic 

in a way that you choose. You may be able to 

program the data logger to calculate resistance 

values or plot a graph of the variation of resistance 

against current automatically.

Using a data logger

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



Tools for physics

347

Working safely

It is important to protect yourself and others around you when working in a 

laboratory. There are three areas that you must consider:

• Safety from accident. There are many potential hazards in a physics 

laboratory, including high temperatures, electrical accidents, falling weights 

and toxic substances. It is everyone’s duty to protect themselves and others 

while experiments are being carried out. If you are unsure about a procedure 

and its safety, you must ask for your teacher’s advice.

• Environmental safety. In a similar way, it is everyone’s responsibility to 

protect the environment. Do not use materials needlessly and thoughtlessly. 

Are your experiments planned so that they minimize their impact on the local 

and global environment?

• Ethical working. Ethics should be in your mind during the planning and 

research stages of an investigation. It links to the previous bullet point. Is 

what you are doing ethically appropriate?

Constructing electrical circuits from a diagram 

Wiring up a circuit is an important skill. If you are organized, then you should have 

no problems with even complex circuits. 

This is how you might tackle the potential-divider circuit from page 321 that is 

used to vary the pd across a component, in this case, a lamp.

Look carefully at the circuit diagram (Figure 3a). It is really two smaller circuits 

linked together: the top sub-circuit with the cell and potential divider, and the 

bottom sub-circuit with the lamp and the two 

meters. The bottom circuit itself consists of two 

parts: the lamp/ammeter link together with the 

voltmeter loop. 

The potential divider needs care. In one form it has 

three terminals (Figure 3b), and sometimes the three 

terminals are in an arc of a circle. The linear device 

has a terminal at one end of a rod with a wiper that 

touches the resistance windings. The other two 

terminals are at each end of the resistance winding. 

• Begin with your circuit diagram. Get your 

teacher to check it if you are not sure that it is 

correct. 

• Lay out the circuit components on the bench as 

they appear on the diagram. 

• Connect up one loop of the circuit at a time. 

• Check that components are set to give minimum 

or zero current when the circuit is switched on. 

• Do not switch the circuit on until you have 

checked everything. 

Figure 3c shows the sequence for setting up the 

circuit step-by-step. 

▴ Figure 3 Setting up an electrical circuit. Set out the components 

without connecting them. Connect the power supply section without 

turning on the supply. Arrange the series part of the circuit and then add 

the parallel components in the correct places. 

step 2

step 1

step 3

step 4

V

A

A’ B’

A B

V

(a)

(b)
(c)

V

Scientists have a responsibility 

to ensure that their experiments 

are safe. In 2008, a lawsuit was 

brought against the Large Hadron 

Collider at CERN on the basis that 

it might create a black hole and 

destroy Earth. Both the lawsuit 

and a subsequent appeal were 

rejected.

Your own experiments are unlikely 

to pose such hazards but you must 

be aware of laser beams, falling or 

sharp objects, high voltages and 

high temperatures in your work.

Global impact of  

science
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• errors in measurement, how to estimate and  

combine them

• displaying data effectively

• using graphs and charts

• modelling physical phenomena using software.

In this section, you will learn about:

Errors in measurement

Measurements of data have implicit errors. These errors come in two forms.

• Random error. All measurements are prone to this error. It occurs because 

of small variations in the factors that go into making the measurement. One 

example is the parallax error that occurs when reading a scale. When the 

observer’s eye is not exactly at right angles to the plane of the scale and there 

is some distance between the pointer and the scale, then the reading will be 

in error (Figure 1).

In repeating the reading an observer is very unlikely to place their head in 

exactly the same place so that the observation position is random.

Another example is the eect of reaction time on the start and stop of a 

time measurement using a stop watch. Although reaction time is, broadly 

speaking, constant for an individual, there will be some  dierences between 

the two measurements due to anticipation.

Random errors are dealt with by making a series of repeat measurements 

under the same experimental conditions. Then nd the mean (average) of all 

the measurements. This is the result to use in further analysis. The variation of 

the readings also gives an estimate of the absolute uncertainty in the mean 

value. This is covered later.

Digital instruments can be more dicult. Digital electrical meters (Figure 1(b)) 

in particular oen appear to give an unchanging reading and it is tempting 

not to take repeat readings. The answer here, for accurate work, is to look 

at the calibration data supplied with the instrument. This will give you an 

indication of the accuracy of the meter and its true resolution

Readings that have a small spread about the mean are said to be precise

• Systematic error. These can be more dicult to cope with. They are 

characterized by constant osets to the true reading caused by the instrument 

or some aspect of the measurement technique. A simple example is that of an 

analogue electrical meter where the point does not indicate zero when the 

meter is not in a circuit (Figure 1(b)). The best approach here is to adjust the meter 

so that zero input gives a zero on the scale. If this cannot be done, then you must 

be careful to add or subtract the oset from each data point you measure.

1234678910

(a)

(b)

(c)

▴ Figure 1 (a) Parallax error and its cause. 

(b) Analogue and digital meters. (c) A digital 

vernier calliper.

Handling data and modelling physics

Suppose the manufacturer of your 

digital meter describes it as having 

a resolution of 3
1

2
 digits and an 

accuracy at full scale deection of 

2.00 V of 25 ppm. 

• The meter can show up to 1999 

on its scale so that its maximum 

resolution on the 2.0 V scale is 

1.999 V. The le-most digit can 

only display 0 or 1. If this pd 

rises by 0.002 V, then the best 

the display can do is 02.00 V 

as you will need to choose the 

20V range for the display.

• The accuracy of the meter at 

2.0 V is ± 2.00 V ×
25

1 × 106

= ± 50 μV
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Another example is that of a micrometer screw gauge or a vernier calliper 

where the instrument can give a non-zero reading when the jaws are fully 

closed (Figure 1(c)). All such instruments have a method for resetting the 

zero. It is important to check the zero every time that you use these devices. 

Systematic uncertainties can cause a measurement to be dierent from the 

true value. We call such a measurement inaccurate.

Handling errors

When a quantity is measured, there is an implicit error in the measurement. This 

should always be quoted when discussing the quantity and its value. The usual 

forms for writing the value and the error are:

length = 2.4 cm ± 0.2 cm  OR  (2.7 ± 0.2) cm

value absolute
uncertainty

in value

The absolute uncertainty of the value has the same units as the quantity and is an 

estimate of the range of the value within which the true result for the quantity lies. 

When the true result and the measured result are close, the measurement result is 

said to be accurate

There are statistical methods to determine the absolute uncertainty in a 

 measurement but, for your purposes, a quicker method may be good enough. 

To obtain your estimate of the absolute uncertainty, look at the range of values 

from which you established the mean value. Then take the dierence between 

the greatest and smallest values that you observed. Halve this dierence to arrive 

at the absolute uncertainty. Here is an example.

• You measure six speeds: 

6.78 m s 1, 6.56 m s 1, 6.92 m s 1, 6.42 m s 1, 6.54 m s 1 and 6.48 m s 1

• The mean of these six data points is 6.62 m s 1 (rounded to 3 s.f.).

• The greatest and least values are 6.92 m s 1 and 6.42 m s 1. This is a range of 

6.92 − 6.42 = 0.50 m s 1

• Half of this range is 0.25 m s 1 which leads to an absolute uncertainty of 

±0.25 m s 1. 

• The speed should be quoted as (6.6 ± 0.3) m s 1. The uncertainty is usually 

rounded up to 1 s.f. and the mean value of the data is given to the same 

 precision as the uncertainty.

• Although, exceptionally, you may wish to write this as  

6.6(2) m s 1
± 0.2(5) m s 1 to emphasize the sensitivity of the measurement.

There are other ways of expressing experimental uncertainty too. 

The fractional uncertainty is used later when we combine uncertainties in 

particular ways. The percentage uncertainty is an excellent way to get a feeling 

for the size of the error estimate in relation to the value being measured.

Sometimes students confuse 

the terms error and uncertainty. 

Although the terms are oen used 

interchangeably, the use of the 

word "uncertainty" reminds us that 

it is not necessarily the fault of the 

experimental equipment or the 

experimenter.

Is confessing to uncertainty an 

admission of fault, or is the greater 

error to underestimate uncertainty? 

Can there ever be a measurement 

with no uncertainty?

Admitting fault
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• To calculate the fractional uncertainty. Calculate:

estimate of the absolute uncertainty in a value

estimate of the value
. 

In the earlier example, the fractional uncertainty is 
0.25

6.62
= 0.038.

Fractional uncertainty has no units; it is a ratio of values with identical units. 

• To calculate the percentage uncertainty. Calculate the fractional 

uncertainty and multiply by 100. In the earlier example, the percentage 

uncertainty is 
0.25

6.62
× 100 = 3.8%.

Combining uncertainties 

You will frequently need to combine uncertainties in your practical work. This 

technique is known as the propagation of uncertainty and is needed when there 

are uncertainties that have to be combined to form a further value. 

Addition and subtraction of uncertainty

When values are added or subtracted,  

the absolute uncertainties of the values are added.

Two quantities a and b are added to give a third value c: c = a + b. The values of 

these with their absolute uncertainties are a ±Δa and b ±Δb

The absolute uncertainty of c is Δc =Δa +Δb. 

When a and b are subtracted to give a dierent value d: d= a − b, then 

the  absolute uncertainty of d is still the sum of the absolute uncertainties 

Δd =Δa+Δb

To show this, a student measures the length of a piece of card with a metre ruler. 

The two measurements (Figure 2) are 195.0 mm and 118.5 mm. Each of these 

measurements has an absolute uncertainty of ±0.5 mm. 

118.5 mm

76.5 ± 1.0 mm

0.95 ± 0.01 mm 58.4 ± 1.0 mm

195.0 mm

card

metre ruler

▴ Figure 2 The dimensions of the card (not to scale).

Practise combining uncertainties 

using the experiment on page 65 

in Topic A.2.

The length of the card is 195.0 − 118.5 = 76.5 mm.

The absolute uncertainty of the length of the card is 0.5 + 0.5 = 1.0 mm.

The card length should be quoted as (77 ± 1) mm or (76.5 ± 1.0) mm.

The percentage uncertainty in the length estimate is 
1.0

76.5
= 1.3%.
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Multiplication and division of uncertainty

The position is more complicated when quantities are being multiplied or 

divided; in other words, when c = a × b or d =
a

b
. Again, a and b have absolute 

uncertainties of Δa and Δb, respectively. This time, the fractional uncertainties are 

added: 
Δc

c
=

Δa

a
+

Δb

b

When one quantity is divided by another, the fractional uncertainties are still 

added 
Δd

d
=

Δa

a
+

Δb

b
. As with the absolute uncertainties earlier, the fractional 

uncertainties are added and never subtracted.

When values are multiplied or divided,  

the fractional uncertainties of the values are added.

Worked example 1

The student measuring the card length earlier went on to determine the 

width and thickness of the card using a metre ruler anda vernier calliper. 

The three values are:

 length = (76.5 ± 1.0) mm; width = (58.4 ± 1.0) mm; 

thickness = (0.95 ± 0.01) mm

a. What is the volume of thecard?

b. What are the fractional and absolute errors in the volume?

The card has a mass of (1.1 ± 0.1) g. 

c. What is its density?

Solutions

a. The volume is 76.5 × 58.4 × 0.95 = 4240 mm3

b.  The fractional errors are 
1.0

76.5
, 

1.0

58.4
 and 

0.01

0.95
. This leads to a fractional 

error in the volume of 
1.0

76.5
+

1.0

58.4
+ 

0.01

0.95
= 0.0407. The absolute  

error in the volume is 0.0407 × 4240 = 172 mm3

  The volume is (4240 ± 180) mm3, where the absolute error is rounded 

upwards. Rounding down in this case would make the estimate in the 

absolute error appear too small.

c.  The density ρ of the card is ρ =
mass

volume
and has the value (259 ± 35) kg m 3.  

You should be able to verify this answer. Don’t forget to add the fractional 

uncertainties.

Test your ability to handle 

uncertainties in this 

experimentaltask.

Measuring the weight of paper

Paper can be specied by its area 

density — the mass in grams of one 

square metre (g m−2 or gsm). Terms 

such as paper weight, grammage, 

or basis weight are oen used for 

this. 

Typical oce printer paper is 

marked as 80 gsm. Paper marked 

as having a basis weight of 20 lb 

will be equivalent to 75 gsm.

Take a single sheet of printer paper, 

preferably from a pack of paper 

which states the basis weight or 

gives the gsm. Design and carry 

out suitable measurements to 

establish a measurement of the 

actual gsm of the paper and the 

uncertainty in your value.

Careful measurements may show 

that your observed paper weight 

is less than the value declared on 

the packet. This is usually because, 

by convention, paper weight can 

be determined before the paper is 

fully dried during manufacture.

Would using more than one sheet 

of paper when determining the 

mass improve the experiment?

Uncertainly in  

experiments

Raising quantities to a power

Remember that a number cubed x3 is simply x × x × x. This leads to the result that, 

when y = xn, then 
Δy

y
= n ×

Δx

x
. Here the modulus sign (“∣ ∣”) means that the 

result can be positive or negative, but we must treat it as positive.

The fractional uncertainty when a quantity is raised to a power is equal to the 

power multiplied by the fractional uncertainty of the quantity, ignoring the sign.

Many of the data-based questions 

involve relationships that are 

power laws (i.e. y = kxn where n is 

an integer). See the data-based 

questions on page 26 and  

page 263 for examples.
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Displaying data

Tables can be used to display data in a report and can be useful in making a 

point. Every row or column in a table should contain a heading with the quantity 

and its unit. Do not put a unit with each value in the table.

Consider the number format. Scientic notation (1.2 × 102 m s 1 for a speed of 

120 m s 1) may be best. The table containing this number would begin:

Speed / 102 m s 1

1.2

Data tables can be used to test relationships such as y =
k

x
, y = kx2, y =

k

x2,  

y = e kx, relationships including sin x and cos x and so on. Combine the variables 

in relationship in a way that should yield a constant. 

For example, in Boyle’s law (Topic B.3), the prediction is that pressure = 
k

volume

(P =
k

V).  Therefore P × V should be a constant. This can be demonstrated easily 

in a table. Pressure and volume are the variables obtained from an experiment, a 

third  column gives the product PV

P / kPa V / m3 PV / kJ

115 15.6 1794

105 17.2 1806

95 18.8 1786

85 21.0 1785

80 22.3 1784

The question is whether the values in the third column are close enough to 

 conrm the relationship. In this case, they are with a mean and uncertainty for  

PV of (1790 ± 10) kJ.

A data-table test for exponential change is also possible. The damped 

 response of an oscillator is an example of this (Topic C.4). This test uses the 

knowledge that amplitude ratios over identical time intervals (or numbers 

of oscillations in this case) are the same. The amplitude of the oscillation is 

measured every tenth oscillation. 

amplitude of oscillation / cm 6.1 3.8 2.4 1.5 0.95 0.60

number of oscillations 10 20 30 40 50 60

this amplitude
previous amplitude

0.62 0.63 0.63 0.63 0.63

Worked example 2

A student is calculating the time 

period of a pendulum using  

T = 2π

l

g
, where l is the length 

of the pendulum and g is the 

acceleration due to gravity. 

The percentage uncertainty 

in l is 12% and the percentage 

uncertainty in g is3%.

What is the absolute uncertainty 

in the time period when l = 1.9 m 

and g = 9.8 m s 2?

Solution
The two constants 2 and π have 

no error. 
ΔT

T
=

1

2
×

Δl

l
+

1

2
×

Δg

g
. 

(Notice that, although the expression 

gives g
1
2, the minus sign is ignored.)

ΔT

T
=

1

2
× 0.12 +

1

2
× 0.03 = 0.075

T = 2π

1.9

9.8
 = 2.77 s. 

The absolute uncertainty is  

2.77 × 0.075 = 0.21 s. The time 

period can be quoted as  

(2.8 ± 0.2) s or (2.7(7) ± 0.2(1)) s. 

Look at the data-based question 

on page 125. Use the table of 

data, or carry out the experiment 

yourself.

Find the ratio of the height of 

a bounce to the height of the 

previous bounce. Use your 

knowledge of uncertainties to 

establish a mean value and an 

uncertainty in this mean value.O
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Using graphs and charts

Charts

The following diagrams can be seen in physics texts.

• Pie charts (see, for example, the origins of background radioactivity 

on page655) are useful for showing the relative contribution of the 

 components of a quantity. Taking 360° as equivalent to 100% allows 

the relative  percentage of a particular contribution to be shown as an 

angle within a circle (Figure 3).

• Bar charts. The height of the bar or column represents the value of the 

quantity as distributed between dierent  components.

• Histograms are supercially the same as bar charts, but have a dierent 

purpose being intended to show the frequency density of a variable 

(not be confused with wave frequency in Theme C). Their use is best 

shown by anexample.

Continent % area

Africa 20.4

Asia 29.2

North America 16.5

Antarctica 9.2

South America 12

Europe 6.8

Australia 5.9
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▴ Figure 3 A pie chart (a) and bar chart (b) showing the 

relative areas of the seven continents.

Graphs provide a visual representation of the data and reveal 

trends. However, your choice of graph must be appropriate 

to demonstrate this.

Compare the graphs on pages 666 and 683. These are the 

same as Figure 5 overleaf, however they have been plotted 

with dierent axes. On page 666 a false-origin is used on the 

y-axis so that the data for high nucleon numbers can be seen 

clearly. The graph on page 683 does not use a false-origin but 

uses a logarithmic scale on the x-axis so that the elements with 

a small nucleon number are clearer.

Consider the data-based question on page 668. Which type 

of graph is most appropriate here? Since the total of all the 

probabilities must add to 1, a pie chart could be drawn. This 

would demonstrate the most common number of neutrons 

released in a ssion reaction. Would it demonstrate the 

mathematical trend?

Communication skills ATL

Worked example 3

A radioactivity counter is used to detect the time of arrival of the next event when measuring the background count in 

a laboratory. On four occasions out of 30, the first event happened within 0.20 s of switching the counter on. On nine 

occasions the first event happened between times of 0.20 s and 0.35 s, and so on. 

The complete data are:

Time t / s 0 < t ≤ 0.20 0.20 < t ≤ 0.35 0.35 < t ≤ 0.50 0.50 < t ≤ 0.60 0.60 < t ≤ 0.80

Frequency 4 9 6 6 5
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Solution
The first step is to calculate the frequency density, which is 

frequency

width of time period
 (

4

0.2
= 20 for the first group).  

The complete table is:

Time / s 0 < t ≤ 0.20 0.20 < t ≤ 0.35 0.35 < t ≤ 0.50 0.50 < t ≤ 0.60 0.60 < t ≤ 0.80

Frequency 4 9 6 6 5

Time width / s 0.20 0.15 0.15 0.10 0.20

Frequency density 20 60 40 60 25

Figure 4 shows the histogram. Notice that the widths of the 

columns vary and that the frequency density (as opposed to 

the frequency alone) allows for this.

• Scatter graphs. These are plots on x–y-axes, but do not necessarily show a 

causal relationship. A good example in physics is the plot of binding energy per 

nucleon against nucleon number from Topic E.3, which is shown again here 

(Figure 5). It is inappropriate to draw a line of best t for this descriptive chart.

nucleon number

(e.g. U, Pu)

most stable

nuclides (e.g. Fe, Ni)

lighter nuclides

(e.g. He, Li)
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▸ Figure 5 The chart of average binding 

energy per nucleon against nucleon 

number for the elements.
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▸ Figure 4 An example of a plotted histogram. 
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Throughout this book, you will see two types of graph.

• Sketch graphs, oen without data points, that are meant to illustrate a point 

in physics or the theoretical variation of y as x changes. 

Sketch graphs should:

• be drawn neatly in pencil

•   show the relationship between y and x clearly — keeping the shape of 

the curve accurate

•   have axes labels — there may not be a need to include axis scales or units 

on sketch graphs

•   include any known data points on the graph — in this case, scales and 

units will be required.

There are some simple sketch graphs that it is useful to be able to draw 

freehand quickly and accurately. These include:

y =
k

x
, y = kx2, y =

k

x2, y =± sin x, y =± cos x, and (for AHL) y = ke cx, where k

and c are constants.

• Drawn graphs, with data points, that represent the outcome of data 

collection in a laboratory experiment. You will typically use data that you 

alone, or with a group of fellow students, have collected. Such graphs must 

always have axes with scales, labels and units.

Graphs are a highly convenient way to display data and information. Drawing 

them well is a traditional skill of the physicist and, even though spreadsheets and 

other soware can produce graphs quickly, it is important that you can produce 

clear and accurate graphs by hand under examination conditions and perhaps for 

your internal assessment.

Whichever spreadsheet program you use, you should be condent that you can 

use it to produce all the features that you need: axes + labels, plotted points, 

error bars, line of best fit and so on. It takes just as much skill to produce a good 

computer-derived graph as a clear hand-drawn one.

Patterns of results become very clear on a graphical plot. Some students plot a 

rough graph as an experiment progresses. This enables them to see whether 

there are any values omitted that need to be lled in before the apparatus is 

dismantled.

Graphical analysis

A curved line on a graph shows the basic variation of one variable with another.

A straight line on a graph helps you to see exactly how one variable varies with 

another. With a straight line, precise mathematical statements can be made about 

the variation of the y-axis quantity with the x-axis quantity. Always manipulate data 

so that it produces a straight line, if possible. Follow these steps:

• Find a physics equation that models how the variables behave.

• Manipulate the algebraic equation to the form y = mx + c

• Plot the graph.

Figure 6 shows a y = mx + c graph to remind you of the meaning of the symbols.

gradient, m

c

y = mx + c

x

y

▴ Figure 6 The equation of a straight line 

with gradient m and an intercept on the 

y-axis of c is y=mx+ c.
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Using logarithms to give a straight-line graph

(a) When the relationship is exponential

This occurs in the analysis of radioactive decay in Topic E.3. Using the notation of 

that topic, N = N0e λt , where N is the number of nuclei remaining at time t when 

the initial number was N
0
 and the decay constant for the nuclide is λ

Figure 7(a) shows the variation of N with t. However, a better plot can be 

 obtained by taking log
e
 of both sides of the equation: ln N = ln N0 − λt. 

 Comparing this with y = mx + c suggests that a plot of ln N against t will be a 

straight line  (Figure7(b)). The gradient of the line is −λ, leading to the half-life:

T 1
2

=
ln 2

gradient

(b) When the relationship may be a power law

This is a technique to use when you hypothesize that the relationship between y

and x is of the form y = kxn, where k and n are unknown. This time you take logs of 

both sides of the equation:

 log y = log k + n log x 

 y = c + mx

A plot of log y against log x gives a straight line and a comparison with the 

straight-line equation shows that the gradient is n and the intercept of the graph 

when log x = 0 is log k. 

The data in Figure 8 show a gradient of 1.5 and an intercept of about 0.43, giving 

k = 100.43 = 2.7. The equation for the relationship is y = 2.7x
3
2

t

N

N = N0 e λt

(a)

N0

(b)

t

grad = λ

In N0

In N

In N = In N0 – λt

▴ Figure 7 (a) A plot of N against t gives a 

curve from which a radioactive half-life can 

be obtained directly. (b) A better method 

(because it averages all the data points) is to 

plot ln N against t to give the line of best t 

and to obtain λ from the gradient.

1

2

0
0

0.5

0.2

1.5

0.4

lo
g

y

log x

2.5
(b)

0.6 0.8 1

y = 1.5004 + 0.4303

1.2 1.4

x y log x log y

1 2.7 0.000 0.431

2 7.6 0.301 0.881

5 30 0.699 1.477

7 50 0.845 1.699

9 73 0.954 1.863

11 99 1.041 1.996

14 140 1.146 2.146

(a)

▴ Figure 8 (a) The data table contains the original data and the logarithms to base 10 of 

the same data. (b) The log data plotted onto a conventional squared grid. 

See the data-based questions 

on page 263 and page 688 for 

examples of using a log-log graph 

to nd the power of a power law 

relationship.
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The suggestions for graph  

plotting given here apply to  

both hand-drawn and  

computer-plotted graphs.

The advantage of using soware 

to plot a graph is that it will plot 

the points and choose some axes 

for you. However, it is important 

to check these for yourself. For 

example, soware is unlikely to 

label the axes for you automatically. 

It may not select the scales that you 

would like.

Computer programs oen plot 

a line of best t. However, they 

are usually unable to identify 

anomalous data points. Soware 

usually weights all points equally 

and calculates the trend based 

on the values. It may be that a 

computer-generated line of best t 

does not pass through all the error 

bars even though you would be 

able to draw such a line.

If you use graph-plotting soware, 

you will need to ensure that you 

know how to adjust the axes, how 

the data points are chosen, how 

the error bars are constructed and 

how the line of best t is selected.

Plotting points and drawing graphs

The steps that you should go through in plotting a graph are as follows:

• Plan your scales for both axes. You will need a minimum of six data points 

if at all possible. Look at the range of values for the two variables. These 

ranges and the grid on which you are plotting will determine the scales. 

Sensible scale ratios are 1:2, 1:5 and 1:10. Poor scale ratios are 1:3, 1:6, 1:7, 

and 1:9 — you should not use these. The scale 1:4 is intermediate — it can be 

used, but needs care.

Your scale should be such that at least half the grid is lled with data points. 

If this appears dicult to do, consider using a false origin, where the 

bottom le-hand corner of the graph is not (0, 0). When you anticipate 

using a logarithmic graph or a graph with the reciprocal of a quantity, then 

you should take care when choosing your data ranges. Such scales tend to 

compress the points at one end or the other. Figure 8(b) shows this.

• Label the axes correctly with quantity + power of ten + unit. A solidus  

(/) should separate the quantity and the unit: thus, speed / 103 m s 1.  

The power of ten indicates that each number on the axis must be  

multiplied by 1000.

The reason for the quantity / unit notation is because this is really 
quantity

unit
written on one line. The SI rule is that the number on the graph is just a 

 number and must not have units attached to it. Writing in the form quantity /

unit makes the data plotted on the axis unitless, like a ratio.

• Mark the data points on the grid consistently and accurately. Acceptable 

ways to show the point include: ×, + and ⊗ and, for digital plots, a small 

solid circle ∙. The symbol ⊙ is not so good because, when a data point lies 

on a grid line, the exact point may not be clear.

• Draw lines and points with a sharp pencil, never ink (in case you need to 

erase a mark). 

• Add error bars. You should have determined the absolute error in your data. 

This can be incorporated into a graph using error bars that are the length of 

the absolute error above and below the point (in the case of vertical error 

bars) or from side to side for horizontal bars.

• Use a ruler to draw any straight lines. A transparent plastic ruler is best.

• Use free hand for curves. Draw the curve in one owing movement. Practise 

the curve a few times without letting the pencil touch the paper. Keep your 

drawing hand inside the curve.

• When drawing the line (straight or curved), get a balance of points each 

side of your line. Minimize the distance from each point to the line.

• Do not force the line to go through the origin unless you have strong 

 evidence to do so. This is a common error. Surprisingly few graphs of 

 experimental data go through (0, 0).

The rule of thumb used by 

examiners who mark practical 

graphs is that the lines you 

draw should be thinner than the 

thickest grid line on the paper. 

See page 45 in Topic A.2 for 

a Data-based question using 

errorbars.

Communication 

skills — Using digital 

media for  

communication

 ATL
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Figure 9 shows a graph complete with error bars and line of best t.

0
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▴ Figure 9 A graph that contains all the essential elements: clear plots with error bars, a line 

of best t and axes that are sensible and labelled.

Nowadays, it is easy to determine the exact position of a line of best t using a 

graphical calculator or a computer spreadsheet. Use your calculator for this task, 

for speed and accuracy. However, if this is not possible, an approximate way to 

nd the position of a line of best t is as follows.

• Divide the graph data into a lower and an upper half. With an odd number of 

points, one group will have to be one larger than the other.

• Find the mean of all the x-values in the lower set. Do the same for the  

y-values. Plot this new average point on the graph using a dierent symbol 

from your main plots.

• Do the same thing for the x mean and the y mean of the upper set. Plot this 

point too.

• The line joining the two mean plotting points will be a good approximation 

to the line of best t (Figure 10).

Uncertainty in the gradient of a line of best t

The error bars attached to the x- and/or y-values for the coordinates on a graph 

give rise to uncertainty in the true position of the line of best t. This leads to 

uncertainty in the gradient, which can be estimated easily. 

Figure 11 shows a graph with error bars for the y-values. This is the outcome of an 

experiment in which a student drew ve circles of known radius and estimated 

the area of each circle by drawing a grid on each circle. The graph shows the 

variation of estimated area with circle radius2. The gradient should be π. The error 

that the student estimated in each area is shown as an error bar. 

upper half

upper

average

lower average×

×

×
×

×

lower half
x

y

▴ Figure 10 A quick way to compute the 

line of best t is to group the data points into 

lower and upper groups. Find the mean of 

each group and the line of best t is the line 

joining these two mean points.
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Three lines are shown.

• The black line is the line of best t as judged by the student. It has a gradient 

of 3.04.

• The red line is the steepest line that can be drawn with the line remaining 

within every error bar.

• The green line is the attest line that can be drawn within every error bar.

The gradient of the red line is the maximum gradient. It has the value 

560 − (−10)

156 − 20
=

570

136
= 4.19.

The gradient of the green line is the minimum gradient. It has the value 

395 − 130

156 − 20
=

265

136
= 1.95.

This has a range of 2.24 and a half range of 1.12.

The student should quote the answer for π as 3 ± 1.
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▴ Figure 11 A graph with error bars and the line of best t, and maximum gradient and 

minimum gradient lines. A calculation of the minimum and maximum gradients leads to 

an estimate of the absolute uncertainty in the gradient.

Many smartphones have a built-in 

pressure sensor. You should be 

able to nd a suitable app that will 

allow you to access the readings 

from this sensor.

Place the smartphone on the 

oor and measure the pressure. 

It is possible that the pressure will 

uctuate. In this case, you might 

choose to stop the sensor  

read-out and record the value 

multiple times. This will give an 

average  measurement and its 

range. Alternatively, you might use 

the smartphone as a data logger 

and record a set of values.

Now take measurements of the 

pressure P at dierent heights h

above the oor. A staircase may be 

useful to do this.

Plot a graph of h on the x-axis and 

P on the y-axis. Find the gradient 

of your graph and use your error 

bars to nd the uncertainty in your 

gradient.

Using the equation P = ρgh, 

determine a value for the density 

of air and give an uncertainty with 

your value. (You can choose to take 

the local accepted value of g or  

use the smartphone to provide  

a measurement of g using one  

of its sensors.)

Measuring the  

density of air
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Practice question

1. A student investigates how current I in a metal wire 

depends on the length L of the wire, when the 

potential dierence across the wire is kept  constant. 

The theoretical prediction for the relationship of I and 

L is given by I=
k
L

, where k is a constant that depends 

on the potential dierence and the properties of 

the wire. 

 The  graph shows the variation of I with 
1
L

 and the line of 

best t.

a.  Suggest whether the data supports the theoretical 

prediction.

b. Estimate the value of k

c.  On the graph, sketch the maximum and minimum 

gradient lines for the data. 

d.  Hence, state the value of k with its absolute 

uncertainty. 

l/
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Dealing with data using graphs 

Interpolation

When you have drawn the graph and line of best t for your experimental 

data, it is straightforward to obtain values within the graphical range. 

Simply read o y-values for particular x-values that you need. A classic 

example of this is the use of a V–I graph to give resistance values for 

particular currents.

Figure 12 shows such a graph with a trend line drawn. The resistance at a 

current of 1.15 A is R=
V

I
=

4.9

1.15
= 4.3 Ω

Extrapolation

Things are a little more dicult when working outside the range of your 

graph. You have to make assumptions about the behaviour of y as x

varies and these may not necessarily hold. You are unlikely to be asked to 

extrapolate in a theory paper except for the estimation of an intercept from 

a straight line. However, you may need this skill for your own practical work

Gradients from a straight line

Calculating the gradient of a straight-line graph is an essential skill and you 

should be able to do this both manually and using graphical calculators or 

spreadsheets. 

Figure 13 shows a typical graph with a straight line. The steps to calculate 

the gradient are as follows.

• Draw a large triangle that occupies at least half the length of the trend 

line. Ideally, the ends of the triangle should lie at data values that are 

easy to read: near grid intersections, for example. This is one reason 

why your axis scales should not be awkward fractions, such as 1:7.

V
/
V

I/A
1.41.2 1.00.80.60.40.20

2

0

4

6

8

10

▴ Figure 12 Interpolation within a  

graphed range involves careful read-os  

of the (x, y)-coordinate.

calculate the

change on the

y-axis, 횫y

gradient =

divide

to calculate

the gradientcalculate the change

on the x-axis, 횫x

x1 x2

y1

y2

횫y

횫x

횫y

횫x

y

x

▴ Figure 13 The steps to calculating a 

gradient of a line of best t.
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• Read off the intersection coordinates (x, y) where your triangle meets the 

line. Only use actual data points from your experiment when they lie exactly

on the trend line.

• Calculate the change on the y-axis, Δy = y2 − y1 and the change on the 

x-axis, Δx = x2 − x1

• Evaluate 
Δy

Δx
. This is the value of the gradient.

• In physics, it is normal to include the unit of the gradient too. Strictly, the 

gradient itself has no units because the y-values and x-values are unitless as a 

result of the way the axis labels are written. This is a subtle point but it is more 

convenient to re-introduce the gradient value to its unit as soon as possible.

Gradients from a curve

The gradient to a curve gives the instantaneous value of 
Δy

Δx
 at the x-value chosen.

• Draw a tangent to the curve at the point concerned. If you nd this dicult, 

use a plane mirror as shown in Figure 14. 

• When the curve appears to be continuous, your mirror is at 90° to the 

tangent. Draw along the mirror and then use a set square to construct 

thetangent. 

• You can now continue as though for a straight-line gradient.

Intercepts

Intercepts on either axis are usually just a straight read-o where your line cuts 

theaxis. 

However, if you have used a false origin, then things may be more dicult. You 

will need to calculate the intercept using either trigonometry or the equation of 

a straight line (y = mx + c). When you know m then a read-o of a point (x, y) on 

theline will give the y-intercept cy from cy = y − m × x and the x-intercept c
x

from

c
x
= − 

c
y

m

A quick way when you have a drawn graph in front of you is shown in  Figure15.

line at 90° to mirror surface —

this is the tangent needed

line along

mirror

▴ Figure 14 When you need a tangent to a graph 

curve, use a mirror to ensure that your tangent is 

along the curve.

Imagine that your graph

is lying on a larger grid

that includes the true

origin.

The y-value changes by this

much over the distance between

the  false origin and the  real origin.

real origin

You know how far

the false origin is

from the real origin.

The real intercept

is as far below the

false intercept as

the y-value change.

You know what

the false intercept

is on the y-axis.

1

4

2

3

false

false

origin

real

intercept

y

x

◂ Figure 15 Calculating a real intercept 

when only a false origin is available 

is a matter of proportion. This looks 

complicated until you have practised it a 

few times.
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Area under a graph line

This is a technique used in Topic A.1 and elsewhere in this book. 

For a curved line:

• Calculate the area of one grid rectangle.

• Count up the total number of grid rectangles between the x limits for which 

the area is required. Usually, some estimation is needed to cope with  partly 

lled squares.

• Multiply the area of the single rectangle by the number of rectangles to give 

the area.

• The units of the area are (units of y-axis) × (units of x-axis).

For a straight line:

• Divide the area into a rectangle and a right-angled triangle.

• Use the equations for the areas of these shapes to calculate the total area.

Physics modelling and simulation

Throughout the course, there are examples of the use of modelling soware. 

This is an important tool for physicists who can use it to answer many questions 

about the behaviour of physical systems. Such studies are called modelling or 

 simulations.

Modelling soware can be used to:

• indicate the underlying processes that control a system’s behaviour

• investigate the past or future behaviour of a system

• show how to inuence the behaviour of the system.

An advantage of a simulation is that it partially removes the need for expensive 

 experimentation. However, it cannot be used to eliminate experiments 

completely and is, ultimately, an addition to the normal inquiry process, not a 

replacement for part of it. 

There are a number of ways to simulate the behaviour of a scientic system. These 

include using:

• spreadsheets to plot the known outcomes of a model as functions of time

• spreadsheets to solve the physical equations using iterative methods to 

simulate behaviour

• soware that is purpose-built to model physical systems. 

Worked examples 8 and 16 in 

Topic A.1 illustrate the use of 

area under a graph to estimate 

distances.
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Using spreadsheets

You can use a spreadsheet to plot a graph of a function. For example, Figure 16 

shows a graph plotted for variation of displacement with time in simple harmonic 

motion. Such plots can help to visualize the behaviour of a system. However, 

this does not allow easy prediction of future variations unless the mathematical 

function of this variation is known.

It is also possible to solve equations iteratively using a spreadsheet. 

An example of this is the free fall of an object released close to Earth’s surface. 

The spreadsheet is set up to compute, step-by-step, the successive positions of 

an object as time goes on.

Over the time interval Δt, the speed of the object changes from v
old

 to v
new

 by 

v
new

= v
old
+ a×Δt, where a is the acceleration. 

This is entirely equivalent to the denition of acceleration as a=
Δv

Δt
. Similarly, the 

change in displacement is from x
old

 to x
new

 through x
new

= x
old
+ v ×Δt. 

The object is released 100 m above Earth’s surface and air resistance is ignored. 

Figure 17 shows part of a simulation of this using a spreadsheet. The model 

predicts that the object will reach the surface aer a time of about 4.5 s. This 

time is conrmed by the use of kinematic equations (Topic A.1). The values in this 

standard calculation from Topic A.1 are shown to the right of the graph.

phase angle = amplitude = 1.5 m

A

1

0.719138308

0.815752186

0.907779609

0.994703164

1.076034136

1.151315253

1.220123257

1.282071284

1.33681104

1.384034758

1.423476929

1.454915795

1.478174595

1.49312256

0

0.112394561

0.224157199
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0.44328031

0.549408794
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▴ Figure 16 Part of a spreadsheet that graphs the variation of displacement with time for simple harmonic motion, at two phase angles.  

The function used in cell D4 is “=$H$1*SIN(($B$1*A4)+$E$1)”.

The use of dollar ($) signs indicates 

to the program that, when the cell 

is replicated, the cell references 

do not change. You can use this 

to copy formulae down a column 

or along a row but keep some cell 

references the same.

Cell references
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The simulation shown in Figure 17 

is based on a numerical approach 

called Euler's method. You may 

have met Euler's method as a 

part of your HL Mathematics AA 

course.

A

1

0

0.1
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▴ Figure 17 Part of the spreadsheet to simulate falling from rest under gravity. The function in cell B6 is “=B5-0.1*C6” so that 

the new x is the old x (vertically above it on the spreadsheet) less the time interval (0.1 s) multiplied by the speed in the right-hand 

cell. The speed is computed from the xed value of g in cell $B$2 and from the old speed immediately above it: for cell C6, this 

is“=C5+$B$1*0.1”.

It is possible to simulate the eects of air resistance on this model by modifying 

the formulae slightly. Such a model would make a good addition to an 

experimental internal assessment that investigated the eects of friction or air 

resistance on motion.

Important considerations in designing such a model include the size of the 

time interval Δt. The acceleration is assumed constant during each Δt and, if Δt

is too large, it will cause errors in the modelling. Such models dri away from 

reality as the number of data points increases and errors gradually creep into the 

 simulation. You should check the outcomes of all models for this behaviour and 

modify your approach if necessary.

Using modelling soware

There are many free and commercial soware packages available for physics 

modelling, such as ModellusX, Desmos and Geogebra. These packages are 

free and have extensive video and written tutorials. Any sophisticated soware 

 package needs practice, but these three are easy to use and understand. 

Many graphical calculators can also solve dierential equations and be used for 

modelling. The instruction book for your calculator will explain how to enter and 

run the simulation. 
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All the themes in this book contain 

opportunities to write physics 

simulations. Some of these could 

provide the starting point for an IA. 

Examples you could consider as 

simulations include:

• the motion of a parachutist 

from the instant of leaving the 

plane until landing (Theme A)

• the emf induced in a wire or 

coil as it moves towards a long 

straight wire carrying a current 

(Theme B and D)

• the thought experiment of 

balls moving between boxes 

to illustrate ideas in entropy 

(Theme B)

• diffraction or interference of 

waves (Theme C)

• refraction effects (Theme C)

• the parameters that affect 

criticality in nuclear fusion, eg 

moderator mass, amount of 

control material (Theme E)

ModellusX has the advantage that the models are written in a script that does not 

necessarily require detailed mathematical  knoweldge. For example, the model for 

motion under gravity with air resistance used earlier in ModellusX is shown in Figure 18. 

120.00

Mathematical model Graph

80.00

40.00

0.00

Initial ConditionsParameters

a = –9.8 + (k × vx2)
vx = last (vx) + a × 횫t

x = last (x) + vx × 횫t

All equal

Case1 Case2 Case3 Case4

2.00

–40.00

–80.00

t  

–2.00

k =

vx = –22.13

x = –88.48

––

▴ Figure 18 A ModellusX model for acceleration under gravity from rest from a height of 100 m.

The script for the model is shown on the le, and the graphical outcome is on 

the right. The blue line is the distance–time graph and the red line is the speed–

time graph. The rst line of the model sets the acceleration as being a negative 

g (9.8 m s−2 downwards) plus the air resistance which is proportional to speed2 

(upwards). The second line computes the new speed as the old speed plus the 

change in speed, which is equal to the current (acceleration × time increment). 

The third line  computes the new height above the surface from the old height 

plus the  (negative) change in distance. The parameter shown is a constant of 

proportionality for the speed2 term. The initial conditions are a speed of zero and 

a distance (height) of 100 m. The model predicts that the object hits the ground 

aer 6 s of travel at a speed of 22 m s−1.

Similar models can be constructed within the Geogebra and Desmos 

environments. These operate within a more mathematical framework than 

ModellusX. 
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Introduction

Every year, a human heart beats more than 50 million 

times – an oscillation that leads to the movement of blood 

around our bodies.  Motions such as this and the beating 

of a hummingbird’s wings are periodic. The pattern of the 

motion repeats again and again, sometimes with the same 

fixed time interval between each repeat. This theme deals 

with the physics of such a motion; known as an oscillation.

We begin in Topic C.1 with a detailed analysis of one 

important type of oscillation: simple harmonic motion. 

Simple harmonic motion has a fundamental importance. 

Complex oscillations can be described as the combined 

sum of many simple harmonic motions. This summation is 

important in many fields of science and engineering.

Oscillations lead to the production and transmission of 

mechanical waves. Waves come in many forms: Sound 

waves transmit through all materials and enable us to hear. 

Earthquake waves travel through the Earth. Our knowledge 

of wave theory enables us to understand and predict the 

behaviour of many man-made and natural phenomena. 

Topic C.2 begins the work on waves themselves with the 

description of a model for wave motion. Topic C.3 looks 

at the effects that occur when waves interact with different 

media and with each other.  Topic C.4 continues with a 

description of the mechanisms that lead to standing waves 

– an important part of the production of sound in musical 

instruments. The theme ends with Topic C.5 that deals with 

the Doppler effect when waves are emitted and detected by 

sources and observers moving relative to each other. 

The concepts of particles and energy are inextricably linked 

throughout Theme C. Waves transfer energy but the medium 

that carries the wave is undisturbed when the wave has gone 

through. 

A mechanical wave is made up of the movement of particles. 

The particles are the medium for the wave. However, 

electromagnetic waves do not have a particulate nature and 

do not require a medium. The physics of this wave transfer is 

significantly different from that of mechanical wave motion. 

These differences have led to profound changes in our 

understanding of spacetime.

Two features of physics that have underpinned the theory of 

oscillations are observations and measurements. Galileo 

is said to have used his own pulse to time the slow swings of 

the huge candelabra in the cathedral of Pisa. He recognised 

that, whatever the amplitude of the swing, the period was 

constant. To what extent would we regard these as reliable 

observations today? 
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In this topic, you will learn about:

• oscillations and simple harmonic motion 

• the defining equation of simple harmonic motion

• the conditions for simple harmonic motion

• displacement, amplitude, time period, frequency, 

angular frequency and equilibrium position

• the mass–spring system and the simple pendulum 

• energy changes during an oscillation

• kinematic and energy calculations involving  

simple harmonic motion

Simple harmonic motion is an oscillation with an 

unchanging amplitude and frequency and which never 

ends. No energy is transfering from the oscillating system. 

It may seem strange to learn about such a specic type 

of motion, but there is a good reason. Joseph Fourier 

showed that any periodic motion could be regarded 

mathematically as a sum of individual simple harmonic 

motions. Study simple harmonic motion and you have 

studied more complex oscillations too. However, many 

oscillations are either purely or approximately simple 

harmonic. A buoy oating in the sea, a mass oscillating on 

a spring and a pendulum are just three common examples 

of this motion. 

The motion itself is characterized by a simple dening 

equation. The acceleration of a system is directly 

proportional to the displacement of the system and acts 

opposite to the displacement direction. The equation 

contains only three quantities, including a constant 

of proportionality, but the way in which these interact 

generates oscillations. The constant of proportionality 

tells us about the time taken to complete one oscillation. 

The statement about direction is crucial too. It says that 

the further the object is from an equilibrium position, then 

the larger is the acceleration back towards the equilibrium 

point. This already suggests an oscillation of some kind. 

The oscillation trades displacement for velocity, and 

potential energy for kinetic energy. When the system 

is far from equilibrium it is travelling slowly. Around the 

equilibrium point it is moving quickly so that its momentum 

carries it through equilibrium to the other half of the cycle. 

At this point, the force on the system (and therefore the 

acceleration) reverses direction, once more acting towards 

the equilibrium point. 

Our dening equation also leads to sets of equations 

linking the displacement, velocity and acceleration of the 

oscillating system with time. This means that we can go on 

to use knowledge from Theme A to describe the energy 

transfers in the oscillating system too. These can also be 

expressed in terms of time and distance. 

Finally, graphical representations of energy–time and 

displacement–time can be linked to real examples of 

simple harmonic motion. This allows us to conrm that our 

equation for harmonic motion and the predictions it makes 

are a good t to the real oscillations that we observe in a 

practical context.

What makes the harmonic oscillator model applicable to a wide range of physical phenomena? 

Why must the dening equation of simple harmonic motion take the form it does? 

How can the energy and motion of an oscillation be analysed both graphically and algebraically?

C.1  Simple harmonic motion

A
H

L A
H

L

• phase angle

• kinematic and energy calculations involving  

simple harmonic motion.O
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Introduction
In this topic, you will meet the language of oscillation and consider the harmonic 

oscillator, usually referred to as simple harmonic motion. True simple harmonic 

motion can only be obtained in some systems under certain limited conditions, 

such as small displacements. Nevertheless, you can still use simple harmonic 

motion as a model in these systems, if you accept the conditions and the 

limitations they impose.

▴ Figure 1 Knowledge of simple harmonic 

motion led to the development of the 

pendulum clock. For about 300 years, 

pendulum clocks were the most precise 

clocks available. This is a sidereal clock used 

to help make astronomical observations.

Oscillations

Many oscillations in science and engineering are isochronous. This means that 

the oscillation repeats, taking the same repetition time irrespective of its size. This 

is important because, unless energy is transferred to them, real oscillating systems 

“run down” and eventually stop. The amplitude — the maximum displacement — of 

the system decreases when it transfers energy to the environment.

Joseph Fourier was a French mathematician and physicist who lived from 1768 

to 1830. In 1807, he read a paper to the Paris Institute “On the Propagation 

of Heat in Solid Bodies”. In it he used a mathematical method to reduce a 

complicated oscillation to a series of sine waves.

You can try this for yourself. Use a graphical calculator or a spreadsheet to help plot 

the function y= sin x +
1

3
 sin 3x+

1

5
 sin 5x +…. You can add further terms of 

1

n
 sin nx for odd values of the integer n. It does not require very many terms in the 

series to show that the series approaches a square-wave. You could also try the 

even terms to see what happens.

However, Fourier’s paper did not convince everyone in the audience. He 

had relied on intuition in places and there were some gaps in his logic. His 

mathematical method also contradicted some of the work of one of the 

examiners in the audience — Joseph-Louis Lagrange.

To settle the matter, a prize problem was set in 1810 and Fourier submitted his 

original paper along with some new work. There was only one other paper, 

and Fourier won the competition. But the feedback (possibly from Lagrange) 

was not entirely favourable, and the result was that Fourier’s work was not 

published until 1822.

Fourier’s method of splitting a signal into sinusoidal waves of dierent frequencies 

is widely used today and is the principle behind the spectral analysis of sound.

Draing, revising and improving academic work ATL

Galileo is reputed to have rst observed that the time period 

of a simple pendulum did not depend on its amplitude 

(provided that the amplitude remained small). The story is 

that when he was about 17 years old, he was bored during 

a service in Pisa Cathedral and observed the way that the 

chandelier swung as the wind blew it. He compared the 

time for the swings with his pulse. Sometimes the wind blew 

the chandelier into large oscillations and sometimes the 

oscillations were small. However, the number of oscillations 

in a certain number of pulse beats was always the same.

Technology for timing

▴ Figure 2 A swinging pocket watch is an 

example of a simple pendulum oscillating 

with approximate simple harmonic motion.
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While it is likely that other scientists may have observed 

that a pendulum’s period does not change with amplitude, 

Galileo was perhaps one of the rst to use the pendulum 

in experiments. As a result, scientists could now measure 

time and hence other quantities such as speed. Without this 

timing mechanism, experiments in mechanics would have 

been impossible. The importance of experimental evidence 

in scientic knowledge was still a relatively new concept at 

this time, and the increased ability to conduct experiments 

increased the importance of this evidence.

How else has technology aected the value we place on 

dierent forms of knowledge?

Figure 2 shows a pocket watch oscillating about its centre (equilibrium) position 

from the maximum position on one side to the other. The watch is illuminated 

with a flash that occurs every 0.25 s and so it takes 1.0 s for the watch to complete 

each oscillation (to go from one side to the other and back again). A simple 

pendulum only performs approximate simple harmonic motion which changes at 

large amplitudes of swing. Nevertheless, a timepiece can be governed to make it 

into an isochronous oscillator.

Dening periodic motion

Before we can develop the mathematics of simple harmonic motion, we need a 

technical language.

To illustrate the terms we use, imagine an experiment with a mass hanging at 

the end of a spring (Figure 3(a)). The position of a small card attached to the 

mass is detected by a motion sensor on a data logger that produces a graph of 

displacement against time for the mass (Figure 3(b)). 

• The mass with its card is shown on the le in its equilibrium position. This is 

the position it adopts when at rest. 

• The mass–spring system oscillates when displaced vertically and released 

(it takes both a spring and a mass to oscillate; hence the word “system”). 

▴ Figure 3 (a) The experimental arrangement and (b) the resulting displacement–time graph 

for an illustration of simple harmonic motion.
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The position of the oscillator at any moment in time is known as the 

displacement x. As in Theme A, displacement is a vector that can be positive 

(when the mass is above the equilibrium position here) or negative (when it 

is below). Once the positive direction has been chosen as upwards, then it 

must be used in a consistent way for all vector quantities in the oscillation, 

including forces, velocities, displacements and accelerations.

• The maximum displacement of the oscillator is known as the amplitude x0. 

This amplitude is measured from the equilibrium position to the extreme 

(largest) displacement. It is not the distance from one extreme to the other. 

Amplitude does not have a sign and is not a vector quantity.

• One complete cycle of the oscillation occurs when the mass (in this situation) 

goes from one position in the motion through the extreme position on the 

opposite side, back to the other extreme, nally moving through the original 

position in the original direction. It is easiest to understand this for the  

mass–spring system by starting at the equilibrium position. The mass goes 

down to the bottom, back through the equilibrium, moving upwards, and 

to the top. Then it goes down through the equilibrium again. The cycle only 

ends with this second transit through the equilibrium. Trace this motion out 

on the graph (Figure 3(b)). There are six cycles in 10 s.

• The time taken to complete one cycle is known as the time period,T. For 

the isochronous mass–spring system, the time period (oen shortened to 

period) does not depend on where the cycle starts or on the amplitude.

• The frequency f of the oscillation is the number of cycles that the system 

goes through in one second. Thus

f =
1

T
The unit of frequency is the hertz (Hz), which is the same as s 1

Worked example 1

The pendulum of a wall clock 

completes 25 oscillations in 30 s. 

Calculate:

a. the period

b. the frequency of the 

oscillations.

Solutions

a. T =
30

25
= 1.2 s

b. f =
1

T
=

1

1.2
= 0.83 Hz

Practice questions 

1. Which of the following quantities describing an oscillation can 

benegative?

 A. displacement  B. amplitude  C. period  D. frequency

2. A mosquito aps its wings at a frequency of 580 Hz. Calculate the period 

of mosquito’s aps.

3. An object undergoes simple harmonic motion with a period of 0.40 s. 

The distance between the extreme positions of the object is 6.0 cm. 

Calculate:

a. the frequency

b. the amplitude.

Applying the denitions

These definitions apply to many repetitive phenomena such as the rhythm of a 

human heart. Figure 4 shows the electrocardiograph of a healthy heart that is 

beating at 65 beats per minute, a frequency of 
65

60
= 1.08 Hz. This means that T

for the graph is 
1

f
=

1

1.08
= 0.92 s. The overall height of the voltage spike from  

0 V, shown as A in Figure 4, is the amplitude signal output by this sensor. 

A

▴ Figure 4 The normal heart rhythm of 

an adult male. The graph shows the pd 

measured using a voltage sensor attached to 

the chest wall.
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• Tool 2: Use sensors.

• Tool 2: Represent data in a graphical form.

• Inquiry 1: Develop investigations that involve hands-on 

laboratory experiments, databases, simulations and 

modelling.

• Inquiry 1: Design and explain a valid methodology.

In this investigation, an ultrasound motion sensor is used to 

monitor the position of a mass suspended from the end of a 

long spring. The data logger soware processes the data to 

produce a graph showing the variation of displacement with 

time. 

• Arrange the apparatus as shown in Figure 3(a). The 

system needs to have a period of at least 1.0 s. Avoid 

reections from the surroundings by keeping objects 

well away from the apparatus.

• Put the mass into oscillation by displacing it vertically 

and then releasing it.

• Set up the data logger so that it is triggered to start 

reading at a given displacement value. 

• Use soware to plot graphs of velocity and 

acceleration (in addition to displacement) against time. 

• Devise an investigation to nd out how the time 

period of the oscillation varies with:

• spring constant k

• mass m on the spring.

• You may wish to carry out a preliminary set of runs to 

get an idea of the relationships between k and T, and 

between m and T. Try doubling the mass or quadrupling 

it to see the eect on T. Two or more identical springs 

can be joined together in series or in parallel to 

vary k. (Hint: look at page 58 to remind yourself how k

depends on the arrangement of springs).

• You can also perform similar investigations with other 

oscillations, such as a mass swinging from side to side 

at the end of a long string — a simple pendulum. 

You can find out more details of electromagnetic radiation in TopicC.2.

Heinrich Hertz, for whom the 

frequency unit was named, was a 

German physicist working in the 

mid-19th century. He demonstrated 

the existence of electromagnetic 

radiation in the radio wavelengths 

and (famously) suggested that his 

work had no future application! 

Within 15 years, the Italian 

nobleman Count Marconi had 

sent messages across the Atlantic 

Ocean using radio waves. Hertz, 

unfortunately, never lived to see the 

application of radio waves, as he 

died in 1894 aged 36. 

There is a direct link between the 

frequency of simple harmonic 

motion and the frequencies of 

the electromagnetic radiation 

that Hertz identied. His waves 

consisted of oscillating electric and 

magnetic elds that are modelled 

as sinusoidal variations just like 

those of an oscillating spring.

Global impact of 

science

Investigating a mass — spring system

Simple harmonic motion

The variation with time of the displacement of the mass–spring system shown in 

Figure 3(b) is regular and simple. This is a negative sine curve (making the mass 

go upwards first will make this a positive sine curve). Oscillations that follow 

this model with a sinusoidal displacement–time graph are undergoing simple 

harmonic motion

There are two requirements for motion to be simple harmonic. Both relate to the 

restoring force (and therefore the acceleration) acting on the system.

• The size (magnitude) of the force (acceleration) must be proportional to the 

displacement of the object from a xed point.

• The direction of the force (acceleration) must be towards the xed point.

Newton’s second law of motion links acceleration and force in these statements.

At the equilibrium position, the weight of the mass is equal and opposite to the 

tension in the spring (assuming that the spring has negligible mass). 

When the spring obeys Hooke’s law (Topic A.2, page 57), then F =−kx, where 

F is the restoring force on the spring, k is the spring constant and x is the spring 

extension. 

Substituting for F means that, for simple harmonic motion:

a =− (constant)2
× x
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The constant is squared. This forces it to be positive, so that the minus sign 

always indicates that the displacement and acceleration vectors are in opposite 

directions. As a result, this equation now agrees with both of the requirements for 

simple harmonic motion.

In simple harmonic motion, the system is always accelerated towards the centre 

of the motion — the equilibrium position. When the mass is moving away from the 

equilibrium position, the system is slowing the mass down, accelerating it towards 

the equilibrium position. When the mass has reached the extreme of the motion, 

the system still accelerates it towards the equilibrium position, but now the speed 

of the motion increases until it reaches a maximum in the motion’s centre.

This is summed up in Figure 5, which shows the variation of acceleration with 

displacement for any simple harmonic motion, not just the mass–spring system 

here. The gradient of the graph is negative as expected.

We need to know more about the constant in the defining equation. It is often 

written as

a =−ω
2
× x

with the constant as ω. This makes an important link between simple harmonic 

motion and the circular motion of Topic A.2.

Angular frequency

The oscillation of the pendulum can be compared with circular motion using the 

apparatus shown in Figure 6.

Two metal spheres are used, one acting as the mass for the pendulum. The other 

sphere is mounted on a horizontal turntable that rotates at a constant angular 

speed. The length of the string is adjusted so that the time period T of the simple 

harmonic motion oscillation is the time taken for the turntable to rotate once. 

When the arrangement is illuminated from the side, the two spheres move 

together and are synchronized on the screen. The circular motion is projected 

onto a vertical plane (the screen) and has the same pattern of movement as a 

pendulum when viewed in the same vertical plane.

The angular speed of the rotating sphere is

angular displacement in radians

time for one rotation
=

2π

T

In Topics A.2 and A.4, the quantity angular speed was given the symbol ω and 

therefore

ω =
2π

T
Putting this all together gives

T =
1

f
=

2π

ω

The same is true for ω in the simple harmonic motion equation, but here the 

quantity is known as angular frequency because it has the unit s 1 equivalent to 

the hertz (Hz). As before, although this is rad s 1, the radian is ignored because it 

is a unitless ratio. 

Because ω is linked to T, which depends only on the properties of the harmonic 

oscillator, it also links the magnitude of the acceleration of the oscillator to its 

displacement. To show this link in more detail, we will look at two oscillators in 

detail: the mass–spring system and the simple pendulum.

a

x

+x0

‒x0

0

0

▴ Figure 5 A graph of the variation of 

acceleration with displacement for simple 

harmonic motion. The graph is a straight 

line of negative gradient going through 

the origin.

shadows

screen

turntable

light source
drive belt

metal sphere

▴ Figure 6 The projection of a ball  

moving in a horizontal circle onto  

a vertical plane gives the same motion  

as a simple pendulum performing  

simple harmonic motion. 

The demonstration above shows 

the close link between circular 

motion and simple harmonic 

motion. One can be regarded as a 

one-dimensional projection of the 

other. The link extends beyond the 

purely practical, however, as the 

mathematics of circular motion from 

Topic A.2 and the mathematics 

of simple harmonic motion are 

themselves closely related. Similar 

physical quantities are defined in 

the same way in both.

How can circular motion 

be used to visualize 

simple harmonic motion?
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The mass–spring system 

The mass–spring system here is a mass on a horizontal frictionless surface 

oscillating at the end of a spring. This is known as “exact simple harmonic 

motion” when the spring obeys Hooke’s law. The horizontal case is easier to 

analyse than when the spring hangs vertically. (You can analyse the vertical case 

for yourself, remembering to include the weight of the mass as part of the net 

force that acts on the spring.) 

The force FH acting on the spring is directly proportional to its extension x:  

FH = –kx (from Topic A.2) and acts to return the spring to its equilibrium position. 

Therefore ma = –kx. When the positive direction is defined to be to the right 

and the mass is displaced to the right, the force must be directed to the left. The 

negative sign shows this.

This equation rearranges to a = – ( k

m
)x and shows the shape of the simple 

harmonic motion equation with its negative sign and positive constant inside the 

brackets.

Therefore, ω2
=

k

m
 and ω =

k

m
, leading to

T = 2π
m

k

as the equation for the time period of a mass–spring system.

The simple pendulum

A simple pendulum consists of an object on the end of a string of negligible mass 

that is swinging in a vertical plane. The pendulum obeys simple harmonic motion 

provided that the angle of swing from the vertical is small (<10°).

The string has a length I and is displaced with its bob of mass m through a vertical 

angle θ (Figure 9). When released, the bob moves with time period T. 

The restoring force that pulls the bob back to the equilibrium position is  

mg sin θ. The negative sign is because θ is measured to the right (anticlockwise 

on the diagram), but the restoring force is to the left (clockwise).

So −mg sin θ = ma, leading to a = −g sin θ

The length of the arc from the equilibrium position to the bob is x, so

θ =
x

l
 and a = −g sin ( x

l
)

giving

a = – 
g

l
x

providing that θ < 10°.

You can check, using your calculator, that when θ < 12° (about 0.2 rad), then sin θ

and θ are within 1% of each other when calculated using radian measure.

Thus, ω2
=

g

l
 and ω =

g

l
, with

T = 2π
l

g

which is the equation for the time period of a simple pendulum.

Analyses such as this can be carried out for many more types of oscillator too, 

including floating cylinders bobbing up and down on the flat surface of a lake .

relaxed

spring

initial position

of le edge

base

mass

extended

spring

initial position

of le edge

position of le edge

when spring extended

x

base

mass

restoring force

▴ Figure 8 A mass–spring system.

How can the 
understanding of simple 
harmonic motion apply to 
the wave model? (NOS)

Topics C.2 and C.3 deal with 

waves — periodic movements of 

interconnected individual particles 

that transfer energy. There must 

be an agent that generates the 

waves and this could easily be 

an object moving in a circle. The 

waves in deep oceans are linked 

to a circular motion of water that 

becomes an up-and-down motion 

of the surface. The mathematics 

developed in this Topic applies to 

the wave motions later.

▴ Figure 7 Waves on the surface of 

the ocean are caused by the circular 

motion of the water.
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θ

θ

l

Ft m

x

mg sin θ

mg cos θ

▴ Figure 9 A simple pendulum.

▴ Figure 10 Many mechanical objects 

can be approximated as either a mass on a 

spring or a pendulum. This picture shows 

a car’s suspension which consists of a 

spring to absorb the shocks from bumps 

in the road. The car behaves like a mass 

ona spring and will have a time period for 

itsoscillations.

As you have seen, a simple pendulum obeys simple harmonic motion (i.e. 

it is isochronous) provided that the amplitude is small (less than 10°). What 

happens if the pendulum swings through a larger amplitude?

The graph shows the variation of the time period T with angle θ for a 

pendulum of length 1.8 m.

0
2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

10 20 30

T
/
s

40

θ/°

50 60 70 80 90

• Use the graph to estimate the percentage dierence in T when the 

pendulum swings with θ = 80° and when θ = 10°.

• A student measures the time period of the pendulum by using oscillations 

with θ = 10°. Explain why it would not be appropriate to give this 

measurement to 3 decimal places.

• You are asked to design an experiment to conrm that T changes 

between a 10° and a 45° amplitude. You have a stopwatch which reads 

to the nearest 0.01 s. Assume that your reaction time is 0.1 s. You decide 

to time the pendulum over several oscillations and then divide the total 

time by the number of oscillations to arrive at T. How many oscillations 

would you need to measure to verify that T is longer at 45° than at 10°?

Data-based questions

Worked example 2

The graph shows how the 

acceleration a of an object varies 

with the displacement x

a.  Outline why the object 

performs simple 

harmonicmotion.

b.  State the amplitude of 

theoscillations.

c. Determine the period.

Solutions

a. The graph is a straight line with 

a negative slope through the 

origin. Hence, the acceleration 

is proportional to negative 

displacement and satises the  

dening equation of simple harmonic motion, a = −ω2 x

2

–2

0
x/ 10–2 m

a/ m s–2

–2–3–4–5

–4

–6

4

6

8
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Worked example 3

A mass of 0.045 kg oscillates simple harmonically at the end of a spring of spring constant 

1.3 kN m 1. Calculate the frequency of the oscillations.

Solution

T = 2π

m

k
= 2π

0.045

1.3 × 103
 = 3.7 × 10 2 s.

f = 
1

T
= 

1

3.7 × 10 2
= 27 Hz.

Worked example 4

An object of mass 2.1 kg attached to a spring undergoes simple harmonic motion on a horizontal 

frictionless surface. The period of oscillations is 1.8 s and the amplitude is 0.25 m.

Calculate:

a. the angular frequency

b. the maximum force acting on the object

c. the spring constant.

Solutions

a. ω =
2π

T
=

2π

1.8
= 3.5 rad s 1

b. From the dening equation of simple harmonic motion, the maximum acceleration of the object is 

amax = ω
2 x0, where x0 is the amplitude of oscillation. The maximum force is therefore 

Fmax = mamax = mω
2 x0 = (2.1) (2π

1.8 )
2

 (0.25) = 6.4 N.

c. k =
Fmax

x0

=
6.4

0.25
= 26 N m 1

b. The amplitude is equal to the maximum displacement, 5.0 cm.

c. The period is related to the angular frequency ω, which can be  

determined from the slope of the graph.

Slope = −ω
2
 = – 

6.0

5.0
⇒ ω =

6.0

5.0
= 1.1 rad s 1. From here, T =

2π

ω

=
2π

1.1
= 5.7 s.

Practice questions

4. A force F acting on a point mass depends on the 

displacement x of the mass. Which of the relationships 

between F and x leads to simple harmonic motion?

 A. F = −x2 B. F = −2x C. F = 3x D. F = 4x2

5. Calculate:

a. the period of a simple pendulum whose length  

is 0.80 m

b. length of a simple pendulum whose period  

is 2.4 s.

6. An object of mass 0.45 kg is attached to a spring 

with spring constant 12 N m 1. The object undergoes 

simple harmonic motion with an amplitude of 0.15 m. 

Calculate:

a. the period of oscillation

b. the maximum force acting on the object from  

the spring.

7. A mass–spring system undergoes simple harmonic 

oscillations of a frequency 0.58 Hz. The mass is 

0.90 kg. Calculate the spring constant.
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Energy changes during simple harmonic motion

One way to interpret simple harmonic motion is in terms of energy transfer. 

Figure 11 shows the transfers that occur in the horizontal mass–spring system.

kinetic energy maximum

elastic potential energy zero

kinetic energy zero

elastic potential energy maximum

kinetic energy maximum

elastic potential energy zero

kinetic energy zero

elastic potential energy maximum

vmax

x = 0x = –x0

v = 0

v = 0

x = 0 x = x0

x = 0

m

m

m

+vmax

x = 0

m

▴ Figure 11 The energy transfers that occur in simple harmonic motion for 

a mass–spring system.

8. A weightless spring of spring constant k= 2.9 N m 1

hangs vertically with a mass m= 0.050 kg attached 

to its free end. When the mass is in the equilibrium 

position, the spring extends by a distance L0 relative to 

the unstretched length.

 a. Calculate L0

The mass is displaced vertically from the equilibrium 

position by a distance x and released.

b. Draw a free-body diagram for the mass at the 

displaced position.

c. Show that the magnitude of the net force acting 

on the mass is kx

unstretched

length

equilibrium

position m
x

L0

m

d. Compare the period of the vertical mass–spring 

system to that of a horizontal system, if the mass 

and the spring are the same in both systems.

e. Calculate the period of the oscillations.

The mass is oscillating between −x0 and +x0. The amplitude of the motion is x0. 

At each extreme, the speed of the mass is zero, so the kinetic energy is also zero. 

At this point, all the energy is in the form of stored elastic potential energy. At the 

centre of the motion the spring is at its natural (unextended) length and the mass 

is moving at its fastest, so the kinetic energy is also at a maximum with no energy 

stored in the form of elastic potential energy.

During one cycle of the oscillation, there are two kinetic-energy maxima because 

there are two velocity maxima, one in each direction when the mass is at the 

equilibrium position. In the same way, there are two maxima of elastic potential 

energy. The frequency of the energy transfers is double that of the frequency of 

the oscillation itself. Conversely, the time period for one energy cycle is half that 

of the time period for the simple harmonic motion.
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Figure 12 shows the energy transfers for the simple pendulum.

For both oscillators, there is a continuous transfer between the kinetic and 

potential energies. When there are no energy losses from a system, such as 

those due to air resistance or friction, then the total energy in the system must 

be constant. 

Figure 13 shows three graphs for the variation with time of the kinetic Ek, 

potential Ep and total energies Etot for simple harmonic motion. It also shows 

how the displacement varies with time, so that the difference between the 

period of energy transfer and the period of simple harmonic motion is clear.

point of

suspension

ground

A

Ep(max) = mgh

Ek = 0

Ep = 0

Ek = maximum

B

C

O

string

bob

Ep(max) = mgh

Ek = 0

▴ Figure 12 The energy analysis is similar 

for the simple pendulum. The transfers 

between gravitational potential energy and 

kinetic energy for the pendulum bob are 

shown here.

▴ Figure 13 The variations of kinetic and potential energies in simple harmonic motion 

with time. The total energy in the system is constant. 

energy variations

with time

time

variation of

displacement

with time

displacement

start of energy cycle

start of oscillation

end of energy cycle

halfway through oscillation cycle

Ep

Ek

Etotal

Worked example 5

A body undergoes simple 

harmonic motion of a frequency 

20 Hz. How many times during 

one second is the kinetic energy 

of the body zero?

Solution

The KE is zero twice during one 

oscillation; hence 2 × 20 = 40 

times per second.

Worked example 6

The graph shows how the potential energy of a simple 

pendulum varies with time.

a. Identify the rst time when:

 i.  the pendulum passes through the equilibrium 

position

 ii. the kinetic and the potential energies are equal.

b. State the period of oscillations.

c. Draw a graph of the variation of the kinetic energy of 

the pendulum with time.

Solutions

a. i.  In the equilibrium position the potential energy is 

zero. This happens for the rst time at 0.2 s.

 ii.  The potential energy must decrease to one half of 

its maximum value. This happens at 0.1 s.

b. It takes 0.4 s to move from one extreme position (of 

maximum amplitude and potential energy) to the 

other. This is one half of the complete oscillation. The 

period is therefore 2 × 0.4 = 0.8 s.

c. The KE is a maximum when the PE is zero, and vice versa.

0
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Topic B.2 gives the absorption mechanisms of 

electromagnetic radiation by molecules of the 

greenhouse gases. These molecules have vibrational 

states that are excited by the radiation. This leads to the 

temporary storage of the electromagnetic energy with 

subsequent re-radiation in different directions. There are 

links here both to the work in this topic but also to the 

resonance effects discussed in more detail in Topic C.4.

When changes to the atmosphere occur, then the levels 

of radiation absorption reflect the change. With greater 

concentrations of greenhouse gases, the absorption and 

re-radiation increases, leading to climate change.

How does the creation of links within physics enable 

scientists to develop greater understanding of the linked 

topics?

How can greenhouse gases be modelled as simple harmonic oscillators? 

What physical explanation leads to the enhanced greenhouse effect? (NOS)

Linking circular motion and simple harmonic motion
When a circular motion in a horizontal plane is projected onto a vertical plane as 

in Figure 6, it is equivalent to a motion that is simple harmonic (Figure 14). 

There are strong links from Topic C.1 to the physics 

of Topics C.2 and C.3. Wave motion is a common 

phenomenon  

and a working knowledge of the mathematics of simple 

harmonic motion helps our understanding of wave 

behaviour and vice versa.

One way to describe the motion of a particle in a wave 

is in terms of a vector of constant length that rotates at a 

constant speed. Such a vector is known as a “phasor”. 

This is the function of the red arrow in Figure 14. The 

arrowhead of the phasor traces out the motion of the 

wave particle. Wave motion and simple harmonic motion 

are closely interlinked, with the same terms and quantities 

being used in both. 

Do links such as these give us further insights into the 

physical world?

How can the understanding of simple harmonic motion apply to the wave model? (NOS)

y = r sinθ

π 2π ωt

θ = ωt

x = r cosθ

y y

x

r

r

0
0

P

‒r

▴ Figure 14 Projecting circular motion onto a y-axis.

Strictly speaking, once resistive losses of any sort occur 

for an oscillating system, then the oscillation is no 

longer simple harmonic. True simple harmonic motion 

never stops. The graphs for the variation with time of 

displacement/velocity/acceleration and the energy–time 

graphs have constant amplitudes as there are no resistance 

or energy losses to reduce the amplitude.

Energy loss and simple harmonic motion

The y-axis point P is moving around the circle in Figure 14 at a constant angular 

speed ω. 
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Two equations relate x and y to the circle of radius r and the angle θ between P 

and the x-axis. These are:

• x = r cos θ

• y = r sin θ. 

The angle θ between the arrow and the x-axis is known as the phase angle

As θ = ωt, the equations for the projection of P onto the diameter of the circle 

along the x-axis become x = r cos ωt or y = r sin ωt. The radius of the circle is the 

amplitude of the simple harmonic motion so r = x0 and we obtain the simple 

harmonic motion equations:

• x = x0 cos ωt for simple harmonic motion that begins at the extremes

• x = x0 sin ωt for simple harmonic motion that begins in the centre.

Two further equations also follow from the definition of simple harmonic motion 

and from x = x0 sin ωt: 

The velocity v =
dx

dt
= ωx0 cos ωt and the acceleration a =

dv

dt
= −ω2x0 sin ωt

Notice that, because x = x0 sin ωt, then a = −ω2 (x0 sin ωt) = −ω2x. Our solution 

for the simple harmonic motion equation that arises from the projected circular 

motion satisfies the defining equation.

The three equations lead to three graphs.

Figure 15 shows the variations with time of (a) displacement, (b) velocity and (c) 

acceleration for the case where the motion starts at the centre. The displacement 

graph (a) is a sine curve, (b) is a cosine curve and (c) is a negative sine curve.  

(For motion starting at the positive extreme, they will be respectively (a) cosine, 

(b) −sine and (c) −cosine.)

The gradient at a particular time for the velocity–time graph gives the acceleration 

at that instant, and, similarly, the gradient of the displacement–time graph yields 

the velocity at that moment. This is easy to see at the extremes when the motion is 

momentarily at rest (v = 0).

There is another equation for the velocity that you will find useful because it does 

not contain t. Using the identity, sin2 θ + cos2 θ = 1, so that cos θ = ±√1  sin2 θ

and substituting this into the speed equation gives v = ±ωx0√1  sin2 θ. However, 

sin θ =
x

x0

. To see why, look at Figure 15 and notice that sin θ is the ratio of the 

displacement of P (which is at x) to the radius of the circle (which corresponds to 

the amplitude x0). This gives v = ±ωx0 1
x2

x0
2

, which rearranges to

v = ±ω√x0
2

− x2

The ± sign reminds us that the object can be travelling in either direction at 

a particular x. As you can see, this is a useful equation when you know the 

amplitude and displacement of an object but do not know the time at which the 

displacement occurs.

Displacement x = x0 sin ωt

Velocity (x unknown) v = ωx0 cos ωt

Velocity (t unknown) v = ±ω√x0
2 x2

Acceleration a = −ω2 (x0 sin ωt) = −ω2x

▴ Table 1 The four equations for simple harmonic motion.

x
/
c
m

(a)

–1.0

t/s
–0.5

0

0.5

1.0

4

v
/
m
s–

1

(b)

–2.0

t/s
–1.0

0

1.0

2.0

4

a
/
m
s–

2

(c)

–4.0

t/s
–2.0

0

2.0

4.0

4

▴ Figure 15 Variation with time of 

(a) displacement, (b) velocity and (c) 

acceleration. These graphs all assume that 

the motion starts at the equilibrium position.
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Worked example 7

The graph shows how the displacement of a body 

performing simple harmonic motion varieswith time.

Calculate:

a. the angular frequency of oscillations

b. the maximum velocity of the body

c. the velocity aer 3.0 s

d. the maximum acceleration.

Solutions

a. The period is 5.0 s. ω =
2π

5.0
= 1.3 rad s 1

b. The amplitude is 4.0 cm.  

vmax = ωx0 =
2π

5.0
× 4.0 = 5.0 cm s 1

c. The displacement follows a sine function, x = x0 sin ωt.  

Hence, the velocity aer a time t should be modelled with a cosine function, v = ωx0 cos ωt. 

 At t = 3.0 s, v =
2π

5.0
× 4.0 cos ( 2π

5.0
× 3.0) = −4.1 cm s 1

d. amax = ω
2 x0 = ( 2π

5.0 )
2

× 4.0 = 6.3 cm s 2
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Worked example 8

A particle of mass 4.0 g undergoes simple harmonic motion with frequency 25 Hz 

and amplitude 13 mm. Calculate, when the displacement of the particle is 10 mm:

a. the speed

b. the force acting on the particle.

Solutions

a. The angular frequency is ω = 
2π

T
= 2πf = 2π × 25 = 157 rad s 1

v = ω √x0
2
 − x2

 = 157 √132
 − 102

 = 1300 mm s 1
 = 1.3 m s 1

b. F = ma = −mω
2 x = −4.0 × 10 3

 × 1572
 × 10 × 10 3

 = −0.99 N.

Practice questions

9. The graph shows how the displacement x of a particle 

undergoing simple harmonic motion varies with timet. 
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a. Identify the time when the particle has:

 i. the maximum negative velocity

 ii. the maximum positive acceleration.

b. Calculate the velocity of the particle:

 i. at t = 10 ms 

 ii. when x = 5.0 mm for the rst time.

c. Calculate the maximum acceleration of the 

particle.
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10. The velocity–time graph for an object undergoing 

simple harmonic motion is shown.
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a. Identify the time at which the object has a 

maximum positive displacement.

b. Calculate the amplitude.

c. Calculate the displacement of the object at 4.0 ms.

11. An object of mass 100 g is suspended from a vertical 

spring of spring constant 7.8 N m 1. The object is 

displaced by 12 cm vertically downwards from the 

equilibrium position and released.

a. Calculate the frequency of the oscillations.

b. Calculate the maximum speed of the object.

c. Calculate the speed of the object when it is 

6.0 cm above the equilibrium position.

• Tool 2: Use computer 

modelling.

The defining equation for simple 

harmonic motion is

a = ω2 x

This can be written in differential form 

as 
d2x

dt2
=−ω2x because acceleration 

is 
d2x

dt2
. This second-order differential 

equation can be solved by calculus, 

by spreadsheet modelling or by 

using modelling software. This is 

one of many examples in physics of 

a simple second-order differential 

equation of the sort that you may 

meet in IB Diploma programme 

mathematics.

Simple harmonic motion is used as 

an example of modelling using a 

spreadsheet or modelling software 

in Tools for physics (page 363).

Modelling simple 

harmonic motion

Phase angle and phase dierence

So far, we have looked at simple harmonic motion that begins at particular positions 

in the motion, the extreme displacements when x= x0 and at the centre of the motion 

when x= 0. Is it possible to produce an equation that allows for any starting point?

The simple harmonic motion equation is a second-order differential equation, and 

it can be shown that there are general solutions to this equation. One of these is

x = x0 sin(ωt + ϕ)

This resembles the earlier solutions, but has the addition of the single term ϕ. This 

quantity is known as the phase angle as before.

Look carefully at the displacement–time graphs for two simple harmonic motions 

in Figure 16. At the beginning of the graph, the blue curve shows a displacement 

of zero, but the red curve is just about to reach its maximum displacement. It is 

about one-eighth of a cycle ahead of the displacement. To be precise, the red 

curve is one radian ahead of the blue curve. As one cycle corresponds to 2π rad, 

the red curve leads the blue by 
1

2π
=

1

6.3
= 0.16 of a cycle.

time/ms

d
is
p
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t

▴ Figure 16 Phase dierence in simple harmonic motion. The blue curve lags behind the 

red curve because it reaches its peak at a later time.
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Since the equation for the blue curve is x = x0 sin(ωt + 0), then the equation for 

the red curve must be x = x0 sin(ωt + 1.0).

The phase difference between the curves in Figure 16 can be modelled using 

the circular motions for both oscillations, as in Figure 17. Remember that both 

oscillations have the same ω and therefore travel around the circle at the same 

angular speed. The phase difference is the angle between the radial lines that 

are tracing out the simple harmonic motion as the blue tracing point chases the 

red point around the circle. 

The equations for displacement, velocity and acceleration in full become:

• Displacement:  x = x0 sin(ωt + ϕ)

• Velocity:  v = ωx0 cos(ωt + ϕ)

• Acceleration:  a = −ω2
x = −ω2

x0 sin(ωt + ϕ)
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▴ Figure 17 A circular motion projected onto a line gives simple harmonic motion. The red point leads the blue point by one radian.

Worked example 9

The graph shows how the displacement x

varies with time t for an object undergoing 

simple harmonic motion.

a.  The displacement can be modelled with 

an equation x = x0 sin(ωt + ϕ).

 i. State the value of x0

 ii. Calculate the value of ω

 iii. Determine the phase angle ϕ

b.  Calculate the velocity of the object at 

t = 3.0 s.

Solutions

a. i. x0 = 0.15 m.

 ii.  The period of motion is 4.0 s.  

ω =
2π

4.0
= 1.6 rad s 1

 iii.  The object is at the equilibrium 

position aer 1.5 s. Had the 

oscillation started at x = 0, the object would have returned to the equilibrium position aer 2.0 s, which is 
1

8
 of 

the period later than it actually did. The phase angle is therefore ϕ =
2π

8
=

π

4
≃ 0.79 rad.

b. v =ωx0 cos(ωt +ϕ) = ( 2π

4.0 )(0.15) cos( 2π

4.0
× 3.0 + 

π

4 ) = 0.17 m s 1
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Worked example 10

The displacement x, in metres, of a particle undergoing simple harmonic motion is 

given by the equation x = 7.5 × 10 3 sin(12t + 2.0), where t is the time in seconds.

a. Calculate the period of motion.

b. Calculate the velocity of the particle aer 0.30 s.

Solutions

a. The angular frequency is ω = 12 rad s 1. T =
2π

ω
=

2π

12
= 0.52 s.

b. v = ωx0 cos(ωt + ϕ) = 12 × 7.5 × 10 3 cos(12 × 0.3 + 2.0) = 7.0 × 10–2 m s–1

Practice questions

12. The graph shows the variation with time t of the 

displacement x of a particle undergoing simple 

harmonic motion.
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 The oscillation can be modelled with an equation  

x = x0 sin(ωt + ϕ).

a. Determine the values of x0, ω and ϕ

b. Calculate the maximum velocity of the particle.

c. Calculate the velocity and the acceleration of the 

particle aer 0.08 s.

13. The displacement x, in cm, of a particle  

undergoing simple harmonic motion is given by  

x = 12.0 sin(0.500t + 1.00), where t is time in s.

a. Calculate the period of the oscillations.

b. Calculate the velocity at t = 0.

Energy transfer equations

The energy transfers between kinetic Ek and potential Ep that drive harmonic 

oscillators were described earlier. The simple harmonic motion equations can be 

used to derive a set of energy equations. Phase differences are ignored, but ϕ

can easily be re-introduced into the equations when you need to.

The kinetic equation is related to 
1

2
mv 2 as usual. The speed v = ±ω√x0

2 x2 and 

therefore v2
= ω2 (x0

2
− x 2), so that

Ek =
1

2
mω2 (x0

2
− x2)

where m is the mass of the object undergoing simple harmonic motion. 

Immediately, we can see that the total energy (which occurs when the object is 

moving at its fastest when x = 0) is 

Etot =
1

2
mω2x0

2

Also, Etot = Ek + Ep and therefore Ep = Etot – Ek = 
1

2
mω2x0

2
 – 

1

2
mω2 (x0

2
 – x2)  

which is equal to 
1

2
mω2 x0

2
 – 

1

2
mω2 x0

2
 + 

1

2
mω2 x2

 = 
1

2
mω2 x2
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▴ Figure 18 Ek, Ep and ET for simple 

harmonic motion.
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Worked example 11

A mass of 0.15 kg attached at the end of a weightless spring oscillates with simple harmonic 

motion. The mass passes through the equilibrium position with a speed of 1.4 m s 1

a. Calculate the total energy of the oscillating system.

b.  The spring constant is 6.4 N m 1. Determine the amplitude of the oscillations.

Solutions

a. At the equilibrium position, the potential energy is zero, so the total energy of the system is kinetic 

only. ET =
1

2
mv 2

=
1

2
 (0.15) (1.4)

2
= 0.147 J.

b. We can nd the amplitude x0 by rearranging the equation ET =
1

2
mω

2 x0
2
 ⇒ x0 =

2ET

mω
2
.  

For a mass–spring system, we have a = – 
k

m
x and so ω2

=
k

m
.  

We combine the equations to get x0 =
2ET

k
=

2 × 0.147

6.4
= 0.21 m.

Worked example 12

The graph shows how the potential energy of an 

object executing simple harmonic motion varies 

with the displacement of the object. The amplitude 

of motion is20 cm.

a. State the total energy of the oscillating system.

b. Estimate, using the graph, the displacement of 

the object when the kinetic and the potential 

energies are equal.

c. Sketch a graph showing the variation of the 

kinetic energy of the object with displacement.

d. The mass of the object is 2.6 kg. Calculate the 

maximum speed of the object.

e. Determine the period of the oscillations.
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The graphs of the variations of both Ek and Ep with displacement are parabolas. 

Figure 18 shows Etot, Ek and Ep all plotted against displacement. 

Notice that the displacement at which the kinetic energy and the potential 

energy are equal (Ek = Ep) is not at half the amplitude but closer to x0 than the 

equilibrium point.
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Solutions

a. 8.0 J

b. In this situation both Ek and Ep are equal to 

4.0 J. From the graph, this happens when the 

displacement is approximately ±14 cm.

c. The graph has a similar parabolic shape but is 

inverted compared with the potential energy 

curve.

d. The maximum kinetic energy is 8.0 J, so the 

maximum speed can be calculated from  

v =
2Ek

m
=

2 × 8.0

2.6
= 2.5 m s 1

e. It is convenient to rst nd the angular frequency  

and then the period T.  

ET =
1

2
mω

2 x0
2

⇒ ω =
2ET

mx0
2

=
2 × 8.0

2.6 × 0.202
=

12.4 rad s 1.  

From here, T =
2π

12.4
= 0.51 s.
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Practice questions

14. An object of mass 0.060 kg undergoes simple 

harmonic motion with frequency 4.0 Hz and amplitude 

0.25 m. Calculate, when the displacement of the 

object is 0.10 m:

a. the potential energy

b. the kinetic energy.

15. The graph shows how the kinetic energy of an 

oscillating mass-spring system varies with the 

displacement of the mass from the equilibrium 

position. The mass is 0.70 kg.
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a. Calculate the maximum velocity of the mass.

b. Determine: 

 i. the period of the oscillations

 ii. the spring constant.

16. An object of mass 1.00 kg is attached to a spring with 

spring constant 4.50 × 102 N m 1 and is allowed to 

undergo simple harmonic motion on a frictionless 

horizontal surface. The object is initially displaced by 

0.200 m and is given an initial velocity of 3.50 m s 1

 Determine:

a. the total energy of the system

b. the amplitude of the oscillations. 

17. An object oscillates simple harmonically with an 

amplitude x0. When the displacement of the object is 

zero, the kinetic energy of the object is E. What is the 

kinetic energy of the object when the displacement  

is 
x0

2
?

A. 
E

4
B. 

E

2
C. 

3E

4
D. E
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It is useful to repeat the comments about energy variation with time from  

page 377 algebraically:

A substitution from the simple harmonic motion velocity equation gives  

Ek =
1

2
m(ωx0 cos ωt)2 which becomes Ek =

1

2
mω2 x0

2 cos2ωt

Using Ep = Etot − Ek leads to Ep = 
1

2
 mω2 x0

2
 –

1

2
mω2 x0

2 cos2ωt. This simplifies to  

1

2
mω2 x0

2 (1  cos2 ω t) and hence, using sin2 θ + cos2 θ = 1, to

Ep =
1

2
mω2x0

2 sin2 ωt.

The energy–time graphs in Figure 13 showed the relationships between Etot, Ep

and Ek, and remind you that the frequency of the energy change is double the 

frequency of the underlying simple harmonic motion. 

Strictly speaking, once resistive losses of any sort occur 

for an oscillating system, then the oscillation is no longer 

simple harmonic. The graphs for the variation with time 

of displacement/velocity/acceleration and the energy–

time graphs have constant amplitudes, as there are no 

resistance or energy losses to reduce the amplitude. This 

is discussed in more detail in Topic C.4,where the effects 

of damping (friction) are described in detail.

This is an easy question to answer if you use modelling 

software, as shown in the section on modelling in Tools 

for physics page 362. In the Modellus X model used 

there, only one change is required to the first equation. 

The term −b × vx must be added to represent a drag 

force that is proportional to the speed. The drag 

coefficient is b; vx is the velocity of the oscillating particle. 

When b is set to 1.0 ,then the behaviour of the oscillating 

system changes to an oscillation that is damped. 

The amplitude decreases with time, and the motion 

eventually stops. 

You can explore the effects of varying d if you set this 

model up for yourself. A particularly interesting case 

occurs with b = 2.6. This is critical damping and is 

examined in Topic C.4.

How does damping affect periodic motion?

Total energy Etot

1

2
mω2 x0

2
1

2
mω2 x0

2

Potential energy Ep

1

2
mω2 x2

1

2
mω2 x0

2 sin2 ω t

Kinetic energy Ek

1

2
mω2 (x0

2
 – x2)

1

2
mω2 x0

2 cos2 ω t

▴ Table 2 The energy equations.

◂ Figure 19 Part 

of the ModellusX 

soware screen 

running a model 

of damped simple 

harmonic motion 

and the outcome 

when the model 

is run. The graph 

is displacement 

against time.

Mathematical Model

Initial ConditionsParameters

Case1

0.10 0.10

Case2

All equal x =

–

sumFx = –k × x b × vx

ax =
sumFx

m

= ax
d vx

dt

m = 0.1

b = 0.1

k = 2.4

x0 = 0.1

= vx
d x
dt

Graph

t = 8.00
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Waves come in many forms. They are produced when 

an object undergoing a periodic motion interacts with 

a medium that can transmit a wave. This might be an 

oscillating electron forming an electromagnetic wave in 

a vacuum or the string and body of a violin generating 

sound waves in the air. A stone falling into a still lake 

produces an initial disturbance that leads to ripples 

travelling along the water surface. Gravitational waves, 

generated by the motion of an accelerated mass, have 

been detected. An understanding of wave theory is vital 

to a physicist.

Physics focuses on the similarities between dierent types 

of wave and wave motions to form general conclusions 

about wave theory. For example, all travelling waves 

transfer energy as they move through their medium. 

Another common feature is that the medium returns to 

its original state once the wave and its associated energy 

have passed through. 

Finally, the need for a medium (or not, in the case of 

electromagnetic waves) provokes the question: how 

is the behaviour of the wave itself inuenced by the 

properties of the medium? Can changes in density or 

constitution modify the properties of the travelling wave? 

These are all questions discussed in this chapter and the 

answers to them link all types of waves.

What are the similarities and dierences between dierent types of waves? 

How can the wave model describe the transmission of energy as a result of local disturbances in 

a medium? 

What eect does a change in the frequency of oscillation or medium through which the wave is 

travelling have on the wavelength of a travelling wave?

C.2  Wave model

▴ Figure 1 Buzz Aldrin deploying a seismometer to measure 

seismic waves travelling through the Moon. These waves 

were caused by meteorite impacts and moonquakes. Such 

measurements enable scientists to investigate the internal 

structure of the moon.

In this topic, you will learn about:

• transverse travelling waves 

• longitudinal travelling waves 

• wavelength, frequency, time period and wave speed 

when applied to wave motion 

• the nature of sound waves 

• the nature of electromagnetic waves 

• the differences between mechanical waves and 

electromagnetic waves. O
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Introduction
Earlier themes described the transfer of energy through mechanical and thermal 

means. This energy was transferred either through transfer of kinetic or potential 

energy, or because a temperature gradient leads to the transfer. In this topic, we 

study the transfer of energy due to wave motion. 

This energy can be transferred by the following types of waves.

• Mechanical waves, which require a medium such as a uid or a solid for 

propagation. The wave on the surface of an ocean or the movement of a 

slinky are examples of mechanical waves.

• Electromagnetic waves, which can travel through a vacuum or a medium. 

An electromagnetic wave is a pair of electric and magnetic elds that travel 

through space. Unlike mechanical waves they can only be detected when 

the changes in electric and magnetic eld strengths cause charged particles 

in the path of the wave to move. 

Describing waves

A wave can be defined as a disturbance that transfers energy from point to point 

in a medium. The disturbance can be an elastic deformation or a variation in any 

one of several parameters of the medium. For example, the sounds we hear result 

from pressure variations that travel to our ear as sound waves from the sound 

source. When a wave has finished travelling, the medium through which it moved 

is undisturbed. The energy has been transferred from one place to another 

without any overall change in the transmitting medium.

Figure 2 shows the passage of two different types of wave along a slinky spring. 

In both types of motion, the wave progresses along the medium. The medium is 

the spring in this case. A wave that does this is known as a travelling wave. 

Figure 2(a) shows what happens when the end of the slinky is moved at 90° to 

its central axis. The hand provides the movement and therefore the energy. The 

spring takes a curved shape that moves along the spring coils from one end to the 

other. The motion may also be reflected at the far end. This type of wave is known 

as a transverse wave. This refers to the relationship between the direction in which 

the energy is transferred (along the slinky away from the hand) and the direction in 

which the individual particles (coils, in this case) of the spring are moving. 

In a transverse wave the direction of energy transfer is at 90° to the direction 

in which the particles of the medium vibrate.

An individual coil in the slinky moves in two directions between a displacement 

maximum and minimum. One of these is called the crest of the wave; the other is 

known as the trough

Figure 2(b) shows a different type of wave in which the end coil of the slinky is 

moved backwards and forwards along the central axis. In this case, the direction 

of energy transfer and the direction of coil movement are the same. This is a 

longitudinal wave. The coils are moving towards and away from each other 

causing the coils to be compressed together (called a wave compression) or 

moved apart (a rarefaction).

In a longitudinal wave the direction of energy transfer is parallel to the 

direction in which the particles of the medium vibrate.

▴ Figure 2 The generation of  

(a) a transverse travelling wave and  

(b) a longitudinal travelling wave along  

a slinky spring.

rarefaction

compression

displacement direction

energy transfer

(b)

displacement direction
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You might want to compare the transverse wave on the 

slinky with the ripples you see on a pond or lake when a 

stone is thrown into it (Figure 3). In both cases, the waves 

are obvious.

In fact, although the appearance of the water surface 

and the slinky wave are supercially similar, there are 

dierences. The individual coil in the slinky is moving in 

one dimension. In the deep-water wave, the particles are 

moving in circles to give the characteristic “transverse” 

shape to the water surface.

Why do physicists generalize models that so that they can 

be used for related phenomena? In this case, waves that 

are transverse, longitudinal or some other type.

Water waves and slinky waves

The individual coil in a slinky oscillates about a fixed equilibrium position. So 

similar vocabulary to that used to describe oscillations in Topic C.1 is used here:

• Frequency f is the number of oscillations per second formed by the wave 

source. This is also the number of crests that pass a point in one second. 

Theunit is the hertz (Hz).

• Wavelength 휆 is the shortest distance between two points on the wave 

that have the same phase, that is, between two consecutive crests and two 

consecutive troughs.

• Time period T is the time that it takes one wavelength to pass a xed point. 

This is the same as the time for one particle in the wave to undertake one 

cycle of the oscillation.

• Amplitude x0 is the maximum displacement of a particle in the wave from its 

equilibrium (rest) position.

• Wave speed c is the distance a wave moves forward in one second in its 

direction of propagation.

Graphing wave motion

One way to visualize waves is to use graphs that show the variation of the wave 

displacement. These come in two forms:

• A displacement–distance graph show how displacement of the medium 

varies with distance along the wave at one instant in time. For a mechanical 

transverse wave, this is essentially a photograph of the wave prole

• A displacement–time graph shows the variation with time of the motion of 

one specic place in the medium. 

Always take care that you know which type of graph you are dealing with 

by looking carefully at the axes. You must also be aware of the type of wave 

(longitudinal or transverse) that is being described.

The word “displacement” must 

be treated with care in wave 

phenomena, as it may not refer 

to the physical distance moved 

by the wave medium. It can, for 

example, refer to the magnitude 

of an electric or magnetic field for 

electromagnetic waves.

Displacement 

terminology

water particles

travel in ellipses or

circles to make the

surface wave shape

▸ Figure 3 (a) A disturbance in a liquid leads to the propagation of 

waves on the surface. There are waves in the bulk of the material too, 

but these are less obvious. (b) Although for deep water the surface 

waves look like sine waves, they arise because the particles of the 

liquid are rotating in a vertical plane. 

(a)

(b)
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Displacement–distance graphs

These graphs have displacement as the y-axis and distance along the wave on the 

x-axis. These axes are drawn as perpendicular to each other but, for a longitudinal 

wave, displacement of the medium and distance along the wave are parallel. 

Of course, for transverse waves, the displacement and distance along the actual 

wave will be at 90°.

Figure 4 shows the displacement–distance graph for a transverse wave together 

with the wave profile at the top of the diagram. The red and green dots show the 

positions of zero displacement at the instant in time for which the graph is drawn.

Topic A.1 was concerned with the 

extension of space and time to 

include the concepts of speed and 

acceleration. 

The disturbance that leads to a real 

wave will have definite starting and 

stopping positions in both space 

and time. This means that a non-

infinite wave must have an overall 

length. This is the link between 

Topics A.1 and C.2. 

When the disturbance that creates 

a wave goes through n cycles (or 

time periods), then the time for the 

disturbance is nT. The wavelength 

of the wave is 휆 so that the overall 

length of the wave is n휆

How can the length of 

a wave be determined 

using concepts from 

kinematics?

0.5

0

displacement/cm

−0.5

distance/cm

trough

wavelength

crest cresttrough

▴ Figure 4 A transverse wave prole.

You can read the amplitude and wavelength directly from the displacement–

time graph. Notice that this graph cannot tell you about the time period or the 

frequency of the wave directly.

Figure 5 shows the displacement–distance graph for a longitudinal wave. The 

graph looks similar to that for the transverse wave, but the displacements now 

refer to movements of particles on the wave in the x-direction and this is shown 

in the top half of the figure. The top row of points represents the non-displaced 

(equilibrium) locations of positions in the medium. The lower row of points shows 

the disturbed positions of these points as a result of the wave moving through. 

Again, this is for one instant in time.

0.5

0

displacement / cm

−0.5

distance / cm

A C DB

centre of
rarefaction

centre of
compression

centre of
compression

centre of
rarefaction

centre of
compression

wavelengt

euilirium position
no wave present

position of particles
wit wave present

 cm

◂ Figure 5 A longitudinal wave prole.
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To explain this further, look at the graph using the letters at the top of the 

diagram in Figure 5. Between A and B and between C and D the displacement 

is negative and, for this diagram, this means a displacement of positions to 

the left. You can see that the lower row of particles between A and B have 

indeed moved to the left compared with their undisplaced positions. Similarly, 

between B and C and to the right of D the particles are displaced to the right 

according to the graph. 

This leads to interesting behaviour by the particles. At A, B, C and D the 

graph indicates that there is zero displacement, so these particles are at 

their equilibrium position at the time instant shown. At C, the particles are 

more bunched up than normal, so C is the centre of a compression. At B, 

the particles are more spread out than at equilibrium, so B is the centre of 

ararefaction. 

The compressions and rarefactions do not occur where the displacements are 

at their greatest and least. Both the compression and rarefaction maximum 

points are where the displacement is zero. At the maximum and minimum 

displacements, the distance between particles is the equilibrium separation 

when there is no wave present.

Of course, these compressions and rarefactions are not static places in the 

travelling wave because it is moving in space. But we cannot infer this from a 

single displacement–distance graph. To do that we need a series of wave profiles 

each drawn at a later time than the one before.

Figure 6 shows such a series of graphs for a wave at time intervals of one-quarter 

of the time period of the wave ( T4 ). On each wave profile three positions on the 

wave are marked P, Q and R:

• P and Q are in anti-phase (180° or π rad out of phase)

• Q and R are 90° (or 
π

2
 rad) out of phase

• this makes P and R 270° (or 
3π

2
 rad) out of phase.

A straight line connects the same zero displacement point on the wave in each 

diagram. It shows how the wave will appear to move to the right, even though 

the individual points stay, on average, in the same place. In one time period T,

this wave moves forward by 4 cm, so this wave travels with speed 
4

T
cm s 1. 

There are many applets available on the web to help you visualize the motion 

of waves — both transverse and longitudinal. Search for words like “ transverse 

wave applet” or “longitudinal wave motion applet” to find them. 

Simulations
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▴ Figure 6 A sequence of graphs of the variation of displacement with distance for a wave 

at intervals of 
T

4
.

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



Topic C.2 Wave model

394

Worked example 1

A longitudinal wave travels in a medium 

from le to right. The diagram shows 

how the displacement of the particles 

in the medium at time t = 0 varies 

with the distance x along the wave. 

Displacements to the right of the 

equilibrium positions are positive. The 

point labelled P represents a particle 

of the medium whose instantaneous 

displacement iszero.

a. State the wavelength and the 

amplitude of the wave.

b. Explain the direction of motion 

of P at t = 0.

c. Explain why P is at a centre of 

a rarefaction.

d. Draw, on a copy of the diagram, a graph showing the displacement of the particles at time t =
T

4
, 

where T is the period of the wave.

e. State the displacement and the velocity of particle P at t =
T

4

Solutions

a. Wavelength = 20 cm, amplitude = 6 mm.

b. The crest of the wave immediately to the right of P will have moved further to the right, so the 

displacement of P is decreasing at t= 0. A decreasing displacement means that P is moving to the le.

c. All particles immediately to the le of P are displaced further le from their equilibrium positions, so 

away from P. All particles immediately to the right of P are displaced further right, also away from P. The 

density of the particles is therefore lowest at P.

d. Between t= 0 and 
T

4
 the wave moves by one quarter of the wavelength to the right. The dashed line 

shows the displacement of the wave at t=
T

4
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0
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direction of wave travel

e. The displacement of P is now maximum negative, −6 mm. This is the turning point of the oscillation of 

P, so its instantaneous velocity is zero.
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Displacement–time graphs

0.5

0

−0.5

time/s

displacement/cm

T

2
T 2T3T

2

▴ Figure 7 A graph of displacement against time.

A displacement–time graph shows the displacement of one particle in the 

medium as it changes with time. In Figure 7, this is over two complete cycles of 

the motion. 

This graph gives us temporal as opposed to spatial information and gives the time 

period of the wave and the amplitude of the motion. These must be the same for 

all the particles (ask yourself why).

Worked example 2

A wave travels in a medium from le to right. The graph shows 

how the displacement of a particle P in the medium varies with 

time t

a. Calculate the frequency of the wave.

b. Another particle Q is directly to the right of P. The equilibrium 

positions of P and Q are separated by one quarter of the 

wavelength. Draw a graph to show the variation with time of 

the displacement of Q.

Solutions

a. The period of the wave is T= 20 ms. The frequency is 

f=
1

T
=

1

20 × 10 3
= 50 Hz.

b. P and Q oscillate with the same amplitude and period. The phase dierence is 
휋

2
and the oscillation 

of P precedes that of Q by one quarter of the period. For any displacement of P, particle Q will be at 

the same displacement 5 ms later.

0
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Practice questions

1. The displacement-position graph of a transverse wave 

travelling in a medium is shown. P, Q and R are three 

particles in the medium.

d
is

p
la

c
e

m
e

n
t

0
P

Q

R

direction of wave travel

a. State, for each particle, whether the instantaneous 

velocity is positive, negative or zero.

b. Draw, on a copy of the diagram, a  

displacement–position graph a time 
T

2
 later, 

where T is the period of the wave.

2. The graph shows how the displacement of the particles 

of a medium varies with distance. A longitudinal wave 

is travelling in the medium from le to right. A positive 

displacement corresponds to displacement to the 

right of the equilibrium position. P, Q, R and S are four 

particles of the medium.

d
is

p
la

ce
m

e
n

t/
m

m

5

10

Q S

P

R

distance

10

5

0

direction of wave travel

a. State the amplitude of the wave.

b. State and explain which of the particles is at a 

centre of a compression.

c. A quarter of the period later, the displacement of 

particle P is zero. State, for the same instant, the 

displacements of the particles Q, R and S.

3. A displacement-position graph of a travelling wave is 

shown. X and Y are two particles along the wave.

d
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X Y

distance

direction of wave travel

 What is the phase dierence between the oscillations 

of X and Y?

A. 0  B. 
휋

4
C. 

휋

2
D. 휋

4. A wave travels along a stretched string. A 

displacement–time graph is shown for two particles on 

the string.

time/ms

d
is
p
la
ce

m
e
n
t

0
0

a. Calculate the frequency of the wave.

b. State the phase dierence between the 

oscillations of the particles.

c. The wavelength of the wave is 60 cm. State the 

smallest possible distance between the particles.
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Wave equation

Figure 6 shows that a travelling wave is moving forward to transfer the energy 

through the medium even though the particles remain, on average, at their 

equilibrium position. There is a simple relationship between the parameters of 

the wave and the wave speed v. 

During one cycle, which takes time T (the time period), the wave moves forward 

by one wavelength 휆. The wave speed must be given by:

v =
λ

T

But f =
1

T
, therefore

v = fλ

This equation seems reasonable because wavelength has the dimensions of 

distance and frequency has the dimensions of time 1, so the overall dimensions of 

f × λ are 
distance

time
, which is the dimension for speed.

Worked example 3

A loudspeaker emits a sound 

wave of frequency 1200 Hz. The 

speed of sound in air is 340 m s 1. 

Calculate, for this wave:

a. the wavelength

b. the time it takes to travel a 

distance of 5.0 m from the 

loudspeaker.

Solutions

a. v = fλ ⇒ λ =
v

f
=

340

1200
= 0.28 m.

b. time =
distance

speed
=

5.0

340
= 15 ms.

Worked example 4

A transverse wave of wavelength 1.1 m is produced in a stretched string by periodically moving one end 

of the string up and down with a period of 0.60 s. Calculate the speed of the wave.

Solution

The period of oscillations of the end of the string is the same as the period of the wave.  

v =
λ

T
=

1.1

0.60
= 1.8 m s 1

Worked example 5

The graph shows how the displacement of a wave on the surface of a lake varies with distance. 

The red line shows the displacement at t = 0 and the blue line shows the displacement at t = 0.25 s. 

Between t = 0 and t = 0.25 s the wave has moved by less than one wavelength.

d
is
p
la
ce

m
e
n
t

distance/m0
0

Calculate:

a. the speed of the wave

b. the period.

Solutions

a. The distance travelled by the wave during 0.25 s is 0.60 m. The speed is therefore v =
0.60

0.25
= 2.4 m s 1

b. From the graph, the wavelength is 2.8 m. v =
λ

T
⇒ T =

λ

v
=

2.8

2.4
= 1.2 s.
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Practice questions

5. A wave travels along a stretched string at a speed of 

30 m s 1. A particular point in the string has a maximum 

displacement at t = 0 and returns to the equilibrium 

position at t = 2.0 ms. Calculate:

a. the period of the wave

b. the wavelength.

6. A sound wave of frequency 800 Hz is moving with a 

speed of 350 m s 1. Calculate:

a. the wavelength

b. the minimum distance between a centre of 

compression and a centre of rarefaction.

7. A wave of frequency 5.0 Hz travels along a metal wire. 

There are 12 full wavelengths of the wave in a length of 

48 m of the wire. Calculate the speed of the wave.

A travelling wave is the result of 

disturbances travelling through a 

medium or, for electromagnetic 

waves, a self-propagating pair of 

electric and magnetic fields. For 

both cases, when two or more 

waves meet, the disturbances add 

to give the resultant sum of at the 

position and time of the meeting. 

This effect is called superposition 

and is examined in detail in 

TopicC.3.

What happens when 

waves overlap or 

coincide?

The nature of sound waves

Sound waves are longitudinal waves that can travel in gases, liquids and solids. 

Gases cannot sustain a displacement at right angles to the direction of energy 

transfer since there is no restoring force; neither can liquids except at their 

surfaces. Solids can transmit both transverse and longitudinal waves because of 

the fixed bonds between the atoms and molecules.

▴ Figure 8 How a longitudinal sound wave moves through the air. The regions of high and 

low pressure move towards the ear from the smartphone.

We use sound waves to hear. Figure 8 shows the progress of sound from a 

smartphone to a human ear. Inside the loudspeaker of the smartphone is a 

flexible material that moves backwards and forwards at the frequency of the 

sound. This produces high-pressure and low-pressure regions in the gas next 

to the cone. These pressure regions move away from the loudspeaker as a 

longitudinal travelling wave. The graph in Figure 8(b) shows the displacement 

and pressure variations. The amplitude of these waves will usually decrease with 

distance as the wave “spreads out” and as energy transfers to heat the air slightly. 

Note the 
π

2
rad phase difference between compressions and the corresponding 

displacement maxima on the graph. Maximum particle displacement 

corresponds to the average pressure in the gas. Where the particles are not 

displaced, the pressure has its maximum difference from the atmospheric 

(normal) pressure of the gas. The pressure varies above and below atmospheric 

once in one cycle (in one time period). 

Eventually, the pressure variations reach the ear and are converted into electrical 

signals that travel to the brain to be interpreted as sound.

The human ear is a remarkable organ. Atmospheric pressure is roughly 105 Pa, 

but the ear can detect sounds that have pressure variations of only 2 × 10 5 Pa. 

Sounds become painful to hear at variations of about 20 Pa. The ratio of loudest 

pressure to quietest is, therefore, 106:1.

smartphone

smartphone

diaphragm

vibration

distance

air pressure

variation

air displacement

 variation
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• Tool 1: Understand how to accurately measure time 

and length to an appropriate level of precision.

• Tool 2: Carry out image analysis and video analysis  

of motion.

• Inquiry 1: Demonstrate creativity in the designing, 

implementation or presentation of the investigation.

• Inquiry 3: Compare the outcomes of an investigation 

to the accepted scientic context.

There are several ways to measure the speed of sound in free air. “Free air” means that the air is not conned in a tube, which 

would decrease the value measured for the speed.

Using direct timing

To measure the speed of sound directly, you will need a loud sound which has a visual cue. A clapperboard can easily be 

constructed from two strips of wood and a hinge.

• Observe the clapperboard from a measured 

distance, ideally about 100 m.

• Measure the time between seeing the clapperboard 

close and hearing the sound. Videoing this might 

help you to make these measurements.

• Use the equation speed =
distance

time
 to calculate the 

speed of sound.

You could also use the echo o a large, at wall to make your measurements.

Using a double-beam oscilloscope 

upper trace shied

horizontally to align

with lower trace

loudspeaker

microphones

signal generator

oscilloscope

▴ Figure 9 A method for determining the speed of sound in air using a double-beam oscilloscope.

The apparatus (Figure 9) consists of two microphones 

connected to the inputs of a double-beam oscilloscope, 

and an audio-frequency signal generator connected to a 

loudspeaker.

• A frequency f of between 500 Hz and 2 kHz is usually 

suitable for the experiment.

• Begin with one microphone close to the loudspeaker 

and put the other microphone about 1.5m away from it.

• Move the second microphone carefully along the 

line between it and the rst microphone until the 

two traces on the oscilloscope display are aligned 

(in phase with each other). Mark the position of the 

second microphone.

• Now move the second microphone away until the 

display shows that the two traces are in phase again. 

Mark the new position.

• The microphone has moved through one wavelength 

so that the distance between the marks is λ. The 

speed of sound v = f × λ

• You can improve the experiment by measuring 

several distances over more than one wavelength and 

taking an average of the results.

Measuring the speed of sound 
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Using smart phones

There are many other ways in which you could measure the speed of sound. Smartphone apps can help you to make 

measurements. For example, you could use the Doppler shi (see Topic C.5) to calculate the speed of sound by measuring 

the frequency of a sound when it is stationary and when it is moving at a constant speed.

Some smartphone apps have the facility to measure the speed of sound via the SONAR principle. In this case, the app itself 

will have instructions for how to do this.

There is another method. If you work with a friend and use two smartphones, then you can use them as timers. You will need 

an app that starts and stops timing when it is triggered by a sound. Search for “acoustic stopwatch”.

• Place each smartphone a measured distance apart 

− 2 m will work, but larger distances are better (up to 

10 m).

• Set each smartphone to start and stop timing on a 

loud clap. Banging two pieces of wood together, or 

hitting a hammer on a metal plate, makes a suitable 

loud and short sound.

• Start the smartphone timers by making the sound 

exactly in the middle of the two smartphones. This is 

so that the two timers start at the same time.

• Stop the timers by making the sound on the far 

side of one of the smartphones. The more distant 

smartphone should hear the sound a little later and 

record a slightly longer time.

• Calculate the dierence in the two times.

• Repeat the experiment and take an average of the 

dierence between the two times. You should take 

repeats, making the stopping sound on both sides.

• Calculate the speed of sound from your results.

• You can improve this method by making the starting 

sound on one side of the smartphones and making the 

stopping sound on the other. The eective distance 

over which the sound has travelled is doubled, as is the 

time dierence recorded.

Practice questions

8. In an experiment to determine the speed of sound in air, a sound sensor is 

placed close to the open end of a tube of length 2.6 m. The other end of the 

tube is closed. A short sound pulse is emitted at the open end of the tube. The 

sensor records an echo returning from the closed end of the tube 14 ms aer 

the emission of the pulse. Estimate the speed of sound in air according to this 

experiment.

9. A student designs an experiment to measure the speed of sound in air 

by timing a sound pulse travelling between two microphones that are 

1.8 m apart. The microphones are connected to a digital timer. The time 

measurement is triggered by the arrival of a sound pulse at one of the 

microphones. The student can control the sampling rate of the timer (the 

number of sound samples it collects per second) in the range from 100 Hz to 

5 kHz.

a. Explain why a sampling rate of 100 Hz is insucient for the purpose of this 

experiment. Assume that the speed of sound in air is about 340 m s 1

b. The student claims that a percentage uncertainty of the calculated 

speed of sound will be less than 5% when a sampling rate of 5 kHz is 

used. Comment on the student’s claim.O
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The nature of electromagnetic waves 

While the wave theory developed in this topic applies to all types of waves, a 

distinction was made earlier between mechanical and electromagnetic waves. 

Figure 10 shows a glass prism dispersing white light. Our eyes are sensitive to 

only a small part of the whole electromagnetic spectrum. 

Beyond the ends of this spectrum are many regions of both longer and shorter 

wavelengths. All these regions have the following properties in common:

• They are regarded as transverse waves.

• They can travel through a vacuum.

• They have an identical speed in a vacuum (3.00 × 108 m s 1).

• They consist of a time-varying electric eld at right angles to a time-varying 

magnetic eld. The strengths of these elds have their maximum value at the 

same time (Figure 11).

• They arise from the motion of accelerated electrons (or other charged 

particles) or occur when charged particles change energy (and photons  

are emitted).

• Like all waves, electromagnetic radiation has a frequency, and hence a 

wavelength. However, this wavelength changes when the radiation enters a 

dierent medium whereas the frequency remains constant.

▴ Figure 10 White light enters a glass 

prism from the le-hand side. The light is 

dispersed and dierent wavelengths leave 

the prism in dierent directions.

▴ Figure 11 Electromagnetic radiation consists of an electric eld and a magnetic eld at 

right angles. The elds are at their maximum eld strength at the same instant.

The nature of light was hard for scientists to understand before the work 

of scientists such as Maxwell in the 19th century. Many models had been 

proposed ranging from the ideas of the Ancient Greeks, who proposed the 

idea of small bullets fired from the eye, to the corpuscular theory of Newton. 

We now take a more ambivalent view of light — on the one hand, we 

sometimes describe it as a wave (the stance taken throughout Theme C) and, 

on the other hand, it is sometimes described as a photon (the Theme E view). 

Perhaps the nature of light is still difficult for scientists today?

All electromagnetic radiation is modelled as pair of electric and magnetic 

fields. One field gives rise to the other which takes us to the realm of Theme D 

with its emphasis on the field concept. 

How can light be modelled as an electromagnetic wave?

view along direction of wave

magnetic field

electric field

direction

of wave

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



Topic C.2 Wave model

402

How are electromagnetic waves able to travel through  

a vacuum?

Topic D.3 shows that a point charge situated in a region of electromagnetic 

radiation will be accelerated by the electric field. This acceleration leads 

both to a further electric field (because the charge is being displaced from 

its starting position sinusoidally) and a magnetic field (because the charge is 

moving with a speed that varies sinusoidally).

However, it is less clear why an electromagnetic wave transmits through a 

vacuum. This question was a difficult one for physicists of the late-19th century, 

who even invoked a medium called the aether to explain how it happens. 

(The aether was later shown not to exist by Michelson and Morley, 

see page 166).

One way to avoid the problem is to say that electromagnetic radiation is 

carried not by a wave but by a photon. This opens the issue of wave–particle 

duality that is discussed in more detail briefly in this topic and in Topics E.1 

and E.2. However, a consideration of electric field theory and the postulates 

of special relativity, in Topics D.2 and A.5, give a clue to what happens from a 

wave standpoint.

at x = 0, at time t = 0

x = 0

t = 2

x

▴ Figure 12 A point charge that is moving away from its initial rest position at x = 0.

When a charge moves from an origin, the information about its motion must 

move away from it at the speed of light. At the points that this information 

has not yet reached, the field lines must still point to the origin. The distortion 

between the two regions the information has, and has not yet, reached is 

moving outwards at the speed of electromagnetic radiation. This gives rise to 

the electric and magnetic fields of an electromagnetic wave.

Throughout Theme C we treat 

electromagnetic radiation as a 

wave phenomenon. And this 

is how it has been regarded by 

scientists for most of scientic 

history. However, the 20th- and 

21st-century view is dierent. 

Electromagnetic radiation can 

be shown to have particle-like 

properties as well as wave-like 

ones. When gamma radiation 

acts as a particle it is described 

as a photon. Photon properties 

are a matter for Theme E, where 

they are discussed in detail, but 

it is interesting to discover the 

history of this subject and to 

see how important the study of 

electromagnetic radiation has  

been in the development of  

20th-century science.

To what extent do our perceptions 

of nature and science depend on 

past history?

Photon or wave?

The spectrum itself together with the approximate wavelength ranges is provided 

in the Data Booklet. Note that there are sometimes considerable overlaps between 

regions (for example, between X-rays and gamma radiation). The distinction 

between one region and another is usually due to the mechanism by which the 

radiation is produced. For example, X-rays are produced by the rapid deceleration 

of electrons and the energy changes in the electron shells close to the nuclei 

of heavy metal atoms. Gamma radiation is usually considered to originate from 

nuclear changes, rather than atomic, even though X-rays and gamma radiation can, 

in principle, have similar wavelengths. 
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It is important to remember that the 

electromagnetic spectrum is continuous. 

There are no sharp boundaries between 

the regions of the spectrum. The range 

of wavelengths runs from radio waves, 

with wavelengths more than thousands 

of kilometres, to gamma rays with 

wavelengths less than a picometre 

(10 12 m). With such a wide range of 

wavelengths it is unsurprising that 

the properties of the waves change 

throughout the spectrum.

The dierent properties of the waves 

can be accounted for in the ways in 

which they interact with matter. Radio 

waves have low frequencies and are 

not absorbed easily, so can travel large 

distances. Shorter wavelengths such 

as microwaves and infrared waves can 

have frequencies that match molecular vibrations — enabling them to transfer energy to matter and to be 

absorbed in the atmosphere. Visible light frequencies cannot do this, so our atmosphere is transparent. 

UV light has sucient energy to excite and perhaps ionise atoms — UV light is therefore absorbed by 

gases in our atmosphere. X- rays and gamma rays have wavelengths smaller than an atom which causes 

them to penetrate matter more eectively; however, they can interact with atomic electrons and nuclei. 

Patterns and trends

▴ Figure 13 Radio waves interact with matter very dierently to visible light — as a 

result, the mirror on this radio telescope does not look like a mirror for visible light.

Gamma radiation (λγ ~ <1 pm)

• The shortest wavelength and highest frequency of the spectrum. 

• Most gamma radiation produced outside Earth’s atmosphere is absorbed by 

ozone in the atmosphere and does not reach the surface of Earth. 

• Has many uses in medicine including imaging inside the body and treating cancer. 

• The radiation kills bacteria and is used to sterilize food and medical instruments. 

X-rays (λX ~ 30 pm–3 nm)

• Have many uses for internal investigation, such as in medical diagnoses and airport security. 

• Used to irradiate and destroy cancers. 

• Highly penetrating and dangerous to living tissues as they can alter DNA by ionization.  

The medical professionals carrying out X-ray work need to be protected by lead screening. 

• Pulsars, supernovae and black-hole accretion discs emit X-rays given their very high temperatures. 

Ultraviolet (λUV ~ 100–400 nm)

• Important to animals because it is a source of vitamins when it illuminates the skin.

• Can also be harmful, causing sunburn and damage to DNA structures. 

• Emitted by mercury atoms when excited in electric elds, which is the basis of the uorescent tube. 

• Satellites can be positioned above Earth’s atmosphere to make galactic observations in the ultraviolet region.
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Can the wave model inform the understanding of quantum mechanics? (NOS)

Visible light (λVL ~ 400–700 nm)

• The part of the electromagnetic spectrum that we detect, with a  

wavelength from about 390 nm (violet) to 700 nm (red). 

• The eye is most sensitive to green wavelengths.

Infrared (λir ~ 1–1000 μm)

• Can be sensed by the nerves in the skin. 

• Considerable amounts emitted by hot (but not glowing) objects; the basis of night-vision goggles and telescopes.

• Used for cooking and grilling (the red glow from an electric grill element  

is only a small part of the total power emitted by the grill). 

Microwave radiation (λmicro ~ 1 mm–30 cm)

• Used extensively in radar systems, radio astronomy, satellite communication, mobile 

phones and cooking, meriting their own named part of the spectrum.

• Microwave ovens heat up food because the molecules of water, sugars and fats in the surface  

absorb the radiation. The energy then spreads through the food through thermal transfer. 

• High-power microwaves can damage living tissues through this heating mechanism.

Radio waves (λradio ~ 1 mm–100 km)

• Possess the longest wavelengths of all the radiations. 

• Commonly used for communication given their unique properties of reection from  

parts of the atmosphere and their ability to diract around hills and large buildings. 

• Radio telescopes are used to observe the emitted signals from objects in the Universe. 

▴ Table 1 The regions of the electromagnetic spectrum. 

Never underestimate the importance of serendipity in 

science.

In November 1895, Wilhelm Röntgen in Würzburg was 

experimenting with electrical discharges produced 

in a gas using high voltages. He noticed that a green 

fluorescence appeared on a nearby platinum–barium 

screen even when the container of gas was covered 

in cardboard. Something was leaving the gas that 

could penetrate the board. Rather than ignore this, he 

investigated the phenomenon intensively for six weeks 

until the end of December. By this time, he had already 

submitted preliminary findings to a scientific journal. By 

the end of January 1896, he had given a presentation 

to other scientists of what were to become known as 

“X-rays”. 

Within days, X-rays had their first medical uses around the 

world involving diagnosis of bone fractures. Within the 

year doctors were treating tumours by irradiating patients 

with X-rays — a procedure we now call radiotherapy. 

These techniques are still used extensively today. The 

basic strategies used to view internal structures, whether 

living or inert, are unchanged since Röntgen first 

suggested them, even though the methods have been 

much refined. 

Wilhelm Röntgen was awarded the first Nobel Prize for 

physics. The prize is given to those who have conferred  

“the greatest benefit on mankind”. It is completely 

appropriate that Röntgen should have received it for his 

far-reaching, life-saving and serendipitous discovery.

How were X-rays discovered? (NOS)

Quantum physics — the subject of Topic E.2 — takes as its 

starting point the premise that matter has a wave–particle 

duality. This means that, depending on the nature of the 

observation, matter can be observed to possess wave-

like properties or particle-like properties. Electrons can 

be treated as though they are particles possessing mass, 

momentum and energy, or they can be made to diffract 

through a double-slit in the same way as light. 
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The intensity of a wave is a measure of the energy transferred by the wave 

to an area. A point source S of energy (Figure 14) spreads the energy over a 

complete sphere is space. As the wave moves outwards, at any particular time 

the sphere has a radius r. This is discussed in greater detail in Topic B.1. 

The intensity I of the wave is the 
the energy transferred per second

the area of a sphere of radius r

or 
the power of the wave P

the area of a sphere of radius r

This means that I=
P

4πr2
 because the area of a sphere is 4πr2.  

Therefore I∝
1

r2
. The SI unit of intensity is W m 2, as explained before.

How are waves used in technology to improve society? (NOS)

Why does the intensity of electromagnetic wave decrease with distance according to the 
inverse square law?

Erwin Schrödinger developed the concept of wave 

mechanics by describing the evolution of a particle 

using a wave equation. His differential equation, named 

the Schrödinger equation, is a key result in physics that 

represented a breakthrough in 1935. The equation is the 

quantum equivalent of Newton’s second law. Newton’s 

equation predicts the path of a physical system with time. 

Schrödinger‘s full equation predicts the way in which a 

wave function, which is a description of a physical system 

in quantum-mechanical terms, evolves with time. It was 

an example of the application of analytical reasoning to 

observed patterns and existing hypotheses.

Schrödinger’s success in applying a wave model to 

quantum physics was recognized when he was awarded a 

Nobel Prize.

r

S

I = P/4πr2

▴ Figure 14 As a wave moves from a 

point source, it is spread over a larger 

and larger sphere. The intensity of the 

wave varies with 
1

r
2

Practice questions

10. A certain mobile network operator uses 

electromagnetic waves of frequency 1500 MHz to 

provide wireless services for its mobile phone users. 

Calculate the corresponding wavelength and identify 

the part of the electromagnetic spectrum to which 

these waves belong.

11. A laser pen emits monochromatic light of a 

wavelength 650 nm. Calculate the frequency of light.

12. The distance to the Moon can be determined 

by measuring the round-trip time of laser pulses 

emittedfrom Earth towards the Moon and reected 

by one of the mirrors placed on the Moon’s surface 

during space missions. In one experiment, the  

round-trip time of a pulse is 2.6 s. Estimate the  

distance between the surfaces of Earth and the Moon.

It is impossible to overemphasize the importance to us 

of mechanical waves and electromagnetic radiation. 

The whole of life on the planet depends on the energy 

reaching us from the Sun — and this travels only by 

electromagnetic radiation through the vacuum of space. 

Nevertheless, electromagnetic radiation can also travel 

through solids, liquids and gases, depending on the 

wavelength of the radiation.

Since their discovery in the 19th century, electromagnetic 

waves have brought untold benefits.  These range widely 

from their use in medicine for scanning and treatment, 

through industrial use and weather forecasting, to 

domestic applications such as the radar systems used 

in self-driven cars. Our mobile phones rely heavily on 

microwaves as do our ovens. 

Mechanical waves such as sonar (sound reflected from an 

object in water) allow mapping of the seabed and fishery 

research. An ultrasound wave with its frequency greater 

than humans can hear (above about 20 kHz) can be used 

for flaw detection in materials. Ultrasound scans are used 

extensively in medical diagnosis and treatment. These and 

many other applications illustrate the improvements in 

society that have arisen from the use of wave technology.
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How are observations of wave behaviours at a boundary between different media explained?

How is the behaviour of waves passing through apertures represented?

What happens when two waves meet at a point in space?

Wave phenomena

To explain the behaviour of a wave moving 

betweenonemedium and another, we need new 

concepts — the wavefront and the ray — to describe 

boundary behaviour.

The particles in a single wave close to an obstacle or 

gap must interact with the obstruction. The fixed edge 

of a boundary influences the movement of waves in 

the medium. Particles well away from the boundary are 

affected less. With so many particles in any wave, you can 

describe the overall effect by looking at the averages. The 

phenomenon is known as diffraction and is important in 

many areas of wave propagation. Figure 1 was taken in 

1953 by Rosalind Franklin. Analyzing the diffraction pattern 

can enable deductions to be made about the structure 

which caused it and, later in 1953, Franklin’s work led 

to the discovery of the double-helix structure of DNA by 

Francis Crick and James Watson.

When two or more waves meet at the same point in space, 

the individual particles of the medium must respond to 

both waves. Although the response is due to the individual 

interactions of many particles, it can be treated as a sum of 

the multiple waves. As in Theme B, we use a macroscopic 

lens to view what is a microscopic effect. This is the 

phenomenon known as interference where two waves 

superpose (add). Again, this has important applications 

both in science and elsewhere.

▴ Figure 1 The diraction pattern created when X-rays pass 

through a crystalline sample of DNA.

406

C.3

In this topic, you will learn about:

• wavefronts and rays 

• reflection, refraction, and transmission of waves at a 

boundary between media

• diffraction around objects and through apertures 

• Snell’s law, critical angle, and total internal reflection 

• superposition of waves and wave pulses 

• coherent sources

• double-source interference 

• constructive interference and destructive interference 

• Young’s double-slit interference

A
H

L
• single-slit diffraction

• the modulation of a double slit interference 

pattern by a single-slit diffraction pattern

• interference at multiple slits and diffraction 

gratings.O
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Introduction
You can move from studying the motion of individual particles to studying the 

general concepts of waves travelling in two or three dimensions. These are the 

wavefront and the ray. For some types of wave, wavefronts are visible and this is 

where we begin in the modelling of the wave phenomena. Rays help us to visualize 

the direction in which waves move — and the changes in direction that occur when 

waves move across boundaries between media or when they are constrained at the 

edges of a medium.

Wavefronts and rays

A water wave on a still lake spreads out in a series of ripples. They expand 

without limit until they reach an obstruction. There is implied direction in this 

motion because the ripples move away from the initial disturbance in the water. 

Figure 2 illustrates this. The boy is skimming a stone across the water surface. 

The stone is travelling away from the boy. As it hits the surface it causes waves. 

These expand outwards from the point where the stone touched the water. The 

water disturbance closest to him was made rst and has expanded the most. The 

ripples are expanding outwards in circles, so that each point on the wave (ripple) 

is moving radially away from the centre of the disturbance.

These ideas lead to a way of thinking about wave motion that uses wavefronts 

and rays (Figure 3):

• Wavefronts are surfaces that move with the wave and are perpendicular to 

the direction of the wave motion. Consecutive wavefronts are imagined to be 

one wavelength apart.

• Rays are lines that show the direction of energy transfer by the wave. They are 

locally perpendicular to the wavefront. 

▴ Figure 2 Skimming a stone on water.

plane wavefronts(a) circular wavefronts

source

(b)

Figure 3(b) shows the relationship between wavefront and ray for circular waves 

(for example, water ripples) and plane waves. The ray is the straight line with an 

arrow indicating the direction. Wavefronts have no arrows and show the shape 

of the wave at successive times in the case of a single disturbance (a stone in a 

pond). They are essentially a photograph of the wave for the case of a source that 

keeps generating waves one aer another (such as the ripple tank in Figure 4).

The series of wavefronts tells the story of the wave, its origin and subsequent 

history. For example, the larger the radius of curvature of a circular wavefront, the 

older the wavefront compared with other drawn wavefronts with smaller radii. 

This property is used later in the topic.

▴ Figure 3 Plane and circular wavefronts. The red line is a ray; the arrow indicates the ray 

direction. Sometimes the arrow is not shown on the ray as the direction is implicit from the diagram.
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Reection, refraction and transmission

When a wave travelling in a medium meets a boundary, two outcomes are 

possible: 

• All or part of the wave can be reflected back into the original medium with an 

unchanged wave speed.

• There can be transmission of all or part of the wave into the new medium 

beyond the boundary, usually at a changed wave speed.

It is the relative wave speeds that determine whether transmission or reection 

occurs in the new medium.

When a wave is transmitted from one medium to another, the wave speed usually 

changes. The eect of this is shown for a water wave in Figure 5. Wave speed and 

wavelength are linked because the frequency of the wave as it moves across a 

boundary is unchanged. When speed decreases, wavelength decreases too.

Ripple tank

• Tool 3: Determine the effect of changes to variables 

on other variables in a relationship.

• Inquiry 3: Compare the outcomes of an investigation 

to the accepted scientific context.

A ripple tank (Figure 4(a)) is a convenient way to 

show the properties of water waves as they move. 

The transparent tank carries a shallow layer of water 

illuminated by a singlepoint source of light. The wave 

shapes on the watersurface focus the light to produce 

a pattern of light and dark areas on a screen below. 

These areas correspond to the crests and troughs of 

the water surface. A variety of wave sources (single 

dippers, multiple dippersand plane dippers) can be 

used to simulate the behaviour of light for many eects 

discussed in this topic.

The ripple tank can also show eects of speed 

changes. The speed of the water waves in the tank 

depends on the depth of the water. Waves travel more 

slowly in a region of reduced depth (Figure 4(b)).

• As a wave travels to a shallower part of the tank, the 

friction between the water and the bed increases, so 

the wave slows down in shallower water.

• The frequency f cannot change in the shallower 

region (why not?) and v = fλ tells us that the 

wavelength λ decreases when the speed v

decreases. The wave peaks move closer together.

▴ Figure 4 (a) A ripple tank; (b) a wave moving into a 

region of reduced water depth.

lamp

shallow

water tray

white screenwave pattern

on screen

elastic bands

to power

supply

dipper

vibrator

water surface

(a)

increased friction at base

slows the wave and

decreases the wavelength;

frequency stays constant

wave direction

(b)
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Figure 5 contains images created 

using a ripple tank. The tanks 

are an important practical way to 

model the behaviour of light waves 

when their wavefronts and rays are 

not visible to us.

What are the limitations in 

using these types of visualization 

in science?

Visualization

(a) (b)

reflected rayincident ray

metal strip

placed in water

incident

wavefront

i
r

reflected

wavefront

deep water shallow water

Reflection Reflection

▴ Figure 5 (a) Reection and (b) refraction shown in a ripple tank.

Figure 5 shows ripple-tank images for plane waves that are:

• moving up to a plane metal strip (a barrier that simulates a mirror)

• moving from one water depth to a shallower water depth.

Ripple-tank pictures can be dicult to interpret and line drawings are included to 

give the important features of the images.

In Figure 5(a), there is no change in wavelength. The wavefronts have the same 

spacing both before and aer they strike the barrier. Further, the angle of 

incidence i is the same as the angle of reection r. Both i and r are measured 

from the line at 90° to the mirror — known as the normal — where the incident ray 

meets the mirror. The rule that i = r is always true for reection at a plane mirror.

Figure 5(b) shows the wave travelling from the le and moving into a region 

where the water is shallower. The increased friction at the base of tank slows the 

wave down and two things happen:

• The wavelength becomes shorter in the shallower water.

• The wave bends at the interface between the two wave speeds.

This eect is known as refraction.
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Snell’s law

Snell’s law, named aer Dutchman Snellius, predicts that, when a wave passes 

from one medium 1 to medium 2 (Figure 8),

v
1

v2
=

sin θ1

sin θ2

where v1 and v2 are the wave speeds in media 1 and 2, and θ1 and θ2  are  

the corresponding angles between the rays and the normal to the interface  

(see Figure 7).

This can be illustrated with Figure 8 which uses Huygens’ principle. Two 

wavefronts (together with their respective rays) are shown moving from medium 

1 to medium 2. The wavefronts are one wavelength apart. The wavefronts 

are dierent distances apart in the two media because the wave speed has 

decreased while the frequency of the wave has remained unchanged. The angles 

of incidence θ1 and refraction θ2 are also shown.

When light moves from a vacuum to a medium, then the speed of the wave in 

medium 1 (vacuum) is c and Snell’s law becomes

sin θvacuum

sin θ2
=

c

v2

The ratio 
c

v2
 is known as the absolute refractive index n of the medium into which 

the light is travelling.

Can the future motion of a wavefront be 

predicted? In 1678, the Dutch scientist 

Christiaan Huygens thought so.

Huygens suggested that the prediction 

could be made by assuming that each 

point on a wavefront acts as a single 

new point source of circular waves. 

Each of these circular wavelets (little 

waves) expands independently. The 

new wavefront is the tangent of these 

circular wavelets and the wave itself 

moves forward. Figure 6 shows the 

principle operating for both plane 

wavefronts and spherical wavefronts. 

Only a small number of wavelets are 

shown here for clarity, but Huygens 

imagined many small wavelets for each 

wavefront.

In fact, Huygens’ model of wave propagation is limited. His model suggests that there must also be another part of the 

spherical wavefront that expands in the reverse direction, whereas light propagates in a rectilinear way (in a straight line). 

Also, Huygens’ principle cannot be true because it requires a medium for electromagnetic radiation such as light. This 

requirement was refuted by Michelson and Morley in a famous experiment in 1887 (see page 166).

Does this make Huygens’ model any less useful as a model? Can awed reasoning ever lead to useful conclusions?

Huygens’ principle

plane wavefronts spherical wavefronts

primary

source

secondary

sources

ct

ctsecondary

wavelets

ray

▴ Figure 6 Huygens’ principle applied to plane and curved waves.

▴ Figure 8 Refraction as imagined  

by Huygens.

medium 1

medium 2B

θ1

λ1

2

θ1

θ2

θ2

reflected ray
normal

refracted ray

incident ray

θ1
θ1

speed v1

speed

v2 < v1

medium 1:

refractive

index = n1

medium 2:

refractive

index = n2
θ2

▴ Figure 7 Reection and refraction of 

rays when they meet a boundary.
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Theories

Figure 9 gives one of Huygens’ 

original diagrams that shows 

refraction into a slower medium. 

The change of angle is clear in  

the diagram.

▴ Figure 9 Huygens’ original treatise 

on his principle.

However, even though Huygens 

had much success in explaining 

these phenomena, it took over 

100 years before his work was 

accepted over the alternative 

corpuscular theory of Isaac 

Newton. The English scientist had 

such a high reputation among his 

fellow scientists that his work was 

regarded as denitive until the later 

work of Thomas Young and Fresnel 

showed the merits of Huygens’ 

approach.

The absolute refractive index is a ratio of speeds, so it has no unit, and it is highly 

dependent on frequency. For the purposes of IB Diploma Programme physics, n

is always greater than 1 for radiation travelling from a vacuum to another medium.

The adjective “absolute” is oen dropped. The absolute refractive index of air is very 

close to 1 (1.00028 at 0 ° C and a pressure of 105 Pa). For all practical purposes, the 

speed of light in air is the same as the speed of light in a vacuum.

This also allows Snell’s law to be written in a slightly dierent way. Because

sin θ1

sin θ2
=

v1

v2
 for two dierent media, then 

sin θ1

sin θ2
=

v1

c
×

c

v2
. But this is simply

sin θ1

sin θ2
=

n2

n1

which is a useful equation when light is leaving one medium of refractive index n1

and entering another of index n2

The refractive index between two media, say from glass to water, is written as 

glassnwater To calculate this use

glassnwater=
1

nglass
× n

water

The physics of refraction described so far is no more than a nod to empirical 

evidence with a link to wave speed. It tells us little about the processes that 

happen at the interface between, say, air and glass when light crosses it.

In fact, the energy from the light causes electrons in the material to vibrate. 

Unless the frequency of the wave matches one of the natural frequencies in 

the atomic systems of the glass, then the energy will be re-emitted. However, 

this takes time. The delay in the process of energy absorption and re-emission 

leads to an apparent reduction in the speed of the wave in the new medium. 

As a rule of thumb, the more atoms per unit volume, the slower the speed of 

the electromagnetic wave.

Models — What happens at the boundary interface?

Research skills — Acknowledgement of the ideas of others ATL

Willebrord Snellius or Ibn Sahl?

It is sometimes important to look beyond the conventional 

wisdom of the history of science to nd the origins of a 

theory.

This was not an original discovery by Snell. There is a 

version of the rule for small angles by Ptolemy who lived  

in the 2nd century CE and a more comprehensive version 

by the Persian scientist Ibn Sahl who lived around  

1000 CE (Figure10).

▸ Figure 10 A page from a manuscript by Sahl where he 

derives “Snell’s law” 600 years before Snell.
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Worked example 1

A ray of light in air is incident on a glass surface at an angle of 65.0° with the normal. 

The refractive index of the glass is 1.48.

a. Calculate the angle of refraction.

b. The wavelength of light in air is 532 nm. Calculate the wavelength in theglass.

Solutions

a. The refractive index of air is practically equal to 1. The angle of refraction θ2 can be calculated 

from Snell’s law: 
sin θ2

sin 65.0°  = 
1

1.48 . 

sin θ2 = 
sin 65.0°

1.48 ⇒ θ2 = 37.8°.

b. The speed of light in the glass is 
c

1.48. Since the frequency is the same as in air, the wavelength 

in the glass is reduced by the same factor 1.48 as the speed. 

 휆glass=
휆

air

1.48 =
532
1.48 = 359 nm.

• Tool 1: Understand how to measure angles to an 

appropriate level of precision.

• Tool 3: Carry out calculations involving fractions and 

trigonometric ratios.

• Tool 3: Record uncertainties in measurements as a range 

(±) to an appropriate precision.

• Inquiry 3: Compare the outcomes of an investigation to 

the accepted scientific context.

A simple approach to this measurement is to use a 

semicircular block of a transparent material such as 

glass or Perspex (Figure 11). (It is possible to measure n

for a liquid using a hollow container with a semicircular 

shape — the technique is almost the same.)

r

i

block

raybox

▴ Figure 11 An experiment to measure the refractive index  

of a solid.

• Place the block on a piece of paper. Draw around 

the edges of the block so that you can remove and 

replace it quickly. Mark the position of the centre of 

the flat side.

• Use the ray box to send a beam of light into the centre 

of the flat side so that it leaves through the curved side.

• Mark points on the path of the beam so that you can 

remove the block and draw the beam positions. At 

least two points on each of the incident and refracted 

beams are required.

• Draw in the lines of the beam and use a protractor to 

measure the incident and refracted angles. It is helpful 

to construct the normal to the long side at the point 

where the beams meet (the centre of the side).

• Repeat for several different incident angles.

• You can calculate n from the data either by averaging 

each value of 
sin i
sin r

 or by plotting a graph of sin i against 

sin r and calculating the gradient.

• Whichever method you choose, determine the 

uncertainty in your value of n

The experiment can be repeated with the beam directed 

at the centre of the long side but entering through the 

curved side of the block so that the light is not deviated at 

its rst refraction. This will enable you to establish that:

blocknair =
1

airnblock

Measuring the refractive index of a solid
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Worked example 2

Travelling sea waves pass a boundary between shallow water and deep water. The diagram 

shows the direction of the waves and some of the wavefronts.

50°

deep

water

shallow water

25°

a. Explain what the diagram implies regarding the speed of the waves in shallow and deep 

water.

b. The speed of the waves in shallow water is 4.0 m s−1. Calculate the speed of the waves in 

deep water.

Solutions

a. The distance between the wavefronts, and therefore the wavelength, is greater in deep water. 

The period of the wave is unchanged, so the waves must have a greater speed in deep water 

in order to move by a longer distance during the same time.

b. The ratio of the wave speeds can be determined from Snell’s law: 
vdeep

vshallow
=

sin θ2

sin θ1
, where θ1

and θ2 are the angles of incidence and refraction. The angle that a ray of a wave makes with the 

normal to a boundary is the same as the angle between a wavefront and the boundary. (You 

can draw a more detailed diagram to convince yourself why.) Therefore θ1 = 25° and θ2 = 50°. 

The wave speed in deep water is vdeep = 4.0 ×
sin 50°
sin 25° = 7.3 m s 1

Practice questions

1. A glass slab has an absolute refractive index of  

1.50. The slab is placed in water with a refractive  

index of 1.33.

 a.  Calculate the relative refractive index of the glass 

slab with respect to water.

 b.  A ray of light enters the glass slab from water.  

The angle of incidence is 25°. Calculate the angle 

of refraction.

2. A ray of light goes from air to diamond at an angle  

of incidence of 30.0°. The ray is refracted at an  

angle of 11.9°.

 a.  Calculate the refractive index of diamond.

 b.  The wavelength of light in air is 450 nm. Calculate 

the wavelength in diamond.

 c.  Another light ray goes from diamond to air at an 

angle of incidence of24.0°.

  i.  Calculate the angle of refraction.

  ii.  Draw a wavefront diagram to show how light 

travels from diamondto air.
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Total internal reection

In a ripple tank where the wave is moving into shallower water, the wave is 

refracted towards the normal (Figure 8).

The wave speed v1 in the incident medium is greater than the wave speed v2 in 

the refraction medium. As a result, the refracted angle is smaller than the incident 

angle and there is also a weak reected ray, sometimes only just visible. As usual, 

this reected angle is equal to the incident angle.

However, what about the case where the wave moves into a region where 

the wave speed is larger? This is the case for light going into air from another 

medium, as shown in Figure 12.

θc

θ2

θ1

θc

light incident

at any angle > θc

is totally reflected

water

airA

B

C

D

E

light source

critical angle

though not
bent, part of the

normal ray is
reflected

▴ Figure 12 Light passing from a more optically dense medium to a less optically 

densemedium.

A light source is placed in a medium such as water where the wave speed is slower 

than in air. The water is said to have a greater optical density than the air. Five light 

rays (A to E) are shown at various angles from the source through the water. All are 

incident on the boundary (the interface) between the water and the air.

• Ray A is incident on the interface with an incident angle of zero. Most of the 

light travels straight through with a small amount of reflection directly back 

into the water.

• Ray B has a small angle of incidence θ1 with a larger angle of refraction θ2

into the air. There is a weak reflection back into the water with the angle of 

reflection equal to the incident angle.

• Ray C is like ray B but now θ1 is even larger and the refracted ray is deviated by 

a considerable amount from its original direction in the water.

• For ray D, the angle of incidence is so large that the angle of refraction is now 

90° and it grazes the edge of the water as it leaves the interface. The angle of 

incidence for this condition is known as the critical angle θc. The reflection 

back into the water is now stronger than before.

• For all angles of incidence greater than θc, there is no refraction at all because 

the speed change is too great to allow propagation of the light (the wave) 

out into the air. Now there is only a strong reflected ray E that obeys the usual 

rules of reflection. This is known as total internal reflection because no light 

can emerge into the air. The word “total” is important because there is always 

some internal reflection at the boundary — even though it is usually weak. For 

angles of incidence greater than θc, a strong reflected ray is the only outcome.

• Tool 3: Select and manipulate 

equations.

• Tool 3: Derive relationships 

algebraically.

• Tool 3: Carry out calculations 

involving fractions and 

trigonometric ratios.

Imagine that the direction of ray  

B in Figure 12 is reversed. The light 

then enters the water from the air 

and traces out the original path but 

in the opposite direction.  

So 
sin θair

sin θwater
= airnwater  However, we 

know that for the original direction 
sin θwater

sin θair
= waternair

Thus, waternair =

1

airnwater

Light is reversible
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For any refraction,

sin θ1

sin θ2
=

speed of wave in incident medium
speed of wave in refraction medium

At the critical angle, sin θ1 becomes sin θc and sin θ2 = sin 90° = 1. This leads to

sin θc =
speed of wave in incident medium

speed of wave in refraction medium 

Worked example 3

Calculate the critical angle for light rays entering air from glass of refractive index 1.60.

Solution

We substitute θ1 = θc and θ2 = 90° into Snell’s law: 
sin 90°
sin θc

=

vair

vglass
=

nglass

nair
.  

We know that sin 90° = 1 and n
air 
= 1; hence sin θc =

1

nglass
=

1

1.60

θc = sin 1
1

1.60
= 38.7°.

Worked example 4

The diagram shows the direction of a light ray travelling from glass of 

refractive index 1.60 to water of refractive index 1.33.

a. Calculate the critical angle from glass to water.

b. Explain whether light emerges from the glass.

Solutions

a. The critical angle θc can be calculated from sin θc =

n
water

n
glass

=

1.33

1.60

θc = sin−1 1.33

1.60
= 56.2°.

b. The angle of incidence is greater than the critical angle (60° > 56.2°). Hence the ray is totally internally reflected and 

no light emerges from the glass.

60° glass

water

Practice questions

3. Water ice has a refractive index of 1.3.

 a.  Calculate the critical angle for total internal 

reection of light travelling from ice to air.

 The diagram shows the direction of a light ray entering 

an ice cube from air. The light ray makes an angle θ

with the normal to side AD of the cube.

A B

D

air ice cube

C

θ

 b.  Calculate, for θ = 40°, the angle of refraction of 

the light ray from side AD.

 c.  Explain why the light ray will be totally internally 

reected from side AB.

 The angle θ is now increased.

 d.  Determine, to the nearest degree, the minimum 

value of θ required for the light ray to emerge into 

air from side AB.
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(a)

A

B

B

+

B A

(b)

A B

A B

A + B

B A

▴ Figure 13 Two identical pulses on 

a rope are initially approaching each 

other. In (a)therope is displaced in the 

same direction for each pulse. In (b) the 

displacements are in opposite directions, 

so that at one instant in time there is no 

disturbance in the rope.
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Principle of superposition

When waves of the same type meet at a point in a medium, their individual 

displacements add. The total displacement of the waves is the vector sum of 

the individual displacement of each wave separately. This is the principle of 

superposition

To see this, it is best to use only two waves and to begin with pulses rather than 

continuous waves. Figure 13 shows what can happen.

Two waves A and B are moving towards each other on a rope. Time is increasing 

as you move down the diagrams. In Figure 13(a), the displacements of A and B 

are in the same direction. In Figure 13(b), B is opposite to A. As they arrive at the 

same point, the individual displacements add vectorially to give a double-height 

pulse in Figure 13(a). In Figure 13(b), there is a zero displacement for an instant 

as the waves meet. Aer superposition, the waves move apart. Try this with a lab 

partner and yourself at each end of the rope or slinky spring. It is quite hard to get 

the two pulses with exactly the same height but displaced in opposite directions, 

but when you succeed the eect is impressive.

When A and B are displaced in the same direction and superpose to give a 

double-height pulse, the system is showing constructive interference. When A 

and B cancel out because they are in opposite displacement (eectively they are 

π radians out of phase), the eect is called destructive interference

When continuous travelling waves are involved, the principle still holds, as shown 

in Figure 14.

▴ Figure 14 The green wave is the superposition of the red and blue waves. The amplitude 

of the green wave is less than the two waves from which it is formed.

0

0.1

0.2

0.3

0.1

0.2

0.3

d
is
p
la
ce

m
e
n
t/

m

time/s

4. The diagram shows the direction of a sound wave 

travelling from air to water. The speed of sound in 

air is 340 m s−1 and the speed of sound in water is 

1500 m s−1

 Calculate the minimum value of the angle of incidence 

θ so that no sound enters the water.

air

water

θ

If you have not met radian (rad) 

measure before, you can nd a 

description of it in Tools for physics 

(page335).

The red and blue waves are out of phase and superpose. The green wave 

indicates the variation of the sum of the displacements. This has an amplitude 

smaller than either of the original waves.

This example uses a displacement–time graph to make the point, but the 

principle also works with displacement–distance graphs.
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Practice questions

5. Two wave pulses are moving towards each other 

onarope.

  Which diagram shows a possible displacement of the 

rope when the pulses overlap?

A. B.

C. D.

6. Two sound waves travel in a medium. The graph shows 

how the displacement due to each wave varies with 

the position x along the wave.

6

0 x/cm

d
is
p
la
ce

m
e
n
t/

μ
m

4

2

0

2

4

6

 a. State the resultant displacement at x = 0.

 b.  Identify the position(s) along the wave at which the 

resultant displacement is

  i. zero ii. maximum.

 c. State the amplitude of the resultant wave.

 d.  Sketch, on a copy of the diagram, a displacement–

position graph of the resultant wave.

The rst detailed description of a 

phenomenon called diraction was 

probably made by an Italian priest 

called Francesco Grimaldi whose work 

was published in 1665 aer his death. 

(However, there is some evidence that 

the eect was observed by Leonardo 

da Vinci who had died roughly 150 

years earlier.)

Grimaldi describes what happens 

when light is obstructed by a narrow 

rod. He noted that the shadow of the 

rod did not appear as expected from 

purely geometrical considerations. 

The light spreads out in the shadow 

region, and he also saw bright and dark 

fringes at the edges of the shadows. 

These were remarkable results for the 

time given the instruments that were 

available to him.

Observations — 

Grimaldi and diraction

Diraction

Diraction eects can be demonstrated using a ripple tank. Figure 15(a) 

shows a ripple-tank image of a wave passing the edge of a body, with a ray 

diagram to help you to make sense of the image. The wave can be seen to 

spread into the region beyond the edge as a “quarter circle” of circular waves 

with one of the new ray directions drawn in.

Figure 15(b) shows what happens when an obstacle (sometimes called a 

body) blocks the path of the wave. The wave continues on each side of the 

obstacle, but it also spreads into the space behind the obstacle as this is a 

double version of Figure 15(a).

▴ Figure 15 (a) Diraction at an edge. (b) Diraction around a body.

obstacle

(a)
obstacle

(b)
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▴ Figure 16 Diraction through  

an aperture.

Throughout the parts of this topic that deal with interference and diraction, 

the assumption is that the wave is incident on the slits or the diraction grating 

at normal incidence. In other words, the wave and the slit are parallel when 

they meet.

The theories that are developed here can be extended to cases where there is 

a non-zero angle between a slit or grating and the wave.

This gradual removal of assumptions as a theory becomes more and more 

developed is an essential part of the development of a scientic theory.

Theories

▴ Figure 17 Diraction as imagined using the Huygens’ construction.

Be careful not to confuse diraction

with refraction. There is a change 

in direction in both cases, but 

refraction is always associated with 

a change in wave speed, leading 

to a change in wavelength. For 

refraction, only the wave frequency 

stays the same. For diraction, it is 

the amplitude that varies along  

the wave.

Diraction versus 

 refraction

Figure 16 shows diraction occurring when a wave is diracted through an 

aperture (a gap), in the real case of sea waves entering a narrow inlet. The 

diagrams show the eect of changing the gap width.

Study of diraction using ripple tanks and your observations of waves in real 

situations should convince you that:

• The wave speed, wave frequency and wavelength do not change when 

diffraction occurs (for example, sound waves can diffract around corners, but 

the frequency of the sound does not change when this happens).

• Diffraction effects are most obvious when the size of the aperture or obstacle 

is roughly the same as the wavelength of the diffracted wave. With obstacles 

much larger than the wavelength, diffraction is observed at the edges, but this 

is only a small part of the whole wavefront.

• Diffraction is always associated with a change in direction of at least part of  

the wave.

• The amplitude of the diffracted wave is less than the original wave because 

the energy is distributed over a larger wavefront.

Huygens’ principle can be used to model diraction. Figure 17 shows a plane 

wave moving towards an aperture from the top of the diagram. The original wave 

reaches the aperture. Here it is redrawn as six point sources shown as orange 

dots. Each source generates its own set of circular waves on this 2D surface. 

In 3D, these would be expanding hemispheres. The wavelets from each point 

source combine in the straight-on direction to give a straight wave. At the edges, 

the Huygens’ construction suggests that we should only see the curved parts 

of the sources at the edge of the aperture. The resulting construction looks 

remarkably like the diraction shapes that occur in practice.
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Diraction is of importance beyond the connes of the 

physics lab. It has real-world implications. One of these is 

in radio and television reception.

The waves used in some radio transmissions have long 

wavelengths, of the order of kilometres. These waves 

will be diracted by objects of about the same size as the 

wavelength, in other words, something of the size a hill.  

It is common for a radio signal to be detected in a valley 

on the other side of a mountain, even though there is no 

line of sight to the transmitting antenna from the radio 

(Figure 18). Shorten the wavelength and there is no 

reception because the diraction at this frequency does 

not allow the waves to reach the valley oor.

The eect can also be observed with sound. Every time 

you hear sound “around a corner” the waves must have 

diracted at the edge of the building or feature to reach 

your ear.

Global impact of science — Diraction by a mountain

antenna

long

wavelength

short

wavelength

▴ Figure 18 Diraction by a natural feature. In this 

case a mountain top.

• Tool 1: Recognize and address 

relevant safety, ethical or 

environmental issues in 

an investigation.

You can use laser pen light and a 

single slit to produce a diraction 

pattern on a suitable screen, as  

in Figure 19. 

Take care not to shine the laser 

beam or a reection of the beam 

into your eye or anyone else’s eye. 

It is usual to keep high light levels 

in the laboratory to keep the iris of 

the eye partially closed.

Observing diraction
Diraction of light

Single slit diraction of light

Diraction patterns (the variation of wave intensity across the wave) can be 

observed when visible monochromatic light passes through a very small 

aperture or slit. The experimental arrangement to view these patterns is shown 

inFigure19.

screen

diffracted

light

single vertical

slit

light source 

θ1

▴ Figure 19 Producing a diraction pattern.

Monochromatic light contains only one wavelength and can be produced using 

a laser. Alternatively, a white light source with a lter will give a narrow range 

of frequencies that approximate to one colour. The light is incident on a single 

vertical slit. The width of the slit will need to be small. Remember that diraction 

is best seen when the gap and the wavelength match. The light is diracted by 

the slit and the diraction pattern can then be observed using a screen (or more 

permanently using a camera).
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▴ Figure 20 Two diraction patterns 

produced by the same slit but with dierent 

wavelengths. Blue light has a shorter 

wavelength than red and the diraction 

pattern formed with blue light spreads out 

from the centre less than the red pattern.
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When studied in detail, the diraction pattern due to a single slit shows an intense 

(bright) central maximum. On each side of this are less intense areas of colour 

with dark areas of zero intensity (called minima) between them. Figure 20 shows 

the pattern produced by the same slit with two colours: red (long wavelength 

light) and blue (short wavelength light). The images show that:

• the red diffraction pattern is spread out more than the blue pattern

• the red central maximum is broader than the blue central maximum

• the minima are in different places for the two colours.

Eect of slit width on the pattern

The width of the diracting aperture or obstacle is crucial to the appearance of 

the diraction pattern. As the gap or obstacle become narrower, the pattern 

spreads out. Figure 21 shows two graphs to illustrate what happens.

0.20.2distance

distance

distance

relative

intensity

re
la

ti
ve

 in
te

n
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ty

relative

intensity

(b)

(a)

(c)

0

6

8

10

▴ Figure 21 Diagrams of the diraction patterns due to (a) a wide slit and (b) a slit that is 

one-third of its width. The graphs have been normalized. (c) shows the two patterns to scale 

with the lines displaced vertically for clarity.

Figure 21(a) shows the diraction pattern due to a wide slit. When the 

slit becomes one-third of the original width (Figure 21(b)), with the same 

wavelength, the diraction pattern expands so that it is three times wider. 

Fewer minima can now be seen as they are more spread out. There are other 

changes too. As the slit is one-third of the original width the amplitude of the 

pattern will also be one-third. This means that the intensity is only one-ninth of 

the original height.

The reason why this factor of 1
9

 arises is because, as ET ∝ x0
2 and intensity is the 

energy of a wave per unit area, intensity must be proportional to amplitude2

Diraction patterns in more detail

Figure 22 links the intensity variation of the diraction pattern for a single slit to 

the screen observations that are made.

• Tool 3: Sketch graphs, with 

labelled but unscaled axes, to 

qualitatively describe trends.

• Inquiry 2: Interpret diagrams, 

graphs and charts.

It is important to be able to sketch 

the intensity–position graphs of 

diraction patterns quickly and 

accurately.

• The central maximum is twice 

as wide as the secondary 

maxima — which have the same 

angular width as each other.

• There is a large difference 

between the intensity of the 

central maximum and the 

intensities of the secondary 

maxima. The first maximum is 

only about 5% of the height of 

the central maximum (though 

you may need to reduce 

this difference to get all the 

detail into your sketch). The 

second and third maxima are 

even smaller at 2% and 1% of 

the central maximum. This is 

another reason why diffraction 

patterns are not usually obvious 

in everyday life.

Drawing diraction 

patterns
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◂ Figure 23 A simple model for the 

position of the minima in the diraction 

pattern due to a single slit.

A
H
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▴ Figure 22 Variation of intensity  

with angle for the diraction pattern  

of a single slit.

0

central

maximum

Io

5% Io

angle

intensity

θ1 θ2 θ3θ3 θ2 θ1
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The x-axis shows the angle rather than distance along the screen. This means that 

the graph does not depend on the slit–screen distance. The angle θ1 is marked 

on Figure 22 as well, so that you can relate the diagrams to each other.

The three minimum positions on each side of the central maximum make angles 

θ1, θ2 and θ3 with the direction of the ray coming from the light source.

Modelling single-slit diraction

The positions of the diraction minima in the single-slit pattern can be modelled 

using the ideas of destructive interference and superposition developed earlier in 

this topic. The model is shown in Figure 23(a).

(b)(a)

towards

first

minimum

path difference =  sin θ1

single slit

middle of slit

edge B of slit

edge A of slit

incident

plane

waves

b
θ1

θ1
θ1

b

2

b

2

Incident plane waves are incident on a single slit of width b. The waves arrive 

parallel to the plane of the slit (the rays are at 90° to this) — known as normal

incidence as in reection and refraction. (You will not be asked to consider 

incident waves from any other direction in questions about diraction.)

Using Huygens’ principle, the wave at the slit is divided into many individual 

wavelets which expand as circular waves (the point sources are shown as×in the 

diagram). Figure 23(b) shows the geometry of the arrangement.

We will model the rst diraction minimum. Consider the rst Huygens point 

source at A — the edge of the slit. There is another point source exactly halfway 

between A and B. Suppose that the point source at A and the point source 

halfway down AB interfere destructively in the direction θ1, which is the angle 

between the centre of the pattern and the rst minimum. Every point source in 

the top half of the slit has a counterpart in the bottom half of the slit. Every source 

pair cancels out to give zero intensity at the rst diraction minimum.

This can only happen for the rst diraction minimum at position θ1. Each pair of 

wavelets arrives exactly π out of phase with each other. For this to occur, the light 

from the bottom source of each pair must travel half a wavelength 
휆

2
 further than 

the light from the upper source. This is the path dierence between the two 

waves. This path dierence is shown for the rst pair in Figure 23(b). It is the small 

extra distance that the light from the bottom source must travel to “catch up with” 

the light from the top source.

The geometry of the arrangement suggests that this distance is also equal to 
b

2
sinθ1, where b is the slit width. Equating these algebraically gives b

2
sinθ1 =

휆

2

and therefore sin θ1 =
휆

b
. The angles in diraction experiments are usually small so 

the approximation sinθ1 ≈ θ1 holds.

The angular position of the rst diraction minimum is given by θ1 =
휆

b
.
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• Tool 1: Recognize and address relevant safety, ethical 

or environmental issues in an investigation.

• Tool 1: Understand how to accurately measure length 

to an appropriate level of precision.

• Inquiry 2: Carry out relevant and accurate data 

processing.

• Inquiry 3: Interpret processed data and analysis to 

draw and justify conclusions.

D

s

screen
callipers

laser
2θ

▴ Figure 24 An experimental arrangement for a  

diraction experiment.

A pair of vernier callipers is a convenient instrument to 

form a single slit. Alternatively, you can rule a single slit 

with a pin in an opaque lm of colloidal graphite that has 

been painted onto a microscope slide.

Throughout this experiment you should take precautions 

to avoid looking at the laser light.

• Shine a beam of light from a laser pointer onto the 

gap or slit. The light should then illuminate a screen 

(Figure24). The distance from slit to screen should be 

of the order of metres.

• Adjust the slit to get a clear diffraction image and then 

use a metre ruler to measure the separation of the first 

minima on the screen. This is s

• Now measure the distance from the slit to the screen. 

This is D

• You can calculate 2θ from s and D and hence use  

θ1 =
휆

b
, where b is the width of the slit.

• If you used a slit that you drew yourself, you will need a 

microscope and a scale to measure the slit width.

This experiment can be extended to measure the 

wavelengths of various laser colours or to measure θ for 

various slit widths to obtain λ from the gradient of a graph 

of θagainst 1
b

Diraction at a single slit

Worked example 5

A student investigates the diraction pattern of monochromatic light incident on a single slit. The graph shows how 

the intensity of the light on the screen varies with the distance x along the screen.

6810 4 2 2 4 6

relative intensity

8 100 x / cm

a. Explain, with reference to the principle of superposition, how the  intensity minima are formed.

The screen is at a distance of 2.5 m from the slit. The wavelength of the light used in the experiment is 532 nm.

b. Determine the width of the slit.

c. Outline how the width of the central intensity maximum changes when:

 i. the distance between the screen and the slit is decreased

 ii. the light source is replaced by one of longer wavelength

 iii. the slit is replaced by one of greater width.
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Solutions

a. The slit can be thought of as a series of point sources of light, and the diffraction pattern is modelled as a result of 

superposition of individual waves emitted by these sources. At an intensity minimum, there is a phase difference of 

π between the waves emitted by pairs of sources in the opposite halves of the slit, which results in fully destructive 

interference.

b. The distance s from the centre of the pattern to the first diffraction minimum is about 4.0 cm. This is much less than 

the distance D from the slit to the screen. Hence the angular position of the first minimum is approximately given by  

θ≈
s

D
=

4.0
250

= 0.016 rad. The slit width is therefore b= 휆

θ
=

532 × 10 9

0.016
= 3.3 × 10 5 m = 0.033 mm

c. i.  The angular positions of the minima are unchanged. Since the linear width of the central maximum is proportional 

to the distance from the slit, the central maximum becomes narrower when the screen is moved closer to the slit.

 ii.  From θ= 휆

b
, a longer wavelength 휆 for a given b results in a larger angle of the minimum. The width of the 

central maximum increases.

 iii.  With a greater slit width b and unchanged wavelength, the minima occur at smaller angles and the central 

maximum becomes narrower.

Practice questions

7. Monochromatic light of wavelength 640 nm is incident 

normally on a thin slit of width 0.08 mm. A diraction 

pattern forms on a screen at a distance 1.2 m from the 

slit. Calculate:

 a. the angle of the rst diraction minimum

 b.  the width, in mm, of the central maximum of the 

diraction pattern.

8. The diagram shows the diraction pattern for 

monochromatic light of wavelength 휆 passing through 

a single slit.

6 4 2 2 4 6

relative intensity

0

diffraction angle / 10–3 rad

 What is the width of the slit?

 A.   125λ  B.   250λ  C.   500λ  D.   1000λ

9. Monochromatic light passes through a narrow slit 

and the resulting diraction pattern is observed on 

a screen. Which of these changes will increase the 

angular separation between the diraction minima?

 A.  Increasing the distance between the slit and  

the screen.

 B. Using a narrower slit.

 C.  Replacing the light source by one of  

shorter wavelength.

 D. Increasing the intensity of the light.
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▴ Figure 25 An example of interference 

with sound waves.
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The full equation for the intensity Iθ of a single-slit diraction pattern at an angle 

θ to the centre of the pattern is:

Iθ = I0
sin β

β

2

where β =
πb sin θ

휆
 (with the usual notation).

The quantity β is half the phase dierence between the top and bottom of  

the slit.

The diraction intensity graphs in Figure 21 were modelled using this equation. 

You can easily set up this equation using graphing or modelling soware such 

as Mathematica, Desmos or GeoGebra to model the changes that occur when 

the parameters of the diraction pattern equation are modied.

Modelling diraction patterns

Double-slit interference

You met the principle of superposition on page 416. Another example of the 

principle of superposition in action is the interference of two or more waves.

When two waves of the same type meet at a point, they will always interfere. 

However, for the eect to be observable, the two waves need to have a constant 

phase relationship over a long enough time for the observation to be made. This 

property is called coherence.

Interference between two sound waves is easy to demonstrate. Figure 25 shows 

two loudspeakers driven by the same signal generator so that they emit sound 

of the same frequency in phase. As a microphone moves along a straight line 

parallel to the line joining the loudspeakers, the sound detected alternates 

between loud (L) and so (S) regions. These L–S distances are equally spaced.

At points L, the waves from both loudspeakers arrive in phase with each other.

At points S, the wave from one loudspeaker arrives exactly 180° (π rad) out of 

phase with the wave from the other loudspeaker.

Identical, in-phase signals are emitted by both loudspeakers. This is an important 

feature of the experiment. The two sets of waves from the loudspeakers are said 

to be coherent.

• The phase between the emitted signals must not change for the interference 

to be observed consistently in one place. This implies that the emitted signals 

must also have the same frequency.

• Coherence also requires that the waves must exist at the same position in space 

simultaneously. Interference cannot occur when the identical signals arrive from 

both loudspeakers, but one sound has ended before the other begins.
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Double-slit interference with light

Like sound, light waves and microwaves also interfere. One way to observe 

interference is to use a single lamp or laser to illuminate two thin vertical slits. 

The arrangement is shown in Figure 26. The experiment was rst reported by the 

English physicist and physician Thomas Young in 1801. The slit pair is known as a 

double slit and the resulting eect is double-slit interference. In some books you 

will also nd it called the Young’s slit experiment

destructive

interference

(crest meets

trough)

constructive

interference

(crest meets

crest)

diffracted beam from bottom slit

double slit

light source

S

▴ Figure 26 Interference between coherent light from a double slit.

Light from S falls on both slits. If a laser is used, the light is coherent. Therefore, 

the light at each slit has the same phase since it has travelled the same distance 

from S. If a lamp is used, a single slit is used to diract a small portion of the 

wavefront across both slits — this has the eect of making the light coherent. 

(This is not shown in the diagram.) Each slit then emits a cone of diracted light 

bounded by the central maximum of the diraction pattern for this cone. When 

the slits are very narrow, the cone will be wide.

The region where the two diracted beams intersect is shown on Figure 26. 

Interference can only occur here as two beams are required. A screen placed 

parallel to the plane of the slits in the interference region shows a pattern of 

fringes parallel to the orientation of the double slits (Figure 27).

Compare this with the alternating loud and so regions of the sound interference 

pattern. The light fringes show an alternating bright–dark arrangement with the 

fringes spaced equally on the screen. There is also a region on Figure 27 where 

some fringes appear much weaker than their neighbours. This eect is discussed 

later in the additional higher level section of this topic.

▴ Figure 27 The appearance of a double-slit interference pattern made using green light.

Lasers are important because the 

light they emit is monochromatic 

(single wavelength) and coherent. 

Although the theory behind lasers 

was published by Einstein in 1917, 

the rst working laser was not 

made until 1960. It was made by 

Theodore Maiman. At the time, 

Maiman described the laser as “a 

solution without a problem”.

Since the rst laser was 

demonstrated, the technology has 

become cheaper, easier to use 

and smaller. The coherence of the 

light enables lasers to be used for 

applications where interference is 

important. This includes barcode 

scanners and DVD and CD players.

Global impact of  

science — The laser
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▴ Figure 28 Modelling double-slit 

interference.
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Treating the two triangles as similar 

only works when the wavelength 

of the light and the slit separation 

are much smaller than the distance 

from slit to screen. Figure 28 is 

unrealistic in this respect and not to 

scale. For a typical demonstration 

of Young’s slits using light, d will be 

order of a millimetre, while D will 

be of the order of metres. For the 

slits shown on Figure 28, the slit–

screen distance should be drawn at 

scale to be about 1.5 km!

You will not be tested on the 

derivation of the double-slit 

interference equation, but you do 

need to know how to use it in the 

contexts of any type of wave, not 

just electromagnetic radiation.

Similar triangles

Worked example 6

Two loudspeakers A and B, driven in phase, emit sound of the same 

amplitude and frequency of 1400 Hz. A microphone is placed at point M, 

16.0 mfrom A and 17.5 m from B.

a. The speed of sound is 350 m s 1. Determine the phase dierence 

 between the waves arriving at M from the two loudspeakers.

b. Hence, state the nature of the interference occurring at M.

c. The microphone is now moved from M to point O, an equal distance from A and B. State and 

explain how many times during this motion the microphone will record a minimum of sound.

Solutions

a. The wavelength is 휆=
v

f
=

350
1400

= 0.25 m. The path difference for the waves arriving at M from A and 

B is 17.5 − 16.0 = 1.5 m = 6λ. This is an integer multiple of the wavelength, so the phase difference 

between the waves is zero.

O

M

16.0 m

A

B

17.5 m

The double-slit equation

A simple equation models the distance between adjacent fringes in the 

interference. This distance is called the fringe spacing. The following notation is 

used in developing the model:

• d is the slit spacing (the distance between the two slits)

• λ is the wavelength of the wave

• D is the distance between the slits and the screen

• s is the fringe spacing (the distance between two neighbouring bright 

fringes).

In Figure 28, O is the centre of the fringe pattern on the screen, in other words, 

the point that is the same distance from both slits. This point will be bright 

because the paths from the slits A1 and A2 are the same length. The light from the 

slits arrives at O in phase and interferes constructively.

B is the position on the screen of the neighbouring bright fringe to the O bright 

fringe. The light that reaches B takes the routes A1B and A2B. These lengths are 

not the same. A1B is longer than A2B by the distance A1P. However, because B is 

the neighbouring bright fringe to the one at O, the distance A1P must be exactly 

one wavelength in length. This will enable the light from both slits to arrive in 

phase (or, more correctly, 2π rad out of phase). A1P = λ

The remainder of the derivation is pure trigonometry. There are two similar 

triangles on the diagram: the one in solid colour and the one hatched. They both 

have right angles (the larger triangle has a right angle where CO meets OB). 

Because they are similar, 
BO

CO
=

A
1
P

A
2
P

 which, using the symbols introduced earlier, 

is 
s

D
=

휆

d
. This rearranges to

s ≈
휆D

d

using the “≈” symbol to remind us that this is an approximate expression (albeit a 

very good approximation when D >> d).
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b. The waves arrive in phase, so there is a constructive interference at M.

c. At O, the path difference is zero. Between M and O there must be points where the path difference 

is 
11휆

2
, 

9휆

2
, 

7휆

2
, 

5휆

2
, 

3휆

2
 and 

휆

2
. At each of these points, the sound waves from A and B arrive in 

antiphase (phase difference = π). This gives a total of 6 points of destructive interference, and 

hence minimum sound intensity.

Worked example 7

Monochromatic light of wavelength 627 nm is incident on a double slit. 

The interference pattern is observed on a screen, a distance 1.8 m from the 

slits. It is found that 12 bright fringes are present in a length of 5.0 cm of the 

interference pattern.

Calculate the slit spacing.

Solution

The distance between two consecutive bright fringes is s =
5.0 × 10 2

12
= 4.17 × 10 3 m. 

The slit spacing can be found by rearranging the double slit equation s= 휆
D

d
⇒ d = 휆

D

s

d = 627 × 10 9
×

1.8

4.17 × 10 3
= 2.7 × 10 4 m = 0.27 mm.

5.0 cm = 12 fringes

Practice questions

10. A ray of coherent monochromatic light is incident 

normally on a double slit of slit separation 0.500 mm. 

A series of bright fringes appears on a screen, a 

distance 2.40 m from the slits. The fringe separation on 

the screen is 2.84 mm.

 a. Calculate the wavelength of light.

 b.  The source of light is replaced by one of wavelength 

468nm. Calculate the new distance between the 

neighbouring fringes on the screen.

11. A source of coherent monochromatic light is used in 

a double-slit experiment. A series of bright and dark 

fringes appears on a distant screen.

 a. Outline how a dark fringe is formed.

 b.  The separation between two consecutive bright 

fringes on the screen is 1.0 mm. The distance 

between the slits and the screen is halved and the 

slit separation is doubled. Calculate the separation 

between the fringes aer this change.

12. A coherent monochromatic beam of microwaves 

is incident on two identical slits A and B. Two 

consecutive intensity maxima are observed at points 

M
1
 and M

2
. Point M

1
 is at an equal distance from both 

slits. A detector placed at point D records an intensity 

minimum. Point D is 2.84 m from slit A and 2.90 m 

from slit B.

beam of

microwaves

A

B

2.84 m

2.90 m

D

M2

M1

 What is the wavelength of the microwaves?

 A. 3.0 cm   B. 6.0 cm   C. 12 cm   D. 24 cmO
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• Tool 1: Recognize and address relevant safety, ethical 

or environmental issues in an investigation.

• Tool 3: Select and manipulate equations.

• Inquiry 2: Collect and record sufficient relevant 

quantitative data.

• Inquiry 2: Carry out relevant and accurate data 

processing.

(a) With laser light

This is an up-to-date version of the experiment devised by 

Thomas Young.

• Observe the usual precautions with laser light.

• The light from the laser is shone through a double slit, 

so that the interference pattern is formed on a white 

screen. Figure 29(a) is not to scale. The slit separation 

will be typically a fraction of a millimetre; the screen 

will be several metres from the slits.

• You can make a homemade double slit by painting a glass 

microscope slide with colloidal graphite and scratching 

the slits with a pin that you run along a metal ruler.

• The slit separation d is measured using a travelling 

microscope or a microscope with a piece of graph 

paper and the pin on the microscope stage.

• Mark the positions of 10 fringe separations (10s) on 

the screen (this will be from fringe number 1 to fringe 

number 11). Then turn off the laser and use a metre 

ruler to measure this distance. Hence, find the value of 

a single fringe spacing s

• Use a tape measure to measure the distance d from 

the slits to the screen.

• Use the double-slit interference equation to calculate 

the wavelength of the laser light.

(b) With microwaves

• Point the transmitter and the receiver towards each 

other about half a metre apart. Ensure that they are 

correctly oriented with respect to each other. If there 

is no reading on the milliammeter, then rotate the 

transmitter through 90° so that the polarizations of the 

transmitter and receiver match.

▴ Figure 29 Measuring the wavelength of (a) laser light, and 

(b) microwaves.

double slit
laser

screen

bright 

pots

(a)

double slit

receiver

milliammeter

(b)

• Use small sheets of aluminium, as in Figure29(b), to 

construct a pair of slits with a separation of about 3 cm. 

This maximizes the diffraction from eachslit. This is the 

approximate wavelength of the microwaves.

• Move the receiver horizontally, parallel to the slits. You 

should see the reading on the meter vary between a 

small value and a maximum. These are the “fringes”.

• Measure the values for D, d and s. Read the previous 

experiment for details of how to achieve a value for s

• Calculate the microwave wavelength.

• This technique will work for other types of wave, 

sound waves for example.

Measuring wavelength using double slits
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Intensity variations in the double-slit interference pattern

Figure 27 showed that the light fringes in the double slit experiment are not of 

equal brightness. Figure 30 also shows a wider view of fringes in red light with 

dark regions where the fringes are suppressed.

This inequality in intensity is due to diraction, an eect ignored in the simple 

analysis earlier. The assumption there was that only the central diraction 

maximum from each slit is involved in the interference because the individual slit 

widths are innitesimally small. In practice, this is not the case. Fringe patterns 

observed in the laboratory contain both diraction and interference eects at the 

same time. If the slits were very thin, then, in practice, not enough light energy 

would be transferred to the screen for the interference fringes to be seen.

Each slit in the double-slit pair produces its own diracted beam. With one slit 

open and the other one blocked o, we would observe only a normal diraction 

pattern. With identical slits, both diraction patterns are identical, but there is 

interference between them.

Figure 31 shows how this happens. Figure 31(a) gives the predicted variation  

of intensity with angle from pattern centre for the fringe pattern due to two 

identical slits without diraction. The pattern has a constant amplitude and an 

equal fringe spacing, as predicted by the double-slit equation. Figure 31(b) 

shows the variation of intensity with angle for one of the slits alone. This is the 

usual single-slit diraction pattern.

Figure 31(c) shows the combination of the diraction and the interference. The 

single-slit intensity modulates the intensity of the fringe pattern. The fringes 

are suppressed where the diraction equation predicts that there should be a 

minimum. This applies whether there is an interference maximum at this position 

or not.

To model what happens around the rst minimum of the diraction pattern, you 

will need both the fringe spacing equation and the equation for predicting the 

position of the rst diraction minimum .

▴ Figure 31 The overall eects of 

diraction and interference for a double slit 

(a) Interference alone. (b) Diraction alone. 

(c) The combination of both diraction  

and interference.

0
angle from straight through position / °

relative intensity
(b)

5 10 1520 15 10 5

relative intensity

0
angle from straight through position / °

(a)

5 10 15 20

20

20

20 15 10 5

0
angle from straight through position / °

relative intensity
(c)

5 10 1520 15 10 5

 Figure 30 Double-slit interference 

pattern produced from the light of a 

helium–neon laser.

Worked example 8

The diagram shows how the intensity of light 

observed in an experiment with two parallel 

identical slits varies with the diraction angle.

The bright double-slit interference fringe occurring 

at the diraction angle 휃0 is eliminated.

a. Explain why a minimum intensity of light is 

observed at the angle 휃0

b. The width of each slit is 0.20 mm. Determine the 

distance between the slits.

Solutions

a. The double-slit pattern of bright fringes is modulated by a wider single-slit diffraction pattern  

due to a finite width of each slit. The single-slit pattern has a first minimum at 휃0, resulting in a  

minimum overall intensity.

relative intensity

0
diffraction angle

θ0
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Practice questions

13. The wavelength of the light used in a double-slit 

experiment is 520 nm. The slits are parallel and have 

equal width. The graph shows how the intensity  

of light observed on a screen varies with the  

diraction angle.

34 2 1 1 2 3

relative intensity

40
diffraction angle/10–3 rad

 Calculate:

a. the width of each slit

b. the distance between the slits.

14. The diagram shows the intensity pattern observed 

in a double-slit interference experiment with 

monochromatic light.

intensity

diffraction angle / ×10–2 rad

–7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7

 The separation of the slits is increased with no other 

changes being made. Which graph on the right shows 

the intensity pattern aer the change?

intensity

diffraction angle /×10–2 rad
7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

A.

intensity

diffraction angle /×10–2 rad
7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

B.

intensity

diffraction angle /×10–2 rad
7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

C.

intensity

diffraction angle /×10–2 rad
7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

D.

b. From the single-slit diffraction formula, the angle 휃0 is related to the slit width b: 휃0 =
휆

b
. On the other hand, the same 

angle 휃0 corresponds to five fringes observed in the double-slit interference pattern: 휃0 = 5 ×
s

D
= 5 ×

휆

d
, where d is 

the distance between the slits. By equating these two expressions and eliminating the wavelength of light, we get  

5 ×
휆

d
=

휆

b
⇒ d= 5b. The distance between the slits is five times the slit width. d= 5 × 0.20 = 1.0 mm.
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Multiple-slit interference

When the number of illuminated slits is increased in an interference experiment, 

with a constant spacing between any two adjacent slits, two eects occur:

• The bright fringes stay in the same place but become narrower (or sharper).

• The intensity of the bright fringes increases (and is proportional to N2, where 

N is the number of slits).

These eects are shown in Figure 32, although it is hard to reproduce the 

intensity changes on the printed page. The single-slit pattern is shown at the 

top for reference (marked 1 slit). Remember that interference fringes are always

suppressed at the diraction minimum.

1 slit 2 slits 3 slits

3 slits

2 slits

1 slits

4 slits

4 slits

5 slits

5 slits

7 slits

7 slits ◂ Figure 32 Increasing the number of slits in an 

interference experiment makes the fringes sharper.

The work in this topic is devoted to waves, much of it 

in the context of the transmission of electromagnetic 

radiation. The models that are developed to explain 

diffraction and interference do so on the basis that 

electromagnetic radiation acts as a wave. But does this 

link between the model and the empirical observations 

prove that light has wave properties?

In Theme E, you will see strong and equally convincing 

evidence that electromagnetic radiation has particle-like 

properties. For example, the concept of the photon as 

the carrier of the electromagnetic interaction, essentially 

regarded as an interacting particle.

What is the scientific truth here? Is light a wave or a 

particle? If it is a particle, how can interference and 

diffraction occur? If it is a wave, why are photoelectric 

effects observed?

In a remarkable series of tests in the 20th century, 

scientists carried out a series of double-slit experiments. 

The light intensities used were extremely small, so 

that only one photon could be in the region between 

the source and the screen at any one time. Even so, 

interference effects were still observed. What were these 

single photons interfering with?

Neither wave nor particle view is correct. When we look 

for wave-like properties, we find them. When we look at 

light in a particle context, we see those properties too. 

The description of electromagnetic wave behaviour lies 

in probability considerations. There are many popular 

books and articles on this subject if you wish to explore 

this more.

Choosing the appropriate model for a particular situation 

is all part of the Nature of Science.

What can an understanding of the results of Young’s double-slit experiment reveal about the 
nature of light?

What evidence is there that particles possess wave-like properties such as wavelength? (NOS)
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three slits

single slit

double slit

five slits

▴ Figure 33 The eect of increasing  

the number of interfering slits on the 

intensity graph.

Graphs of relative intensity against angle from the straight-through position are 

also helpful (Figure 33).

The usual double-slit pattern is shown as well as the patterns for three slits and 

ve slits. These are relative-intensity plots and the heights of the three-slit and 

ve-slit patterns have been normalized to allow for easy comparison. The three-

slit pattern should be 9 times higher to scale than the double-slit pattern, and the 

ve-slit version should be 25 times higher.

As usual the fringe patterns are modulated by the single-slit diraction envelope. 

Also notice that between the major fringes from three slits onwards, other 

subsidiary fringes appear. When N is the number of slits, there are N − 2 

subsidiary fringes for values of N ≥3

The analysis of multiple-slit interference is dicult, but it is possible to give a 

qualitative argument for these eects:

• Remember that the assumption is that the slits have the same slit separation, so 

that a 100-slit arrangement will be about 30 times wider than a 3-slit arrangement.

• The slits are illuminated uniformly so that the amplitude of the wave at a 

brightfringe will be about N times more that with a single slit. Because 

intensity is proportional to the square of the amplitude, the intensity of the 

bright fringes is ∝ N2

• The fringes are sharper because when N is very large (compared with N = 2), 

only a small angular movement away from the centre of a bright fringe will be 

needed before there are a pair of slits that have a phase difference of π rad. 

When a pair are related like this (say the 1st slit and the 22nd ) then the 2nd slit 

and the 23rd will also have the same π rad relationship as will the 3rd and the 

24th — and so on across the whole array of slits.

Diraction grating

The suggestion of multiple-slit arrangements with hundreds of slits begs the 

question: what happens when N is very large, approaching thousands of very 

thin, diracting slits. Such an arrangement is known as a diraction grating

A diraction grating, oen used to produce optical spectra (Figures 34 and 

35), consists of many parallel, equally-spaced slits — usually called “lines” in this 

context — formed on a suitable transparent medium.

▴ Figure 34 When white light goes through a diraction grating, the central maximum 

remains white and the rst-order pattern is a spectrum. Note that red light is deviated the 

most; this is opposite to the eects of dispersion when white light is refracted.
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◂ Figure 35 Diraction gratings are said to 

have orders of spectra. This diagram shows 

ve orders: the zero-order (central maximum), 

two rst-order spectra and two second-order 

spectra.

The lines are oen etched or inscribed onto glass or plastic. There are usually 

hundreds of these lines for each millimetre of the grating surface. For a standard 

laboratory diraction grating with 600 lines per millimetre, this means that each 

line (slit) is 
1

600
= 0.0017 mm from its neighbour. Human hairs have an average 

diameter of 75 µm, so one hair will cover about 50 lines on the grating.

In line with the conclusions about increasing the number of slits above we expect:

• the maxima to be very sharp (because N is large)

• the maximum to be very intense (because N is large and each line diffracts energy)

• the fringe pattern to be well spread out (because the slit separation is very small).

The maxima become isolated because of their sharpness and angular separation.

When white light is incident on the grating, a series of spectra are formed on a 

screen some distance from the grating. Each spectrum is called an “order” and 

these orders are labelled from the centre outwards as the rst order, second 

order, third order and so on. The central maximum (white for a spectrum because 

all the colours have the same zero phase dierence) is the zero-order maximum.

The diraction-grating equation is easily derived (you will not need to recall it in 

an examination) and uses the symbols (Figure 36):

• n, the order of the maximum

• λ, the wavelength

• d, the grating spacing (distance between adjacent lines)

• θ, the angle between the central maximum and the maximum.

Figure 36 shows diracted waves from three adjacent slits going to the rst-order 

maximum. The slits are very narrow and the distance to the screen is very large, 

so that the angles between the straight-on directions and the rst-order maximum 

are almost equal and are all labelled θ to indicate this.

For the direction θ to be a maximum, the path dierence between successive slits 

must be λ. This path dierence is also equal to d sin θ. For the rst order, λ = d sinθ

For the second-order maximum ( θ will be much greater now), the path dierence 

must be 2λ, where 2λ = d sinθ2. The general case for the nth order is

nλ = d sinθ
n

central
maximmum

first-order
maximum

second-order
maximum

white light source

Diraction gratings are oen 

specied by the number of grating 

lines per mm. d is the reciprocal of 

this. You may want to convert it to 

metres at the same time to match 

the rest of a problem:

d (in mm) =
1

number of lines per mm

Grating spacing
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A
H
L

portion

of grating

light

diffracted

at θ to normal

A
θ

θ

θ

B

C

▸ Figure 36 Modelling the rst-order 

maximum for a diraction grating illuminated 

by monochromatic light.
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Practice questions

15. Monochromatic light of wavelength 573nm is normally incident on a 

diraction grating. The angle between the central maximum and a rst-order 

maximum is 9.90°.

 a.  Calculate the number of lines per millimetre of the diraction grating.

 b.  Determine the number of maxima present in the diracted light.

 c.  The light source is replaced by one of wavelength 640 nm. Calculate 

the angular separation between the two second-order maxima.

16. A diraction grating has 600 lines per mm.

 a.  Calculate the angle of the third-order diraction maximum, when light 

of wavelength 480 nm is incident normally on the grating.

 b.  Determine the longest wavelength of light that will produce a third-

order maximum under normal incidence.

Worked example 9

A diraction grating has 600 lines per millimetre. A beam of 

monochromatic light is incident at right angles to the grating. A second-

order maximum is observed at an angle of 31° to the direction of the 

incident beam.

a. Calculate the wavelength of the light.

b. Determine the total number of the diraction maxima present in the 

transmitted light.

Solutions

a. The grating spacing is d =
1.0 × 10 3

600
= 1.667 × 10− 6 m. n = 2 and so  

휆 =
d sin 휃

n
=

1.667 × 10 6 sin 31°
2

= 429 nm.

b. The value of sin 휃 in the diffraction grating equation cannot be greater 

than 1. Hence n휆

d
 < 1. This condition can be used to find the largest 

possible order of diffraction. n < d

휆
=

1.667 × 10−6

   429 × 10−9
≈ 3.9. The largest 

order is n = 3. Hence a total of 7 maxima will be present in the diffracted 

light—the central maximum and two secondary maxima for every order 

up to n = 3.
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A soap bubble viewed in white 

light shows colour bands 

and fringes on its surface that 

change as the bubble ages 

(Figure37). How do these arise? 

There is aprad phase change 

at the outer surface because the 

light is reected at a medium 

that is denser than the air. However, at the inner surface 

there is no phase change because light is reected at a 

less dense medium.This is similar to the cases that were 

described on page 440 where waves move from one 

string to another for dierent relative string densities.

The two beams of light are reected out of the bubble and 

interfere aer leaving the lm. One ray has gone through 

the soap lm twice. This introduces an extra travel distance 

and changes its phase relative to the ray reected at the 

outer surface. When the thickness of the lm is equal to 

one-half of a wavelength of the light in the soap lm then 

one ray travels exactly one wavelength λ more than the 

other. Superposition occurs and leads to destructive 

interference because of the p rad phase change of one ray 

relative to the other. 

Destructive interference removes the colour that 

corresponds to λ from the white light. All the colours 

of the spectrum are reected from the bubble except 

one; this gives colour to the fringe. Variations in the soap 

lm thickness occur as liquid drains to the bottom of the 

bubble. Dierent wavelengths become suppressed in 

dierent parts of the bubble leading to colour fringes.

Similar colour fringes can be seen on sheets of oil lying 

on water patches on roads and pavements. There are 

many applications for this eect: Thin-lm interference is 

used in anti-reection coatings on lenses. Similar coatings 

have evolved behind the retinas of some vertebrate’s 

eyes to reect light forward to the sensitive retinal cells. 

The beautiful colours of the European Peacock buttery 

(Figure 38) are also due to thin-lm interference.

Global impact of science  — The light interference in a soap bubble

A laser pen was shone at 

normal incidence through 

a diraction grating with 

300 lines per millimetre. 

The diraction pattern 

was observed on a screen 

2.73 m behind the grating. The distance from the central 

order on the screen to the nth order was measured and 

the results are shown in the table.

n Distance from zero order / m ± 0.01 m

0 0

1 0.44

2 0.91

3 1.47

4 2.27

5 3.62

• Using the distance to the screen, tabulate values of tan θ

• Considering the uncertainties in x and D, calculate 

uncertainties in your values of tan θ

• Calculate values of sin θ and add them to a column of 

your table.

• Plot a graph of sin θ against n and find the gradient.

• By considering the maximum and minimum possible 

values of tan θ, find the equivalent maximum and 

minimum values of sin θ. Hence add an uncertainty in 

each value of sin θ to your table and to your graph.

• By considering the equation n휆 = d sin θ
n
, use the 

value for the gradient of your graph to find the 

wavelength of the light.

• Using your values for the maximum and minimum 

gradients, find an uncertainty in your value for the 

wavelength and express this as a percentage.

Data-based questions

▴ Figure 37 The bands of colour that can be seen on a soap 

bubble illuminated by white light. Each band corresponds to a 

certain thickness of soap lm and the colours change as the liquid 

in the lm gradually drains to the bottom of the bubble. This 

reduces the local thickness and determines the single wavelength 

that is removed from the light reected from the bubble.

◂ Figure 38 

The European 

Peacock buttery.
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Introduction
Pluck an open guitar string and you generate waves going in opposite directions 

along the string. The waves reect at the bridge and at the nut to reverse their 

direction. The waves superpose and a standing wave forms on the string. The 

generation of a standing waves is the basis for the pitched notes in many musical 

instruments. 

In this topic, we examine the physics of standing waves in many more contexts 

than stringed instruments. We also look at the important eects that occur when 

one oscillating system running at one natural frequency is driven by a system 

running at another.

What distinguishes standing waves from travelling waves? 

How does the form of standing waves depend on the boundary conditions? 

How can the application of force result in resonance within a system?

436

C.4   Standing waves and resonance 

This topic takes the ideas of Topics C.2 and C.3 further 

to look at the interaction of two or more travelling waves 

moving in different directions. This can lead to the 

formation of a standing wave that has a shape which 

appears to be fixed in space (but not in time). This is why 

standing waves are sometimes called stationary waves.

These standing waves can form because of reflections at 

a boundary. The boundary determines the nature of the 

reflection and the exact shape of the standing wave. The 

boundary therefore imposes a set of conditions on the 

system that leads to the formation of the standing wave.

In this topic, you will also examine the creation of 

resonance in a system. A system that can oscillate can 

usually be driven by another driver system. The driver 

exerts a time-varying force on the driven oscillator. This 

stimulates the driven system into oscillations of its own.

▴ Figure 1 Most musical instruments rely on standing waves to 

make pleasing sounding notes. Resonance and damping are also 

important considerations in the design of these instruments.

In this topic, you will learn about:

• the nature and formation of standing waves 

• nodes and antinodes

• relative amplitude and phase difference of points along 

a standing wave 

• standing waves patterns in strings and pipes 

• resonance, natural frequency and driver frequency

• the effect of light, critical and heavy damping on an 

oscillating system.
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Formation of standing waves

Standing waves originate when two or more travelling waves interact. The 

simplest case is that of two identical travelling waves moving in opposite 

directions in the same medium. The waves have the same wavelength and, 

because they are identical, the same amplitude. Figure 2 shows what happens. 

• The red wave in Figure 2 is moving to the right. The blue wave is moving 

to the left. The black wave shows the red and blue waves superposed (see

Topic C.3). The diagram gives a series of positions in time as the two waves 

move through each other. In Figure 2(a), the blue and red waves are almost 

in phase. They add to give a wave almost double the amplitude of each wave 

separately. The black wave is the standing wave formed by the superposition 

of the red and black waves.

• Identify the points where the black wave is zero. These are where the red and 

blue waves cancel each other out.

• As time increases, the red wave (moving to the right) and the blue wave 

(moving to the left) drift out of phase and, as a result, the amplitude of the 

black wave is decreasing. However, the points at which the black wave is zero 

never change. Here the red and blue waves are always equal in magnitude 

but opposite in displacement.

• The wave medium — gas particles, or string, or the electric field — always has a 

zero displacement at these points. They are known as nodes. These positions 

are marked N in Figure 3.

• Eventually (Figure 2(d)), the red and blue waves are 180° out of phase and 

cancel completely, so that there is zero displacement for the whole of the 

black wave.

• As time continues to increase, the red and blue waves again give a non-zero 

sum but this time the part of the black wave that was positive-going earlier is 

now negative-going (and vice-versa). The black wave oscillates with the same 

time period as the red and blue waves — but it is not moving to the left or right. 

On this diagram it is stationary in space (but not in time).

• Finally (Figure 2(g)), the red and blue waves are exactly in phase and the black 

wave now has its largest displacement, equal to twice the amplitude of the 

original waves because the red and blue amplitudes are the same.

• The positions where the displacements are as large as possible are known as 

antinodes and are marked A.

Figure 3 summarizes these observations for the black standing wave alone when 

the red and blue waves are ignored. 

▴ Figure 3 Nodes, N, and antinodes, A, on a standing wave.

extreme positions

(antinodes)

range of motion at antinode

nodes

A A A A A A

A A A A A A

A A A A A A

A A A A A A

A A A A A A

A A A A A A

A A A A A A

(a)

(b)

(c)

(d)

(e)

(f)

(g)

▴ Figure 2 How a standing wave forms 

from two travelling waves moving in 

opposite directions.

C. Wave behaviour
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Figure 3 may seem odd when you rst meet it, but it shows the standing wave 

when it is at its maximum displacement at two instants half a cycle apart. One 

of these positions is shown as a solid line, the other as a dashed line. This 

representation is frequently used to show the extent and position of a standing 

wave and is particularly important with an “invisible” wave. An example of this is the 

standing wave in air formed inside the tube of a musical instrument, such as a ute. 

The diagram also reminds you that the wave is xed in space and is not travelling.

It is important to be able to relate the shape of the standing wave to the motion of 

the particles of the medium.

• Between two adjacent nodes (N to N' in Figure 3) all the particles move in 

phase with each other.

• In adjacent nodal regions (NN' and N'N"), the particles are 180° (π rad) out 

of phase (when particles in NN' are moving downwards, then in N'N" the 

particles will be moving upwards).

• There is, therefore, only one value for the phase difference between nodal 

points along a standing wave. Figure 3 shows the π (180°) phase difference 

between region NN' and region N'N".

• The distance between two adjacent nodes (or antinodes) is equal to half a 

wavelength of the original waves.

• The standing wave oscillates with the same frequency as the travelling waves.

• Within NN', the relative amplitude between two points along the standing 

wave varies. No two points have the same amplitude, which can vary 

between 0 (at the node) and the maximum (at the antinode).

These statements about phase dierence and relative amplitude for the standing 

wave are in direct contrast to similar statements for a travelling wave. For the 

travelling case, there is a phase dierence between each point on the wave 

and its neighbour and the amplitude for each point on the wave is the same 

(assuming no energy loss from the system).

Worked example 1

Two transverse waves with a wavelength 

of 80 cm each and with equal amplitudes 

travel in opposite directions on a stretched 

rope. At time t = 0, all the particles of the 

rope have a displacement of zero. This is 

represented by the horizontal line in the 

following displacement–position graph, 

where x is the position along the rope.

N is the position of one of the nodes of the 

resulting standing wave. P and Q are two 

particles in the rope.

a. Label, on a copy of the diagram, the positions of any remaining nodes of the standing wave between  

x = 0 and x = 100 cm.

b. Compare the amplitude and phase of oscillations of particles P and Q.

c. At t = 0, particle P is moving in the direction of increasing displacement. Draw a graph to show the displacement 

of the wave at t = 
T

4
, where T is the period of the wave.

Many websites contain applets 

showing animations of the 

formation of a standing wave. Try 

searching the web using “applet 

for standing wave formation”. 

Seeing a standing wave form in 

slow motion is a good way to 

understand how they work.

Seeing standing 

waves
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• Inquiry 2: Identify and record relevant qualitative 

observations.

• Inquiry 3: Compare the outcomes of an investigation 

to the accepted scientific context.

• Inquiry 3: Identify and discuss sources and impacts of 

random and systematic errors.

The German physicist Franz Melde invented a way to 

produce standing waves easily and visibly. Two variants of 

his method (which originally used a string under tension 

and a tuning fork) are commonly used.

(a)

(b)

variable frequency,

AC supply

N

S

▴ Figure 4 (a) Using a vibration generator to view a standing 

wave. (b) Using the electric motor eect to view a standing wave.

Using a vibration generator

Figure 4(a) shows one variant in which a string is attached 

to a vibration generator. One end of the string is driven 

vertically up and down when an alternating current from 

a signal generator is supplied to the vibration generator. 

The frequency of vibration can be set by the observer. The 

other end of the string is xed.

Adjust the frequency until the standing wave pattern becomes 

obvious. Sketch the shape of the string. Increase the 

frequency until another pattern isobvious. Again, sketch the 

shape. What is the relationship between the frequencies that 

youhave noted? What is the change in successive shapes?

Use a stroboscope to illuminate the string with a 

frequency close to the signal generator frequency to 

“freeze” the motion of the string. 

When you look carefully at the nodes,you may see 

that they are not truly zero throughout the cycle. This is 

because energy is always absorbed by the xed support 

for the string and the reected wave has a reduced 

amplitude compared with the incident wave. This leads to 

an incomplete cancellation of the two waves at the node, 

but it does not aect its position. 

Using the electric motor eect

An alternative is to replace the string with a metal wire, 

to carry electric current from the signal generator, and to 

add a pair of magnets straddling the wire at its centre, to 

provide a magnetic eld at 90° to the wire (Figure 4(b)). 

When the tension is matches the frequency of the 

alternating current, the wirewillbe driven up and down 

by the magnetic interaction and will display the standing 

wave with the same frequencyas the AC.

Making standing waves visible

C. Wave behaviour
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Solutions

a. Adjacent nodes are separated by one-half of 

the wavelength of the originaltravelling waves, 

so by 40 cm. There will be two more nodes, 

atx=40 cm and x = 80 cm.

b. P and Q are separated by a node at  

x = 40 cm, and hence oscillate 180° out of 

phase. Q is halfway between two adjacent 

nodes, at an antinodal position. Because of this, 

Q has a greater amplitude than P.

c. At t = 
T

4  all the particles of the rope will be at 

their maximum displacement, positive in the 

nodal region containing P and negative in the 

region containing Q.
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The cases where a wave travels 

between media of high and low 

density are shown in Figure 5. This 

is an extension of the models for 

transmission to innitely large and 

zero density.

In a guitar, a small-amplitude, 

incident wave (on the string) meets 

a xed end (at the bridge). The 

energy transfer to the bridge is 

usually ignored in discussing the 

formation of the guitar standing 

wave. However, a small amount 

of energy is transferred from the 

standing wave of a guitar to the 

bridge during each cycle. The 

body of the instrument vibrates, 

and a sound wave travels through 

the air to allow us to hear the music.

Models — Neither 

xed nor free

▴ Figure 5 The reection and transmission of a transverse wave on a string when it meets a 

boundary between materials of dierent densities.

How does the standing wave form?

In Melde’s experiment, when the wave travels along the string from the vibration 

generator and arrives at the xed end, it is reected. The reected wave is an 

inversion of the incident wave (this is explained later) and so is 180° out of phase 

with the incident wave. The incident and reected waves superpose. For most 

frequencies, the superposition leads to a disorganized behaviour of the string. 

However, at certain frequencies a standing wave appears.

As the frequency of the signal generator is increased, at one frequency, the string 

oscillates with a large amplitude in the middle of the string, with something close 

to zero at the ends. When the signal generator frequency is increased further, the 

large oscillation initially dies away, but a dierent standing wave is observed at a 

higher frequency. This occurs when the frequency of the rst standing wave has 

doubled. Two loops are observed. (This is the state shown in Figure 4(a).)

These standing waves are known as the rst harmonic and the second 

harmonic, respectively. Further standing waves with more loops are observed 

at higher multiples of the rst standing wave frequency. These further standing 

waves are described as third harmonics, fourth harmonics and so on.

Boundary conditions for a wave

In the experiment you just looked at, when the wave comes to the xed end of 

the string it reects, so that it is  π rad out of phase with the incident wave. 

Fixed end

The xed end cannot move and so its displacement must always be zero. This 

is the boundary condition. For this condition to apply when the incident wave 

moves towards the xed end, the reected wave must:

• move in the opposite direction away from the fixed end

• have an opposite displacement to the incident wave.

This means that the reected wave is inverted (π rad out of phase) but it has the 

same wave shape as it travels away from the xed end.

Free end

A free boundary condition is dierent. In this case, the reected wave is 

generated as the particles in the medium return to their equilibrium positions. 

This means that the reected wave moving away from the end of the string will 

have the same shape as the incident wave and will not be inverted on reection.

pulse moving from high density

to low density string

pulse moving from low density

to high density string

transmitted wavereflected wave

reflected wave

transmitted wave

Topic C.4 Standing waves and resonance
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Worked example 2

A transverse wave of frequency 2.5 Hz travels towards a xed end of a stretched rope with a speed of 0.60 m s−1

a. Explain why a standing wave will be formed in the rope.

b. Calculate the distance from the xed end of the rope of the rst two antinodes of the standing wave.

Solutions

a. The wave will be reflected from the fixed end. The reflected wave has the same frequency and approximately the 

same amplitude as the incident wave. The waves interfere with each other, leading to the formation of a standing 

wave pattern, with a node at the fixed end.

b. The wavelength of the original wave is λ = 
v
f

=
0.60
2.5 = 0.24 m = 24 cm. The nearest antinode is formed one-quarter 

of the wavelength from the fixed end, at a distance of 6 cm. The antinodes are one-half of the wavelength from each 

other, so the next antinode is  6 + 12 = 18 cm from the fixed end.

Practice question

1. A transverse standing wave is formed on a string when 

a travelling wave of amplitude 4.0 cm and frequency 

5.0 Hz is reflected from a loose end of the string. The 

speed of the wave is 3.0 m s−1. Calculate:

 a.  the amplitude of oscillations of the loose end of 

the string

 b. the distance between adjacent nodes of the string

 c.  the time interval between instants when all the 

particles in the string have zero displacement.

Standing wave patterns in strings

(a) Two xed ends

The pitch of a note played by a stringed instrument depends on the 

length of and tension in the string. Varying the tension is the principal 

way used to “tune” instruments so that the frequencies of the strings 

are both internally consistent and set to the same base frequency as 

other instruments. String players then produce the individual notes 

by varying the lengths of the strings.

The relationship between the length L of a string and its frequency f is 

a simple one that relates to the harmonic that is being played.

Figure 6 shows the rst three harmonics for a string xed at both 

ends. The distance between the xed supports is L. 

For the rst harmonic (N = 1) the standing wave is half a wavelength  

long and therefore L = 
λ

2

The usual wave equation applies: c = fλ leading to c = f
1
 × 2L, f

1
= 

c

2L
For the second harmonic (N = 2): L = λ so f

2
=

c

L
 meaning that f

2 
= 2f

1

For the third harmonic (N = 3): L =
3λ

2
 so f

3
=

3c

2L
 meaning that f

3
= 3f

1

For the nth, L =
nλ

2
 so f

n
=

nc

2L
 meaning that f

n
= nf

1

N = 1

L

N = 2

N = 3

L =
λ

2
f

1
=

c

2L

f
2
=

3c

2L
L =

3λ

2

L = λ
c

L
f

2
=

▴ Figure 6 The rst three harmonics of a string 

xed at both ends.

C. Wave behaviour
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Players in all cultures use harmonics 

to colour the sound of string 

instruments. Touch the centre 

of a sounding string to stop it 

moving and then every harmonic 

with an antinode at that point 

will be suppressed. That means 

that the rst, third, h and so on 

harmonics will disappear from 

the sound, leaving the second, 

fourth, sixth and so on. This change 

in thebalance of the harmonics 

changes the character of the sound.

▴ Figure 7 These xylophone bars 

are also designed to promote certain 

harmonics. The bars are supported at 

approximately one-quarter and three-

quarters of their length. This forms a 

node at these positions. The shape of 

the bar is also thinner in the middle. 

This reduces damping and allows the 

xylophone bar to be tuned.

Global impact of  

science — Music 

meets physics I

Worked example 3

The diagram shows a second harmonic standing wave on a string of length 

0.90 m xed at both ends. P and Q are two particles in the string. The speed 

of the waves in the string is 270 m s−1

P Q

a. State the phase dierence between the oscillations of P and Q.

b. Calculate the frequency of the second harmonic.

c. Particle Q is at a distance of 0.30 cm from the le end of the string. 

The string is now clamped at Q and made to vibrate with the lowest 

frequency possible in this situation. For this standing wave:

i. draw the displacement graph

ii. calculate the frequency.

Solutions

a. P and Q are in the same nodal region, so the phase difference is zero.

b. The wavelength of the second harmonic is equal to the length of the 

string, λ=0.90 m. Thefrequency is therefore f =
v

λ
 = 

270
0.90

 = 300 Hz.

c. i.  Q is one-third of the length of the string from the left end. If the string 

is clamped here, Q becomes a node of the standing wave, and the 

lowest frequency mode will be the third harmonic.

Q

 ii. The wavelength is now 
2
3

 × 0.90 = 0.60 m and the frequency is 

f =
270
0.60

 = 450 Hz. 

Worked example 4

A string of length 0.80 m is xed at both ends. Two successive harmonic 

frequencies of this string are 360 Hz and480 Hz.

a. Determine the frequency of the rst harmonic mode.

b. Calculate the speed of the waves in the string.

Solutions

a. The harmonic frequencies of a string fixed at both ends are consecutive 

integer multiples of the lowest frequency f
1
 of the first harmonic mode. 

It means that f
1
is the difference between any two successive harmonic 

frequencies.  

f
1 
= 480 − 360 = 120 Hz.

b. For the first harmonic, λ = 2 × 0.80 = 1.60 m and v = fλ = 120 × 1.60 

= 190 m s 1

Although the discussions so far 

have been in the context of waves 

on strings, the theory is a general 

one that applies to all wave 

motions. 
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(b) One free end, one xed end

When a string has one free end and one xed end, the set of harmonics changes. 

You may wonder how a string can have a free end as there is nothing then to 

support the string. The trick is to hang the string vertically and to suspend the 

string using the vibration generator at the top. The mathematics developed here 

will not work exactly because the tension in the string decreases with distance 

from the support (you might like to think why). The assumption made here is that 

the string has a uniform tension.

A practical way to observe this eect is to use a horizontal wire, one that is thin 

enough to have observable oscillations but strong enough to support its own 

weight. A vibration generator is used at the xed end.

Figure 8 shows what happens this time. The xed end is always a node (as with 

the case of two xed ends). However, at the free end, the reected wave is in 

phase with the incident wave. This leads to the free end always acting as an 

antinode. 

The change of the boundary conditions changes the allowed patterns of  

standing waves. 

The rst harmonic is one-quarter of the full wavelength and, when the length of 

the string is L, the wavelength must be 4L and c = fλ becomes c = f
1 
× 4L so that

f
1

c

4L
The next harmonic is related to the rst harmonic by a factor of three because 

the wavelength of the new standing wave is 
4L

3
, given the boundary conditions, 

which leads to

f
3

= 
3c

4L
This is called the third harmonic not the second. 

The important notation rule for harmonics is:

The ratio 
frequency of the harmonic

frequency of the rst harmonic
 is the number assigned to the harmonic.

As an example, the pattern with 2
1
2

 loops has a length that is 5λ

4
 with a frequency

f
5 

=
5c

4L
 and therefore

f
5

f
1

 =

5c

4L

5c

4L

 = 5

This is called the h harmonic even though it is only the third in theseries as the 

frequency increases. For this arrangement, there are no   

even-numbered harmonics.

▴ Figure 8 The rst three harmonics of a string 

xed at one end and free at the other.

L

L =

λ

4
f
1
=

c

4L

f
5
=

5c

4L
L =

5λ

4

f
3
=

3c

4L
L =

3λ

4

Worked example 5

A sti wire of length 1.5 m is clamped at one end and has the other end 

free. The wire is made to vibrate at a frequency of 420 Hz in a standing 

wave pattern, as shown in the diagram.

a. Calculate the wave speed.

b. The frequency is changed to 140 Hz. Draw the standing wave that will be formed on the wire.
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Solutions

a. The standing wave formed here is the third harmonic. The 

length of the wire is 
3

4
 of the wavelength: 

3

4
λ = 1.5 m. The 

wavelength is therefore λ = 
4

3
 × 1.5 = 2.0 m, and the wave speed v = fλ = 420 × 2.0 = 840 m s−1

b. The speed of the wave is still 840 m s−1, but the wavelength is changed to 
v

f
=

840
140

 =6.0 m. This is exactly four times 

longer than the length of the wire. Hence, the first harmonic wave will be formed, with the node at the clamped end 

and the antinode at the free end.

L

L =

λ

2
f
1
=

c

2L

f
2
=

3c

2L
L =

3λ

2

L = λ
c

L
f
2
=

Worked example 6

A metal rod of length 0.80 m is clamped in the middle and made to vibrate 

in the rst harmonic mode, as shown. The speed of the transverse waves in 

the rod is 3200 m s−1

a. Calculate the frequency of the rst harmonic mode.

b. Determine whether the rod will have any further harmonics of 

frequencies below 5 kHz.

Solutions

a. The length of the rod is one half of the wavelength. Hence λ = 1.6 m.

f =
3200

1.6
 = 2 kHz.

b. The second harmonic mode, of wavelength 0.80 m and frequency 

2×2000= 4 kHz, is suppressed because it requires the mid-point of 

the rod to be an antinode. The next possible mode is therefore the third 

harmonic, of wavelength 
2 × 0.80

3
 = 0.53 m and frequency 3 × 2000 = 

6 kHz. We can see that, except for the first harmonic,  

no other standing wavemode has a frequency less than 5 kHz.

(c) Two free ends

Although it is hard to imagine a stringbeing free at both ends, it is possible to 

generate a standing wave on a exible wire. However, it would be necessary to 

support the wire at a nodal position.

The standing wave will have an antinode at each end. This leads to the sequence 

of harmonics shown in Figure 9. (The second harmonic will besupressed if the 

wire is clamped in the centre as this forces the centre to be a node.)

The sequence of harmonics (rst harmonic, second harmonic and so on,in this 

case) is identical to those when there are two xed ends. The dierenceis in the 

appearance of the harmonics as the nodes and antinodes appear at dierent 

places on the standing wave.

▴ Figure 9 The rst three harmonics of a 

sti wire free at both ends.
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Practice questions

2. A guitar string of length 66 cm vibrates in its rst 

harmonic mode of frequency 380 Hz.

a. Calculate the speed of the waves on the string.

b. The vibrating length of the string is reduced 

by pressing one point of the string against the 

fretboard of the guitar. The string now produces a 

note of frequency 480 Hz. Calculate the vibrating 

length of the string. 

3. A standing wave is set up on a string of length 60 cm 

xed at both ends, as shown. The speed of the wave 

on the string is 380 m s−1

a. Calculate the frequency of the standing wave.

b. Two points on the string are separated by 30 cm. 

Neither of the points is a node of the wave. State 

the phase dierence between the oscillations of 

the two points.

4. A third harmonic standing wave is set up on 

a stringxed at one end. What is the phase 

dierencebetween the midpoint of the string and 

thefree end?

A. 0 B. 
π

4
C. 

π

2
D. π

5. A sti wire of length 1.0 m is xed at one end and 

has the other end free. The wave speed in the wire is 

400 m s−1. What are the three lowest frequencies of 

standing waves that can be set up in the wire?

A. 100 Hz, 200 Hz, 300 Hz

B. 100 Hz, 300 Hz, 500 Hz

C. 200 Hz, 400 Hz, 600 Hz

D. 200 Hz, 600 Hz, 1 kHz

6. A metal rod of length 60 cm is clamped at the 

midpoint and vibrates in the rst harmonic mode of 

frequency 2.3 kHz. Calculate the speed of the wave 

on the rod.

Standing waves in pipes

Some musical instruments make sounds using pipes rather than strings.

With a string, the vibrating string takes up the shape of the standing wave as it 

moves and the curved lines on the diagram represent the successive maximum 

displacements of the string over a half cycle. 

However, for sound in a gas, the wave is longitudinal. The standing wave diagrams 

now relate to the displacement of the air molecules backwards and forwards along 

the central axis of the pipe. The end (boundary) of a pipe can be open or closed 

and the type of boundary determines the nature of the reection of the sound wave. 

Reection at a closed end

The wave is longitudinal, so the individual particles in the wave are moving parallel 

to the central axis of the pipe (Figure 10). This leads to a longitudinal wave that 

travels up to the closed end, moving to the right in the gure. This closed end does 

not permit these particles to move along the axis there. The reected wave must 

move away from the end, exactly cancelling the incident wave at the boundary.

The nature of sound is discussed in 

Topic C.2 (page 398). You should 

be familiar with the relationship 

between displacement of the 

gas particles and the pressure 

variations in the gas.

Our usual assumption, unless 

stated otherwise, is that the gas in 

the pipe is air. When a dierent gas 

is used, the speed of sound will 

change for particular temperature 

and pressure conditions, so that 

the constant of proportionality 

between frequency and 

wavelength will be dierent.

Assumptions

fixed end

zero displacement

possible so

displacement node

central

axis

rarefactioncompression

direction of travel

▴ Figure 10 A longitudinal wave travels along a pipe towards a xed end. The molecules 

cannot be displaced at the end and so the boundary condition here is a displacement node.

A closed end is a (displacement) node for a sound wave.
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Remember thatthe waves in the 

pipe are longitudinal and the 

positions of the nodes are due 

to the movement of molecules 

backwards and forwards along 

the axis of the pipe. The lines 

on the diagrams showing the 

wave do not represent transverse 

standing waves as you might 

at rst think. They are graphical 

representations of the amplitude 

of the gas molecules at each point 

in the tube. They show the largest 

displacements half a cycle apart. 

Where the lines intersect, there 

is a node. Where they are at a 

maximum separation, there is  

an antinode.

Wave diagrams

Reection at an open end

It is easier to understand what is happening when a sound wave is reected at the 

open end of a pipe by considering the variation in pressure. Because the pipe is 

open, the pressure at the open end must always be atmospheric. 

Begin by visualizing the incident wave as a compression of molecules moving 

towards the open end of the pipe. The movement of the compression is of one 

compressed group of molecules pushing against other molecules that are less 

compressed. This is how the compression wave moves along. Remember that, 

on average, the individual molecules do not move over time as the wave goes 

through them.

When the compression wave reaches the open end, it is no longer restrained by the 

pipe walls. This compression wave corresponds to gas above atmospheric pressure 

and the wave must begin to spread out from the end of the pipe. It accelerates until 

its pressure has fallen to atmospheric pressure, at which moment the molecules 

have their highest speeds away from the pipe and the momentum is at its greatest. 

The molecules continue to move. This leads to a region of below-average pressure 

between this high-pressure region and the open end — a rarefaction. This low-

pressure region propagates down the pipe away from the open end as the air 

begins to ood in from outside the pipe. This results in a pulse of high pressure 

travelling towards the open end which is reected as a pulse of low pressure 

travelling away from the open end. There is a π phase change in the pressure wave.

To sum up:

• At an open end in a pipe, the standing wave has a (displacement) antinode 

because the molecules are free to move.

• At a closed end in a pipe, the standing wave has a (displacement) node 

because the wall prevents the molecules from moving along the pipe.

Standing wave patterns in pipes

Your knowledge of the boundary conditions for a pipe and your earlier work on 

the standing waves on a string now enable you to make a prediction about the 

standing waves allowed in pipes. 

The harmonic series for the three cases are shown in Figure 12. 

The standing waves for pipes open at both ends and closed at both ends are 

very similar. Only the boundary conditions shi, leading to the same sequence 

of harmonics. All harmonics are present (rst, second and so on). The number of 

half-wavelengths in the pipe increases by one with each harmonic.

The standing waves for pipes closed at one end are dierent. Every 

even-numbered harmonic is suppressed so that only the rst, third, h… 

harmonicsappear.

As usual, it is straightforward to determine the sounding frequencies of a harmonic 

for any of the pipes. Take the third harmonic for the pipe closed at one end:

L =
3

4
λ so λ =

4L

3
 and f

3
=

3c

4L
whereas, for the third harmonic of a pipe open at both ends,

L =
3

2
λ so λ =

2L

3
 and f

3
=

3c

2L

▸ Figure 11 Organ pipes of various sizes. 

The circular pipes are open at both ends, 

whereas the square pipes are closed at one 

end. The metal collars on the round pipes 

can be moved to enable a ne adjustment in 

the tuning. The square pipes have a plunger 

for this. 
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▴ Figure 12 Standing waves formed in pipes with various boundary conditions. L is the 

length of the pipe.

5th harmonic

4th harmonic

1st harmonic

5th harmonic

closed at one end closed at both endsopen at both ends

3rd harmonic

1st harmonic

L = L = L =

3rd harmonic

2nd harmonic

λ
1

4
λ

1

2

λ
3

2

λ
5

2

1 λ

2 λ

λ
1

2

λ
3

2

λ
5

2

1 λ

2 λ

λ
3

4

λ
5

4

3rd harmonic

Notice an important dierence between the rst harmonics. A pipe closed at one 

end sounds its rst harmonic at half the frequency of the same length of a pipe 

open at both ends.

When a autist or recorder player 

blows too hard, the sound suddenly 

shoots up by an octave in pitch. 

But when a clarinettist does the 

same thing, the sound goes up 

an octave and a half (a twelh in 

musical language, or three times the 

rst harmonic). The reason for this 

dierence is straightforward. The 

ute and the recorder are pipes that 

are open at both ends. The clarinet 

is closed at one end by the reed 

through which the player blows. 

This means that there is no second 

harmonic for the clarinet unlike the 

other two wind instruments. When 

the instrument is playing the rst 

harmonic and suddenly there is 

more energy transfer into the pipe 

(a harder blow by the player), then 

the oscillation in the pipe jumps 

suddenly to the third harmonic. 

Global impact of  

science — Music 

meets physics II

The table below shows the length, L, of  

some organ pipes measured to the 

nearest 5 mm. The frequencies, f, of the 

notes that they produce is also given. 

The uncertainty in these frequencies 

is3%.

• Tabulate values of f 1 and calculate 

uncertainties in these values.

• Plot a graph of f 1 against L and 

add a line of best t.

• Add error bars to your graph and nd the gradient of your line.

• By considering maximum and minimum uncertainties, nd the uncertainty 

in your value for the gradient.

• The organ pipes were open at both ends. Use your value for the gradient 

to nd the speed of sound.

L / cm ± 0.5 f / Hz ± 3%

27.3 523

34.9 415

56.2 262

71.9 208

101.9 145

165.2 87

212.7 69

Data-based questions
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Many physicists in history have also been good 

musicians. Albert Einstein is reported to have said “life 

without playing music is inconceivable for me. I live my 

daydreams in music. I see my life in terms of music. I get 

most joy in life out of music.”

Both Newton and Young wrote on acoustics and the 

tuning of musical instruments and this led to further work 

on waves.

Galileo was born into a musical family (his father was a 

composer, a lute player and one of the rst to explore 

the relationship between the tension in a string and 

the note it produces). Galileo himself was an excellent 

keyboard and lute player. Galileo’s experimental 

methods — combining predictive mathematical theories 

with experimental observation — provided the basis for 

modern scientic methods.

Social skills — Appreciating the diverse talents of others ATL

▴ Figure 13 Einstein playing the violin.

Worked example 7

The rst harmonic frequency of the standing wave in a pipe that is closed at one end and open at the other is 440 Hz. 

Calculate the rst harmonic frequency in a pipe of the same length that is closed at both ends.

Solution

The wavelength of the first harmonic wave in a pipe that is closed at both ends is halved compared with the wavelength in 

the half-open pipe (because the length of the pipe now fits one-half of the wavelength, compared with only one-quarter 

of the wavelength for the half-open pipe). The wavelength is halved, so the frequency will double: f = 880 Hz.

Worked example 8

A loudspeaker emits a note of a single frequency towards 

the open end of a pipe. The other end of the pipe is 

closed with a moveable piston. The position of the piston 

is adjusted until a loud sound is heard from the pipe. The 

diagram shows the standing wave pattern formed in the 

pipe for a particular position of maximum loudness.

The piston is now moved to the right by 0.24 m and another loud sound is heard from the pipe.  

The speed of sound in the pipe is 340 m s−1

a. Calculate the frequency of the note emitted by the loudspeaker.

b. Determine the sounding length of the pipe for the situation shown in the diagram.

Solutions

a. A loud sound is heard again when the piston has moved by one-half of the wavelength, to the position of the next 

node of the original standing wave.
λ

2
=0.24 m ⇒ λ = 0.48 m. The frequency is f =

340

0.48
= 710 Hz.

b. The sounding length of the pipe is reduced from 3λ

4
 to λ

4
. The original sounding length is 3λ

4
 = 

3 × 0.48
4

 = 0.36 m.

loudspeaker

piston
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Practice questions

7. A student blows across the top of a half-open pipe 

of length 20.0 cm. A rst harmonic standing wave of 

frequency 440 Hz is set up in the pipe. 

Calculate the speed of sound in the pipe.

8. Calculate the rst two harmonic frequencies that can 

be produced in a tube of length 0.50 m that is:

a. open at both ends

b. open at one end and closed at the other.

 Take the speed of sound to be 340 m s−1

9. The speed of sound in air increases with temperature. 

A student measures the frequency of the rst harmonic 

standing wave in a pipe. The air temperature is 

increased. Outline the change, if any, of:

a. the wavelength

b. the frequency of the rst harmonic in the pipe.

Resonance

Natural frequency

Many mechanical systems oscillate. This oen occurs when there is some mass 

(or inertial equivalent) in the system that is coupled to a spring-like component. 

A simple example of this is the suspension of a car (Figure 14). The car acts as the 

mass and a substantial spring supports the body of the vehicle on the subframe. 

This combination will oscillate when free to do so. Going over a bump in the road 

will provoke the oscillation.

When a mass–spring system is displaced from equilibrium and released, it will 

oscillate. When there is little or no friction in the system, then the oscillations can 

continue for a long time. These are known as free vibrations. The mass and the 

spring determine this oscillation frequency which is known as the naturalfrequency 

f
0
. You already know that, for a mass m attached to a spring of constant k,

f
0 

= 
1

2π

k

m

Generally, however, this simple equation for a mass oscillating on a spring does 

not describe the complex behaviour of a mass–spring system where there is 

friction and damping.

Damping 

A completely frictionless oscillation is rare. Usually, friction in the system 

eventually stops the oscillation. The energy is transferred away from the 

oscillation through turbulence, friction at moving surfaces, air resistance and so 

on. These are damping forces (or just damping).

Damping acts in the opposite direction to the resultant restoring force provided 

by the system and generally increases with speed. The damping, therefore, 

has its maximum eect when the system is close to or at its equilibrium point 

(maximum speed) and is least (oen zero) at the maximum displacement (zero 

speed). The system must do work to overcome the damping and this energy is 

transferred from the kinetic energy of the oscillator. Instead of maintaining the 

constant total energy of simple harmonic motion, the energy decreases with 

time. The damping increases the time period (and decreases the frequency) of 

the oscillation, although this is only noticeable when the damping is large.

▴ Figure 14 One type of suspension unit 

used in motor vehicles. The blue cylinder 

inside the spring is the damper (shock 

absorber) and usually consists of a piston 

lled with oil.
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For small damping the variation of displacement with time will be similar to thatshown 

in Figure 15. This oscillator is said to be lightly (or under-) damped. The time 

period (and therefore the frequency) of the oscillator is largely constant throughout 

themotion.

displacement/m

0

0.05

0.10

0.15

0.20

0.25

‒0.20

‒0.15

‒0.10

‒0.05

2 4 6 8 10 12 14 16 18 20 t/s

▴ Figure 15 Lightly damped (or under-damped) oscillations. The dashed line shows the 

exponential nature of the decay.

The dashed line in Figure 15 touches the maximum value of the displacement for 

one displacement direction. It shows the variation with time of the amplitude of 

oscillation. Damping halves the amplitude of the oscillation with a constant “half-

life”. For the damped oscillation of Figure 15, this “time to halve” is always around 

nine seconds. The greater the degree of light damping, the shorter the time to 

halve the maximum amplitude.

Not all damping is light, however. As the amount of damping increases, the 

shape of the displacement–time curve also changes dramatically. Figure 16 

shows the original lightly-damped curve along with two other cases. In the 

over-damped case, the system takes a very long time to return to the equilibrium 

position aer release. There is no oscillatory behaviour at all. This is heavy 

damping.

A transition between light and heavy damping occurs with a case where the 

oscillator takes the minimum possible time to come to rest. There is no true 

oscillation, and the system simply goes back to a rest position at equilibrium as 

quickly as possible. The energy is transferred from the oscillator at the maximum 

possible rate. This is known as critical damping. The minimum return time makes 

it important in many applications, including re-door closure mechanisms and in 

car suspension systems.

▴ Figure 16 A comparison of the three 

degrees of damping. The critical-damping 

case allows the system to dissipate its 

energy at the fastest possible rate.

amplitude

time
critically damped

under-damped

over-damped

When you have studied Theme E, 

you will recognize the shape of this 

dashed line, which has the usual 

properties of exponential change 

as in radioactive decay.
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An orchestral tam-tam, sometimes known as a gong 

(Figure 17), produces a sound that contains many 

frequencies. Gongs are tuned versions of the instrument 

that have distinct pitches.

▴ Figure 17 An orchestral gong.

A gong was struck and the sound intensity was measured 

in the time aerwards. Sound pressure in decibels is a 

logarithmic quantity. An exponential decay in the amplitude 

results in a linear decrease in the sound pressure (in dB). 

The absolute error in each measurement of sound pressure 

level is ±2 dB.

The results are shown in the table.

• Plot a graph of the data. Include vertical error bars.

• Add a straight line of best fit and find the equation 

of your line. By considering the error bars, find the 

uncertainty in your value of the gradient. 

• A drop in the sound pressure level of 3 dB means 

that the intensity of the sound wave has halved. Use 

your graph to find the time for the sound intensity to 

halve. Give an uncertainty with your value.

• The background sound pressure level was 30 dB. 

When the sound pressure level from the gong dropped 

below this, the sound was longer audible. Using your 

equation for the line of best fit, calculate the amount 

of time for whichthe gong was audible. Give an 

uncertainty for this time.

Time / s
Sound pressure 

level / dB (± 2)

0 88

5 83

10 75

15 70

20 63

25 59

30 55

Data-based questions

The frequency equations for the mass–spring system and 

the simple pendulum are

 f
0 
=

1

2π

k

m
  and  f

0 
=

1

2π

g 

l

It is possible to generalize these expressions to

    f
0 
=

1

2π

so that for more “elasticity” in the system the frequency 

increases and with more “mass” in the system the 

frequency decreases. Provided that these two 

contributions can be identied, the frequency equation 

can be derived for a particular system.

The presence of friction or other damping modies the 

simple harmonic motion equation with the addition of 

extra terms that will depend on the instantaneous speed 

of the mass (or speed raised to a power). This will change 

the natural frequency, although, depending on the 

amount of damping, this frequency shi may be small. 

To observe a constant amplitude of oscillation, the driver 

must be transferring the same energy into the system per 

cycle as damping is transferring energy away.

Thus, resonance will occur at a frequency not dictated by 

the simple harmonic motion alone but by the interaction 

between the oscillation of the system and its energy losses.

In fact, once there is damping, then the motion can no 

longer be regarded as simple harmonic. As described in 

Topic C.1, simple harmonic motion leads to oscillations 

that never die out because there is no energy transfer 

from the system.

spring term

inertial term

What is the relationship between resonance and simple harmonic motion?
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▴ Figure 18 A mass–spring oscillator as an 

example of forced vibrations.

Forced vibrations

Whereas free vibrations occur when an oscillating system oscillates at its own 

natural frequency, forced vibrations occur when an oscillating system is driven by 

another oscillator. A good example of this is a mass–spring oscillator being driven 

by an electric motor whose rotational speed can be varied (Figure 18). The diagram 

shows a disc attached to the drive sha of a motor (not shown) with the top of the 

spring xed to the disc o-centre. The spring will be moved up and down at the 

rate determined by the rotation speed of the motor. This transfers energy into the 

kinetic and gravitational potential energies of the mass. The angular frequency of 

the disc can be varied and the amplitude of motion of the mass measured.

The rotational frequency of the motor corresponds to the driving frequency of 

the system. Remember that the mass–spring system has its own natural frequency 

which does not need to be equal to the driving frequency.

When the driving frequency is very dierent from that of the mass–spring 

system,the amplitude of the mass will be small. When the two frequencies are 

close, then the amplitude will be much larger. When the two are very close or 

identical, then the amplitude of motion of the driven system will be extremely 

large, possibly even enough to break the spring.

Dierent degrees of damping can be provided by submerging the mass in water, 

or in oil or another viscous liquid.

This behaviour is summed up in Figure 19. The family of graphs is sometimes 

known as resonance curves.

When there is no (zero) damping, then the mass–spring system will be driven 

to large amplitudes at the natural frequency. This is resonance. The resonant 

frequency is dened here as the frequency at which the amplitude is a maximum.

When there is light damping, the system will show a maximum amplitude at a 

frequency slightly less than the natural frequency. As the degree of damping 

increases, this frequency for the maximum amplitude dris to smaller frequencies. 

You can see that the peak of the damping curves moves to the le as the amount 

of damping increases.

When there is heavy damping, an obvious maximum may not appear, the 

maximum amplitude will be at the lowest frequencies and the amplitude then 

decreases with increasing driving frequency.

a
m

p
lit

u
d

e
 o

f t
h

e
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ri
ve

n
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ys
te

m

zero damping

driving frequency
natural frequency

heavy

damping

natural frequency

light damping

▴ Figure 19 The amplitude–frequency 

graph for dierent degrees of damping. 

How can resonance be explained in terms of conservation of energy? 

Resonance is caused when the driving and natural 

frequencies are close (identical if there is no damping). The 

driver matches the driven system and can transfer energy 

to it at exactly the correct rate. One issue, however, is the 

phase at which the energy is supplied. Think about pushing 

a child on a swing. The push rate must be correct, but the 

push also must be supplied at the right moment in the 

cycle. The maximum push has to be given when the child 

is moving at the fastest point in the cycle, at the equilibrium 

position. In other words, the push for the swing (the driver) 

has to be 90° ahead of the swing (driven) itself.

How does the amplitude of vibration at resonance depend on the dissipation of energy in the 

driven system?

At both small and large driving frequencies, well away 

from the natural frequency, the energy transfer from 

the driver cannot occur eciently. This is because the 

dierence in frequencies means that the driven system will 

receive the “push” at dierent points of successive cycles. 

This leads to small amplitudes in the driven system well 

away from resonance.
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You may also see resonance curves where the 

resonanceand resonant frequency are dened in terms 

of the maximum energy in the system (rather than the 

maximum amplitude). When this is done, the resonance 

curves sit vertically above each other (Figure 20). 

Resonance curves

Using Barton's pendulum to demonstrate the  relationship between a driver and 

its driven system.

e
n

e
rg

y 
in

 d
ri

ve
n

 s
ys

te
m

driving frequency

small

damping

medium

damping

heavy

damping

▸ Figure 20 The energy–driving frequency graph when resonance is described in terms of 

the maximum energy in the system rather than the largest amplitude of the driven system.

• Inquiry 1: Demonstrate creativity in the designing, 

implementation or presentation of the investigation.

• Inquiry 2: Identify and record relevant qualitative 

observations.

• Inquiry 2: Interpret diagrams, graphs and charts.

In the Barton’s pendulum apparatus, driven pendulums 

of small mass and varying lengths are driven by a heavy 

pendulum of length midway between the longest and 

shortest driven ones (Figure 21).

Set this array up yourself or nd a video on the web by 

searching for “Barton pendulum”.

The paper cones (1 – 5) are light and provide damping; 

the brass bob (0) is the driver. Pendulums 0 and 3 are 

the same length. Cone 3 will oscillate with the greatest 

amplitude and is 90° behind the driver. Cones 1 and 2 

have small amplitudes and are 180° behind the driver. 

Cones 4 and 5 have small amplitudes and are in phase 

with the driver.

The phase relationship in Barton's pendulum mentioned 

above is summed up in Figure 22.

When a driver frequency is smaller than the natural 

frequency, the driver and driven system are in phase. The 

driver is dragging the mass and the spring along with it, 

so they stay in phase.

When the driver frequency is greater than the natural 

frequency, then the driven system tries to respond more 

slowly than is being allowed by the driver and so there is a 

phase shi of 180° between the two. 

The amount of damping determines the sharpness of 

the transition from in phase to out of phase as the system 

moves through the resonant frequency, as shown in 

Figure22.

▴ Figure 22 The phase relationships between driver and driven systems as the 

frequency changes during a resonance experiment.

phase
lag / rad

driver leads by half a period

driver leads by quarter of a period
driver and driven in phase

driver frequency

lighter damping

heavier damping

π

π/ 2

0
f0

brass

 bob

paper cones

1
2

3

5
4

0

▴ Figure 21 Barton’s pendulums.
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The description of forced vibration and the eects of 

resonance given here assumes that the systems — driven 

and driver — have reached a steady state where both have 

unchanging amplitudes of oscillation. It ignores how the 

system arrives at this state. 

When the system is set in motion for the rst time, the 

driven system receives an initial impulse from the driver 

that makes it oscillate at its own natural frequency. But 

because the driver exerts a cyclic force on the driven 

part of the system, the driving frequency will eventually 

dominate the motion of the driven oscillator.

When you watch a set of Barton’s pendulums oscillating, 

you should be able to see this transient and steady-

state behaviour clearly as the natural frequency of each 

pendulum is gradually taken over by the frequency of the 

heavy driver. It can be enhanced by adding small paper 

cones to the pendulums to increase the damping of 

eachcone.

Extending the model of forced vibrations

• Inquiry 2: Collect and record sufficient relevant 

quantitative data.

signal

generator

hacksaw

blade

electromagnet

wooden

blocks

G-clamp

laboratory

jack

▴ Figure 23 Investigating resonance using a hacksaw blade 

driven by an alternating magnetic eld.

An oscillating hacksaw blade can be used to demonstrate 

and investigate resonance eects.

• The blade is clamped firmly at one end. The natural 

frequency of the blade oscillation depends on the 

projecting length L of the blade.

• The other end of the blade lies close to an 

electromagnet powered by a variable-frequency 

signal generator. A vertical ruler measures the 

amplitude of the blade oscillation.

• Use the apparatus to measure the variation of the 

amplitude of the end of the blade with:

 º  signal generator frequency f supplied by the 

signal generator

 º blade length L

• Plot graphs to display the effects of resonance in this 

system.

• Vary the damping of the blade by adding strips of 

card to the blade to increase air resistance. How 

does damping affect the system?

Investigating resonance 

The greenhouse eect is mentioned a number of times 

during the course, in terms of thermal eects, resonance 

and in mechanical and atomic terms. All these separate 

disciplines within physics and chemistry link to give an 

account of the important eects in our atmosphere. It 

is in the Nature of Science for scientists from separate 

disciplines to pool their expertise to solve a global 

question.

How can the idea of resonance of gas molecules be used to model the greenhouse  
effect? (NOS)
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Resonance in practice

Resonance eects oer both advantages and disadvantages in many areas of science and engineering. Examples are listed 

in Table 1.

Advantages of resonance Disadvantages of resonance

•  Microwave ovens use resonance eects both to 

produce the radiation and to enable it to excite the 

water molecules in food.

•  Ozone in the atmosphere absorbs ultraviolet radiation 

through a resonance eect in the molecules. This 

prevents most of the radiation reaching Earth’s surface 

and damaging living tissue.

•  Nuclear magnetic resonance (NMR) is a technique used 

extensively in many branches of science, in particular 

in diagnostic medicine where it is known as magnetic 

resonance imaging (MRI).

•  Laser light is produced using resonance eects to set up 

standing waves at light frequencies in optical cavities.

•  Vibrations in bridges can lead to undesirable eects, 

instability and damage. Example of this are: the 

collapse of the Tacoma Narrows Bridge in 1940 and the 

Millennium Footbridge in London. The latter swayed 

from side to side when it opened, as the footsteps 

of passengers fell into synchronism with the bridge 

movement. The fault was cured by tting dampers.

•  Damaging or annoying vibrations are common in 

motor-driven systems. Examples are rear-view mirrors

 in lorries driven by low-frequency pulses when 

the engine is at low speed and washing machine 

vibrations at certain drum speeds during spin drying.

▴ Table 1 Some advantages and disadvantages of resonance.

Worked example 9

A simple pendulum undergoes damped oscillations.

a. Outline two ways in which oscillations of a damped pendulum dier from an 

undamped one.

A time-varying driving force is applied to the pendulum so that its point of suspension 

vibrates horizontally.

b. Explain why the pendulum is oscillating with a constant amplitude.

The frequency of the driving force is adjusted so that the amplitude of the pendulum  

is amaximum.

c. Compare the frequency of the driving force to the natural frequency f
0
of

the pendulum.

The frequency of the driving force is now increased so that it becomes much greater than f
0

d. Describe, for the pendulum bob aer the change:

 i. the amplitude   ii.   the phase of oscillation.

Solutions

a. Undamped oscillations have a constant amplitude, while the amplitude of a damped pendulum 

decreases with time because the energy is transferred away from the pendulum.

 The frequency of a damped pendulum is less than the natural frequency of undamped 

oscillations, and the difference depends on the degree of damping.

b. A steady state is reached in which the driver transfers energy to the pendulum at the same rate as 

it is transferred away due to damping.

c. In the presence of light or moderate damping, the amplitude of oscillations is a maximum when 

the driver frequency is less than the natural frequency f
0
 of an undamped pendulum.

d. i.  The system is now far from resonance and the amplitude of the pendulum has decreased.

 ii.  The pendulum bob oscillates out of phase (phase difference π) with the point of suspension.

point of suspension 
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The Doppler effect is a frequency shift that is detected 

when a source of waves is moving relative to the 

observer of the waves. It was originally a curiosity 

when it was first identified in 1842, even though the 

hypothesis was tested and found to be correct within 

a few years. Nowadays, techniques using the Doppler 

effect are used extensively in medicine, astronomy, flow 

measurements and in many other applications.

The Doppler effect is described in terms of the 

movement of the wavefronts through a medium 

as perceived by the observer. These qualitative 

descriptions are used as a basis for quantitative 

equations that can predict the frequency shift.

Topic A.5 showed that, when the speed of an object 

approaches c, we need to apply the theory of special 

relativity rather than Newtonian mechanics to the situation. 

This applies to the Doppler effect too, whatever the type 

of wave under consideration. The Doppler effect for light is 

always relativistic because c is invariant. 

The speed of sound, whether in uid or solid, is never 

close to c. The speed of a sound wave through diamond, 

at 12 km s 1, is one of the largest values known and this is 

still only 0.004% of the speed of light in a vacuum. The 

relativistic eects are of the order of 10 6 %. For this reason, 

relativity can be ignored when evaluating how the Doppler 

aects sound and other mechanical waves. However, 

when considering Doppler shis for electromagnetic 

radiation, we must be more careful to establish the 

approximations being used. 

What are some practical applications of the Doppler eect?

How can the Doppler eect be explained both qualitatively and quantitatively?

Why are there dierences when applying the Doppler eect to dierent types of waves?

C.5  Doppler eect

▴ Figure 1 An ultrasound image of the heart. The Doppler 

eect enables the speed of blood ow to be measured. The 

dierent colours represent the dierent ow speed.

In this topic, you will learn about:

• the Doppler effect for sound waves and 

electromagnetic waves 

• visualizing the Doppler effect when either the source or 

the observer is moving 

• the relative change in wavelength for a light wave due 

to the Doppler effect 

• shifts in spectral lines that provide information about the 

motion of astronomical objects 
A

H
L

• quantitative Doppler shifts in sound and  

mechanical waves when either the source or the 

observer is moving.O
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Introduction
An ambulance travels along the road at speed, sounding its siren. You notice 

a change in the frequency of the siren — high to low — as the vehicle passes 

you. This is the Doppler effect. It was first suggested by the Austrian scientist 

Christian Doppler, who showed mathematically that an observed wave frequency 

depends on the relative speed between the sound source and an observer. In 

France, the effect is ascribed to Doppler–Fizeau because the Frenchman Amand 

Fizeau extended the work to the spectral shifts in light from stars shortly before 

Doppler’s death. 

The nature of the Doppler eect 

As you saw in Topic C.2, wavefronts from a point source spread out in a sphere. 

Figure 3 is a wavefront diagram showing the effect in two dimensions, but this is 

easily extended to 3D in your imagination. S is the point source and the observer 

of the waves is O. In this and subsequent wavefront diagrams, you are acting as a 

second observer, at rest relative to the medium, and you can see the wavefronts 

together with the movement of both source and observer.

This description and the later derivation of the Doppler equations on page 459 

ignore relativistic effects. In Topic A.5 you met the theory of special relativity. This 

theory has practical importance when speeds are greater than about 
c

5
 (c here is 

the speed of electromagnetic radiation in a vacuum). When we are dealing with 

speeds of sound or with observer/source speeds close to c, then we must allow 

for time dilation and length contraction effects. Wave speeds are invariably very 

much less than c, so this approximation is a good one.

The changes to the Doppler 

equations under relativistic 

conditions are described on 

page464.

Figure 3 shows what happens when neither the source S nor observer O move. 

In this diagram the source is emitting a wavefront at a regular rate (the frequency 

of the wave). The red circles show the position of these wavefronts at equal time 

intervals. Time increases from left to right in the figure. The circular wavefront 

increases in radius by one square between diagrams. The first wavefront reaches 

the observer three time intervals after it was generated. The second wavefront 

crosses the observer one time interval later. The source and the observer agree 

on the rate at which the wavefronts are being generated and detected. 

SS O S S SO O O O

▴ Figure 3 A spherical wave expands. Both source (S) and observer (O) are stationary. O observes the same wavelength and 

frequency as emitted by S.

▴ Figure 2 An observer will hear a 

change in the frequency of an ambulance's 

siren as it passes.
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What happens when the observer or source move relative to the wave as it 

spreads through the medium? There are two cases: source moving and observer 

stationary, and source stationary with observer moving. These are analysed 

separately. For both cases, the source and observer move along the straight line 

that joins them.

The Doppler eect analysed

(a) Moving source — Stationary observer

When the Doppler shift is caused by source movement, there is a change in 

the wavelength of the waves relative to the stationary medium. This is observed 

as a shifted frequency because the wavefronts sweep across the observer at a 

different rate from that at which they were emitted. 

In Figure 4, the source S is moving to the right. It moves half a square during the 

time that a wavefront advances by a full square. Mathematically, the source speed 

is half that of the wave speed. 

Five time intervals elapse over the course of the diagram. There are five 

wavefronts shown and the source has moved 2.5 squares to the right. The 

wavefront emitted earliest is about to cross the observer. Because the wavefront 

moves at the wave speed in the medium, it will cross the observer twice as 

quickly as it would without the source movement. (Look again at Figure 4, 

remembering that the radius of each wavefront is constantly expanding by one 

square every time interval.) The observed frequency increases for the stationary 

observer (in fact, doubling in this case).

When the source is moving away from the observer, the frequency change is in 

the opposite direction. The observed frequency is now less than the emitted 

frequency (Figure 5).

The scale distances between wavefronts as they move across the observer are 

larger than for the original static situation (Figure 3), showing that the wavefronts 

pass over the observer less frequently than before.

(b) Stationary source — Moving observer

When the observer moves but the source is stationary, the wavefronts move 

symmetrically through the medium, expanding as concentric spheres. However, 

because the observer moves towards or away from them, they are detected 

more often or less frequently than they were emitted.

The waves that are created in the medium have the usual spherical pattern 

(circular in 2D). 

When O is moving towards S, the wavefronts are crossed more quickly than 

they were emitted. An increased frequency is observed with an unchanged 

wavelength (because that wavelength is determined by the medium, not by the 

observer). Relative to the observer, the speed of the wave has changed.

When O is moving away from S, then the wavefronts take longer to catch the 

observer up, so that the time period is longer and the apparent frequency 

(according to the observer) is lower.

S

source starting position

O

▴ Figure 4 O is stationary and S is 

moving towards O at half a square per time 

interval. The wavefronts in the medium are 

compressed into a smaller volume because 

of the movement of S.

S

source starting position

O

▴ Figure 5 When S moves away from O, 

the wavelengths observed by O are  

further apart.

S O

▴ Figure 6 O is now moving towards S. O 

crosses the wavefronts more oen than they 

are emitted, so observes a higher frequency.

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



A
H
L

C. Wave behaviour

459

Calculating the observed frequency due to the  
Doppler eect

(a) Moving source — Stationary observer

The change in frequency can be related to the speed of the wave v, the 

frequency emitted by the source f and the source speed us

Worked example 1

A source of sound S is moving at a constant speed along the line joining 

two stationary observers A and B. The diagram shows the wavefronts 

emitted by S in equal time intervals.

a. Explain, with reference to wavelength and wave speed, why 

observer B will detect sound of a higher frequency than observer A.

b. Determine the ratio 
frequency observed by B

frequency observed by A

Solutions

a. B observes a shorter wavelength of sound than A, because at the position of B the wavefronts are closer to each 

other than at the position of A. The speed of the waves is the same according to both observers because they 

are both stationary relative to the medium. Since f =
c

λ
, the shorter wavelength observed by B results in a higher 

frequency.

b. The neighbouring wavefronts are 2.5 m apart at A and 1 m apart at B. Hence 
λA

λB

= 2.5. 

frequency observed by B

frequency observed by A
=

c
λB

c
λA

=
λA

λB

= 2.5.

▴ Figure 7 Modelling Doppler shi when the source is moving and the observer is stationary.

BA

us

S S

us
f

v
f

v
f

1m

S BA

Figure 7 shows the source position S as the point source emits its first wave. One 

time period T later, the source has moved to position S′. T is 
1

f
. The distance SS′

is the source speed × one wave period, which is 
us

f
. The radius of the wavefront 

after time period T is 
v

f
. During this first time period, the wave emitted when the 

source was at S has expanded to become a sphere of diameter AB.

Focus on the wavefront at B which is the position of the observer. At the point S′, 

the source is just emitting another wavefront, so that from the observer’s point  

of view the apparent wavelength of the wave is the distance from S′ to B. This is  

( v

f

us

f
), which can be written as 

(v – us)

f
.
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The observed (apparent) frequency f ′ as detected by the observer is

wave speed in medium

apparent wavelength
=

v

(v  us)

f

This can be rearranged to

f ′ = f ( v

v  us
)

This equation predicts that, when the source is moving towards an observer at B, 

the observed frequency will increase (because the denominator in the fraction is 

smaller than the numerator).

An observer at A on the other side of the source will see the opposite effect. S is 

moving away and the apparent wavelength is now increased to 
v

f
+

us

f
. When the 

equation is rearranged as before, the observed frequency becomes

f ′ = f ( v

v + us
)

and f ′ is smaller than f

Worked example 2

An ambulance moves at a constant speed of 30.0 m s 1 towards a stationary observer. The siren 

of the ambulance emits a sound of frequency 1600 Hz. The speed of sound in air is 340 m s 1. 

Calculate:

a. the frequency of the sound heard by the observer

b. the observed wavelength.

Solutions

a. We have v= 340 m s 1 and us = 30.0 m s 1. The observed frequency is higher than the emitted 

frequency, so we must use the minus sign in the Doppler eect equation:  

f ′ = f
v

v us

= 1600 ×
340

340  30
= 1750 Hz.

b. The observed speed of sound is 340 m s 1, so the wavelength becomes  

λ′ =
v

f ′
=

340

1750
= 0.194 m.

Worked example 3

A train moving at a speed u along a straight track sounds a whistle of frequency 1300 Hz. The 

frequency heard by an observer standing next to the track is 1250 Hz.

a. State the direction of motion of the train relative to the observer.

b. Calculate the ratio 
u

v

 of the speed of the train to the speed of sound.

Solutions

a. The frequency heard is less than that emitted. Hence the train is moving away from the observer.

b. The observer is stationary, and we can nd the speed of the train u by solving the Doppler eect 

equation: f ′ = f
v

v+ u
⇒ u= ( f

f ′
− 1) v. From here, 

u

v
=

f

f ′
− 1 =

1300

1250
− 1 = 0.040. The train is 

moving at 4% of the speed of sound.

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



A
H
L

C. Wave behaviour

461

Practice questions

In questions 1 and 2, assume that the speed of sound in air 

is 340 m s 1

1. A loudspeaker emitting sound with a frequency of 

850 Hz moves in a circle at a constant linear speed of 

12 m s 1. An observer, at rest relative to the centre of 

the circle, is some distance away and in the plane of 

the circle. Calculate the maximum and the minimum 

frequency of the sound heard by the observer.

2. A train approaching a station sounds a horn of 

frequency 900 Hz. A stationary observer on the station 

platform measures a frequency of 970 Hz. Calculate 

the speed of the train.

3. A police car moves along the line joining two 

stationary observers P and Q. The speed of the car is 

10% of the speed of sound in still air. The siren of the 

car emits a sound detected by both observers.

direction of motion
P Q

The frequency of the sound measured by observer P is f. 

What is the frequency measured by observer Q?

A. 
11

10
f   B. 

10

9
f   C. 

12

10
f   D. 

11

9
f

(b) Stationary source — Moving observer

Figure 8 shows the arrangement. The observer moves towards the source with a 

speed uo. The speed of the wave in the medium is v

P
u

o

u
o 

× T’ v × T’

▴ Figure 8 Modelling Doppler shi when the observer is moving towards the 

stationary source.

The observer at O begins exactly one wavelength (in the medium) away from the 

source at S. At this instant, another wavefront is emitted by the source just as the 

observer crosses the previous wavefront.

After a time T ′, the observer is at point P on Figure 8 and observes the second 

wavefront which has travelled from S in the time T ′. This means that the true 

wavelength λ in the medium is

λ = uo × T ′ + v × T ′

The wavelength λ is equal to the product of the speed v in the medium and the 

time period T as emitted by the source:

λ = v × T

Therefore v × T = uo × T ′ + v × T ′and, because f ′ =
1

T ′
 and  f =

1

T
, this leads to

v

f
=

uo

f ′
+

v

f ′
Simplifying this equation gives

f ′ = f (v + uo

v
)

When the observer moves away from the source the sign is negative:

f ′ = f ( v – uo

v
)
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Worked example 4

Waves of frequency 0.50 Hz travel across the surface of a lake at a constant speed of 2.5 m s 1. A boat 

is moving at right angles to the wavefronts. A passenger in the boat observes that the boat crosses the 

wavefronts with a frequency of 0.70 Hz. Calculate the speed of the boat relative to the lake.

Solution

We need to solve the Doppler equation for the unknown speed uo of the boat. f ′= f
v + uo

v
⇒ uo = ( f ′

f
− 1)v

We substitute v= 2.5 m s 1, f= 0.50 Hz and f ′= 0.70 Hz. uo = ( 0.70

0.50
− 1) × 2.5 = 1.0 m s 1

Worked example 5

A bat is ying in a cave at a constant velocity of 6.00 m s 1 towards a at vertical wall. The bat emits an 

ultrasound pulse of frequency 45.0 kHz towards the wall. The ultrasound is reected o the wall and 

returns to the bat. Calculate the frequency of the ultrasound that the bat will hear, assuming that the 

speed of sound in air is 340 m s 1

Solution

The bat is a moving source of waves travelling towards the stationary wall, and the frequency of the 

ultrasound reaching the wall is 45.0 ×
340

340  6.00
= 45.8 kHz. The wall reects the ultrasound with no 

change in frequency, and the bat becomes a moving observer of the approaching wave. The frequency 

heard by the bat is therefore 45.8 ×
340 + 6.00

340
= 46.6 kHz.

The equations can be combined for the general case where the source has 

speed us and the observer has speed uo:

f ′= f (v± uo

v∓ us
)

The upper sign is used when the source and observer are approaching; the 

lower sign when they are moving apart. You will not be asked questions 

involving the simultaneous movement of source and observer in the IB 

Diploma Programme physics examinations.

Predictions — When both source and observer move

Practice questions

In questions 4 and 5 assume that the speed of sound in air 

is 340 m s−1.

4. A stationary siren emits sound of frequency 800 Hz. 

a. A cyclist is moving towards the siren with a 

constant speed of 9.0 m s−1. Calculate the 

frequency heard by the cyclist.

b. Passengers of a car moving away from the siren 

hear a frequency of 750 Hz. Calculate the speed 

of the car.

5. A stationary motion sensor emits a sound pulse of 

frequency 80.0 kHz towards a cart approaching the 

sensor at a speed of 18.0 m s−1. The sound is reected 

o the front of the cart and returns to the sensor. 

Determine the frequency of the returning sound. 

 Hint: consider the cart as (1) a moving observer of  

the emitted pulse and (2) a moving source of the 

reected pulse.
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Doppler eect and light

The nature of electromagnetic radiation means that the Doppler analysis above 

cannot be used for light or any other part of the electromagnetic spectrum. This is 

because, as you saw in Topics A.5 and C.2:

• Electromagnetic radiation does not require a medium through which to travel.

• A postulate of special relativity states that the velocity of light waves is 

constant for all inertial frames (page 164). This is not the case for waves that 

require a medium such as sound. For example, when a sound source moves, 

the wavefronts in the medium are closer than they should be.

• The motion of a source and an observer cannot be distinguished and the 

concepts of source speed and observer speed have no meaning in special 

relativity. They must be replaced by a relative velocity.

However, when the relative speed v between source and observer is very 

much less than the speed of light c (v ≪ c), the equations derived earlier are 

approximately correct. However, modifications to the equations are required:

• The wave speed symbol v changes to c

• The source speed or observer speed becomes v. (There is now no need to 

distinguish between them.)

• The moving source–stationary observer equation f ′ = f ( v

v + us
) changes  

to f ′ = f ( c

c + v
). The equation f ′ = f ( c

c + v
) can be re-written as  

f ′ = f (
1

(c + v

c
) ) = f (1 + 

v

c
). The binomial theorem allows this to be 

expanded as f ′ = f (1 − (v

c
) + (v

c
)

2

+ (v

c
)

3

+ …). As v ≪ c, only the rst 

two terms are signicant so that f ′ ≈ f (1 − 
v

c
). (You are only required to 

know this result, not its derivation.) A further simplification is possible: the 

change in observed frequency Δf is (f ′ f), so that Δf ≈
fv

c
, which leads 

to 
Δf

f
≈

v

c
 providing an equation for the fractional change in frequency. 

It is straightforward to extend the equation to the fractional change in 

wavelength, giving

Δf

f
=

Δλ

λ
≈

v

c

Remember that this set of equations is only true when the relative 

speed v between source and observer is much less than that of 

electromagnetic radiation c

What are the similarities 

and differences between 

light and sound waves?

Light waves and sound waves 

have many similarities. Both types 

of wave demonstrate the wave 

properties described in earlier 

in Theme C. Reflections of light 

may be re-named as echoes in 

sound, but the basic description 

of the phenomenon is the same. If 

you fill a toy balloon with carbon 

dioxide gas (with its high “optical” 

density), it acts as a very effective 

lens for sound waves. Both sets 

of waves can undergo diffraction 

and interference with diffracting 

apertures and source separations 

of an appropriate size.

However, the mechanisms that 

lead to these effects in light and 

sound are very different. Light 

reflection involves absorption 

and re-emission of photons, 

whereas sound reflection involves 

compressions and rarefactions 

at a solid boundary. Also, 

electromagnetic radiation in a 

vacuum has a universal speed 

(which underpins the theory of 

special relativity in TopicA.5) 

which leads to differences 

between the Doppler behaviour 

oflight and sound waves.

You will only need to use the 

result for the fractional changes 

in frequency and wavelength. 

The derivation given here is an 

explanation and is not required as 

part of the course.O
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Worked example 6

A sodium lamp emits light of wavelength 588.995 nm. Calculate the wavelength according to an 

observer moving towards the lamp at a speed of 25 km s 1

Solution

The change in the wavelength can be calculated from the Doppler equation:  

Δλ ≈ λ 
v

c
= 588.995 ×

25 × 103

3.00 × 108
= 4.9 × 10 2 nm. The distance between the source and the 

observer decreases, so the observed wavelength is shorter than the emitted wavelength. 

λobs = 588.995 – 0.049 = 588.946 nm.

Worked example 7

An ultraviolet wavelength of 85.0 nm is observed in the spectrum of a distant galaxy. 

A corresponding stationary source on Earth emits a wavelength of 78.0 nm.

a. Explain the direction of motion of the galaxy relative to the Earth.

b. Calculate the relative speed of the galaxy.

Solutions

a. The observed wavelength (85.0 nm) is longer than the emitted wavelength (78.0 nm).  

Hence the galaxy is moving away from Earth.

b. v ≈
Δλ

λ
c =

85.0  78.0

78.0
c = 8.97 × 10 2 c. The galaxy is receding at approximately 9% of the 

speed of light.

What happens if the speed of light is not much larger than the relative speed between the 

source and the observer?

The Doppler effect for sound can seem quite different from that for electromagnetic waves both algebraically and in its 

origin. A relativistic treatment should really be used for both. However, as mentioned earlier in this topic, the speed of 

sound waves is so much less than c, so 
Δf

f
=

Δλ

λ
≈

v

c
 is a good approximation.

When v and c are closer, then a full relativistic treatment is required. The ideas of Topic A.5 lead to a full relativistic 

expression for the Doppler effect which applies to all waves:

fR

fS

= 

(1 – 
vR

cS
)

(1 + 
vS

cS
)

×

1 – ( vS

c )
2

1 – ( vR

c )
2

Here vR and vS are the speed of receiver and source, respectively. It is no longer appropriate to talk in terms of source 

and observer. The speed of sound in the medium is cS. When vR, vS, and cS are much smaller than c, then the value of the 

term within the square root is close to 1 and

fR

fS

≈ 

(1 – 
vR

cS
)

(1 + 
vS

cS
)

which is the same as the approximate expression earlier.

Another special case is cS = c, which gives the relativistic Doppler equation for light.
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Practice questions

6. The frequency of light reaching Earth from a 

distant galaxy is 1.2% lower than the frequency of a 

corresponding stationary source.

a. Calculate, in terms of c, the relative speed of the 

galaxy. State whether the galaxy is approaching or 

moving away from Earth.

b. A stationary source emits a spectral line of 

wavelength 527.0 nm. Calculate the wavelength 

of the same line observed in the light from  

the galaxy.

7. A spaceship approaches a space station at a relative 

speed of 0.050 c. The space station emits a navigation 

signal of frequency 2.80 MHz towards the spaceship. 

Calculate the frequency of the signal received by  

the spaceship.

Applications of the Doppler eect

Medical 

Ultrasound consists of sound waves that have a frequency greater than 20 kHz 

and that are inaudible to most people. It has several uses in medicine. One of 

these is the non-invasive measurement of the speed of blood flow in blood 

vessels. An assessment of the speed and quality of flow is important in the 

diagnosis of some heart and tissue diseases.

Figure 9 shows the arrangement that can be used.

A transducer that transmits and receives high-frequency sound produces a beam 

that is directed into a blood vessel. The beam is reflected from moving blood 

cells so that there is a double Doppler effect.

• First, the transducer source is stationary and the “observer” (the blood cell)  

is moving. 

• Then, aer reection, the blood cell, as the source, is moving and the 

observer (the transducer now in its receive mode) is stationary. 

The speed of sound in liquids is roughly 1.5 km s 1 and the flow speed of the 

blood cell is around 1 m s 1. This means that u ≪ v (using the notation developed 

earlier) and the approximation 
Δf

f
≈

u

v
 is valid. Because of the double Doppler 

shift the equation becomes

Δf

f
≈

2u

v

There is, however, an angle 휃 (as shown in Figure 9) between the beam direction 

and the flow direction. The system will measure the component of blood speed 

in the beam direction so that the fractional change in frequency will be

Δf

f
≈

2u cos θ

v

The advantage of using ultrasound in this way is that the transducer does not 

have to be inserted into the blood vessel. It is a non-invasive technique. Lack 

of corrosion to the instrument or issues surrounding possible infection for the 

patient are other advantages.

▴ Figure 9 Ultrasound measurements of 

blood ow.

blood

cells

v direction

of blood

flowblood vessel

ultrasound beam

θ

transmitter–receiver
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Doppler originally hypothesized his effect to explain 

the colour of binary stars. Modern astronomers still use 

Doppler shift to estimate galactic and stellar speeds. 

Topic E.1 explains how emission and absorption spectra 

from atoms and ions arise. The spectra are characteristic of 

the chemical element that emits them. When spectra from 

astronomical objects are observed, the spectral lines are 

found to have different wavelengths compared with the 

wavelengths measured with laboratory sources on Earth. 

The reason for the wavelength change (or “shift”) is that 

the laboratory sources are at rest relative to the observer, 

whereas the astronomical objects are not. Figure 10 shows 

typical observations of the absorption line spectra from stars.

The unshifted spectrum is at the top of Figure 10 and 

this is what would be seen with no relative motion 

between the source and the observer. Some spectra 

from distant galaxies are shifted to the red end of 

the spectrum. This is called “redshift”. It shows that 

the wavelength is longer than expected, so that the 

frequency is too small. To cause this effect, the source 

of the radiation must be moving away from us. Similarly, 

a blueshift – wavelength too short – indicates that the 

source is approaching Earth.

However, the redshift is not always due to relative 

motion between source and observer in astronomical 

observation. There are two other reasons why it 

can occur:

• Gravitational redshi occurs because 

electromagnetic waves are moving through a strong 

gravitational eld.

• Cosmological redshi occurs because spacetime 

has continued to expand aer the Big Bang.

What gives rise to emission spectra and how can they be used to determine  

astronomical distances?

unshied

redshied

blueshied

▴ Figure 10 The eects of blueshi and redshi on the 

observed absorption line spectra from stars.

RADAR

The acronym “radar” stands for radio detection and ranging. It is a technique that 

has been in use for almost a century and allows the detection and measurement 

of many moving and stationary objects. 

The wavelengths used for radar are usually in the microwave region or slightly 

longer with some merging into the radio part of the spectrum. Many of the 

applications involving radar involve static determinations of distance, including 

collision avoidance in sea and air travel, and density anomaly detection  

below ground. However, applications that combine the Doppler effect and  

radar include:

• ow measurements in many context — medical, rain cloud speed 

measurements, weather forecasting

• vehicle speed determinations (police speed traps)

• remote sensing of ocean currents

• measurement of turbulence in river and ocean ow.
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In 1929, Edwin Hubble published his observations of some distant galaxies. By measuring the redshi of the 

galactic spectra, he deduced their recessional velocity — the speed at which they are moving away from us.  

He observed that the more distant a galaxy, the faster it was moving away — an observation which is known 

today as Hubble’s law.

Some modern measurements of some galactic clusters are shown in the table below.

Cluster Abell 

reference

Distance / 106

light years

Recessional 

velocity / km s−1

Centaurus Cluster Abell 3526 164 ± 12 3121

Hydra Cluster Abell 1060 208 ± 16 3988

Norma Cluster Abell 3627 230 ± 16 4707

Perseus Cluster Abell 426 252 ± 18 5396

Leo Cluster Abell 1367 327 ± 23 6465

Hercules Cluster Abell 2151 538 ± 38 11106

Corona Borealis 

Cluster
Abell 2065 1073 ± 75 22213

• Plot a graph of recessional velocity against distance. Include error bars on your graph to show the 

uncertainties in the distance. (The uncertainties in the velocity are much smaller and would be hard to 

show on your graph.)

• Find the gradient of your graph and, using the error bars on your graph, determine the uncertainty in the 

gradient.

• Quasar MRK 1014 (a very distant and very bright galaxy) is observed to have a spectral line with a 

wavelength of 763.3 nm. This spectral line is expected to have a wavelength of 656.3 nm in the rest 

frame.

º   Calculate the recessional speed of Quasar MRK 1014.

º  Assuming that this quasar also ts the Hubble law trend from your graph, calculate the distance to 

Quasar MRK 1014. Give an uncertainty with your answer.

Data-based questions

Research skills ATL

Astrophysics is a subdiscipline of physics which is 

concerned with the study of astronomical objects 

such as stars, galaxies and superclusters of galaxies. 

Astrophysics follows the same scientic methods as the 

rest of physics in that theoretical models are compared 

with experimental evidence. However, the experimental 

evidence is normally in the form of astronomical 

observations.

The best quality observations are oen made by large 

telescopes which can generate a large amount of data 

due to the large numbers of stars and galaxies in the 

observable universe. The data are oen shared in the 

form of a database so that other astrophysicists can test 

their models against the observations. A collection of 

observations from one source is oen called a catalogue.

An example of one such catalogue is the Abell catalogue 

of galactic clusters. In the data-based question, each 

galactic cluster has a reference (e.g. Abell 3526) 

so that astrophysicists can refer to galactic clusters 

unambiguously.

Oen many catalogues and sets of data are published in 

online databases. For example, the NASA Extragalactic 

Database (NED) contains a database of observations 

of galaxies and galactic clusters. You should be able to 

nd this database online. Try to nd some of the galactic 

clusters in the data-based question.
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You can use the Doppler effect to determine the speed of a moving object, and it does not necessarily rely on sound 

waves. For example, you can use a radar speed gun to determine the speed of an automobile. A similar technique can 

be used to measure the speed of blood flowing in a patients artery, except that microwaves are used. The frequency 

received by the moving object is doppler shifted relative to the transmitted frequency. The receiver then reflects this 

shifted frequency back to the stationary source. When the observer receives the signal a double shift has occurred, and 

the frequency difference yields a value for the relative speed.

This technique can be extended to astronomical measurements too. The small changes in the speed of the Moon along 

the orbital radius that connects it to Earth can be measured by reflecting radio waves from the Moon’s surface and using 

the shift in frequency.

How can the Doppler effect be utilized to measure the rotational speed of extended bodies?

The Doppler effect is frequently used to measure the 

tangential speed of nearby stars or planets.

Figure 11 shows three points on the rotating body from which 

electromagnetic radiation is reaching an observer. The body 

rotates anticlockwise as viewed in the diagram. Point C is 

moving towards the observer while point A is moving away. 

These lead to Doppler shifts to shorter wavelengths from 

C and to longer wavelengths from A. The wavelength from 

point B is unshifted because the velocity of the surface of the 

body is at right angles to the line joining B to the observer.

Measurements of the three frequencies allow the tangential speed of the emitting parts of the surface to be estimated 

using the Doppler equations. This leads to the rotational period of the body.

How can the use of Doppler effect for light be used to calculate speed? (NOS)

Worked example 8

Absorption by mercury atoms is responsible for a spectral line of wavelength 546 nm 

present in the spectrum of the Sun. When the line is observed in the light coming from the 

opposite limbs of the solar disk, it is found that the wavelength is shied by +0.0037 nm and 

−0.0037 nm, compared with the wavelength observed at the centre of the disk.

a. Describe how this observation provides evidence for the rotation of the Sun.

b. Calculate the speed of the edge of the Sun relative to Earth.

c. The radius of the Sun is 7.0 × 108 m. Determine, to the nearest day, the rotational period of 

the Sun.

Solutions
a. The wavelength shi indicates that one of the ends of the solar disk is moving towards the 

Earth and the opposite end away from Earth, as if the Sun is rotating about the axis roughly 

perpendicular to the line of sight.

b. v =
Δλ

λ
c =

0.0037

546
× 3.00 × 108 = 2.0 × 103 m s 1

c. The rotational period is T =
2πR

v
, where 2πR is the circumference of the Sun and v is the 

tangential speed found in part b. T =
2π × 7.0 × 108

2.0 × 103
= 2.2 × 106 s = 25 days.

A

C

▴ Figure 11 The three points on the rotating object all 

have dierent speeds relative to the (stationary) observer.
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Worked example 9

Microwaves of frequency 24 GHz are emitted by a police radar towards an approaching car. 

The reected microwaves are recorded by the radar and it is found that their frequency is 

shied by 5.6 kHz.

a. Explain why the frequency shi Δf satises the equation Δf =
2v

c
f, where f is the emitted 

frequency and v is the speed of the car.

a. Determine the speed of the car.

b. Calculate the wavelength of the microwaves emitted by the radar.

c. Calculate the wavelength shi of the returning microwaves.

Solutions

a. According to the Doppler equation, the frequency of the microwaves incident on the 

approaching car is shied by 
v

c
 f. The car reects the microwaves and thereby becomes 

the moving source of the returning wave. Relative to the radar, the reected microwaves 

experience another frequency shi of nearly the same magnitude, 
v

c
 f.  The combined 

frequency shi is therefore Δf =
2v

c
 f

b. v =
Δf

2f
c =

5.6 × 103

2 × 24 × 109
× 3 × 108 = 35 m s 1

c. λ =
c

f
=

3 × 108

24 × 109
= 1.25 × 10 2 m ≈ 1.3 cm

d. The relative shi in the wavelength is the same as the frequency shi:  
Δλ

λ
=

Δf

f
. Therefore, Δλ = λ

Δf

f
= 1.25 × 10 2 ×

5.6 × 103

24 × 109
= 2.9 × 10 9 m.

Practice questions

8. A hydrogen line of wavelength 656 nm is observed  

in light from a nearby star. The star rotates around an 

axis perpendicular to the line of sight and the linear  

speed of the points on the equator of the star is  

9.5 × 104 m s 1. Estimate the width of the hydrogen 

line. Assume that its broadening is only caused by  

the Doppler eect of light emitted from dierent 

points on the star’s disk.

9. Microwaves of wavelength 2.5 cm are emitted 

towards an airplane that is moving with a speed of 

220 m s 1 away from the source of the microwaves. 

Calculate:

a. the frequency of the emitted microwaves

b. the frequency shi of the microwaves reected 

from the airplane.

10. Ultrasound beam of frequency f = 40 kHz is used in a 

medical examination to determine the speed of blood 

ow in an artery of a patient. The frequency of the 

returning ultrasound is reduced by Δf = 5.3 Hz. The 

speed of ultrasound in body tissue is v = 1500 m s 1

a. Outline why the relative frequency shi is 

approximately given by 
Δf

f
=

2u

v
, where u is the 

speed of blood cells in the artery.

b. Calculate the speed of blood cells.
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Theme C End-of-theme questions

Theme C — End-of-theme questions
1. Two loudspeakers, A 

and B, are driven in 

phase and with the same 

amplitude at a frequency 

of 850 Hz. Point P is 

located 22.5 m from A 

and 24.3 m from B. The 

speed of sound is 340 m s−1

a. Deduce that a minimum intensity of sound is heard at P.

b. A microphone moves along the line from P to Q. PQ is 

normal to the line midway between the loudspeakers.

P

Q

direction

of travel

A

B

   The intensity of sound is detected by the 

microphone. Predict the variation of detected 

intensity as the microphone moves from P to Q.

c. In another experiment, loudspeaker A is stationary 

and emits sound with a frequency of 850 Hz. The 

microphone is moving directly away from the 

loudspeaker with a constant speed v. The frequency 

of sound recorded by the microphone is 845 Hz.

 i. Explain why the frequency recorded by the 

microphone is lower than the frequency 

emitted by the loudspeaker.

 ii. Calculate v

2. The red line in the graph shows the variation with 

distance x of the displacement y of a travelling wave at  

t = 0. The blue line shows the wave 0.20 ms later. The 

period of the wave is longer than 0.20 ms.

6

4

2

Q

y
/
c
m

x
/
c
m

0

–2

–4

–6

P

0.0 0.2 0.4 0.6 0.8 1.0

a. i. Calculate, in m s–1, the speed for this wave.

 ii. Calculate, in Hz, the frequency for this wave.

b. The graph also shows the displacement of two 

particles, P and Q, in the medium at t = 0. State and 

explain which particle has the larger magnitude of 

acceleration at t = 0.

c. One end of a string is attached to an oscillator and 

the other is xed to a wall. When the frequency of 

the oscillator is 360 Hz the standing wave shown is 

formed on the string.

2.1m

oscillator

 The frequency of the oscillator is reduced to 

120 Hz. Draw the standing wave that will be formed 

on the string.

3. A vertical solid cylinder of uniform cross-sectional area A

oats in water. The cylinder is partially submerged. When 

the cylinder oats at rest, a mark is aligned with the water 

surface. The cylinder is pushed vertically downwards so 

that the mark is a distance x below the water surface.

cylinder floating

at rest

cylinder pushed

downwards
mark

x
water

surface

At time t = 0 the cylinder is released. The resultant vertical 

force F on the cylinder is related to the displacement x of 

the mark by F = –ρAgx, where ρ is the density of water.

a. Outline why the cylinder performs simple harmonic 

motion when released.

b. The mass of the cylinder is 118 kg and the cross-

sectional area of the cylinder is 2.29 × 10−1 m2. The 

density of water is 1.03 × 103 kg m−3. Show that the 

angular frequency of oscillation of the cylinder is 

about 4.4 rad s−1

c. i. The maximum kinetic energy of the cylinder is 

Ekmax. Draw the graph to show how the kinetic 

energy of the cylinder varies with time during 

one period of oscillation T

 ii. The cylinder was initially pushed down a 

distance x = 0.250 m. Determine Ekmax

22.5m

P

24.3m
A

B

A
H
L

A
H
L
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C. End-of-theme questions

4. The diagram shows the direction of a sound wave 

travelling in a metal sheet.

metal sheet

not to scale 

n
o

t 
to

 s
c

a
le

 

normal

54°

Q

P

air

wave

direction

a. Particle P in the metal sheet performs simple 

harmonic oscillations. When the displacement 

of P is 3.2 μm the magnitude of its acceleration 

is 7.9 m s−2. Calculate the magnitude of the 

acceleration of P when its displacement is 2.3 μm.

b. The wave is incident at point Q on the metal–air 

boundary. The wave makes an angle of 54° with 

the normal at Q. The speed of sound in the metal is 

6010 m s–1 and the speed of sound in air is 340 m s–1. 

Calculate the angle between the normal at Q and 

the direction of the wave in air.

c. The frequency of the sound wave in the metal is 

250 Hz. Determine the wavelength of the wave 

in air.

d. Sound of frequency f = 2500 Hz is emitted from an 

aircra that moves with speed v = 280 m s–1 away 

from a stationary observer. The speed of sound in 

still air is c = 340 m s–1

stationay

observer

not to scale 

Calculate:

i. the frequency heard by the observer

ii. the wavelength measured by the observer.

5. Monochromatic coherent light is incident on two 

parallel slits of negligible width a distance d apart. A 

screen is placed a distance D from the slits. Point M is 

directly opposite the midpoint of the slits.

monochromatic

coherent light

slits

diagram not to scale

screen

d
D

P

M

a. P is the rst maximum of intensity on one side of M. 

The following data are available:

d = 0.12 mm 

D = 1.5 m 

 Distance MP = 7.0 mm

 Calculate, in nm, the wavelength λ of the light.

b. The width of each slit is increased to 0.030 mm. 

D, d and λ remain the same.

 i. Suggest why, aer this change, the intensity at 

P will be less than that at M.

 ii. Show that, due to single slit diraction, the 

intensity at a point on the screen a distance of 

28 mm from M is zero.

A
H
L

A
H
L
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Introduction

The concept of field is the central idea of Theme D. Fields 

are the way we describe and quantify “action at a distance”. 

This is where an object exerts a force on another object 

even though they are not in contact. Mass gives rise to a 

gravitational field and another object with mass in this field 

will experience a force of attraction. 

Theme D deals with other fields besides gravity: electrostatic 

(electric) and magnetic. Charge is the quantity – whether 

stationary (electric) or moving (magnetic) – that gives rise to 

the fields in this case.

Patterns and trends abound in this theme. The forces of 

gravitation and electrostatics are controlled by separate 

laws that both depend on 
1

distance2
. These laws are known 

as inverse-square and lead to patterns that are common to 

both fields. Use the similar patterns that arise to link your 

learning of these new concepts. They will also help you to 

link your knowledge of energy transfer from Themes A and B 

to Theme D.

As always, the over-riding concepts of physics: energy, 

particles, and forces are intimately bound together within 

field theory. As a charged particle moves in an electric field, 

energy is transferred to or from the field–particle system. 

When a force acts on the particle and the particle moves with 

a displacement component in the direction of the force then 

work is done. This leads to new ideas of potential, a property 

of the field, and potential energy – a measure of the energy 

stored within the field due to the presence of an object. 

These are the quantities we use to describe energy transfer 

within field theory. Strong links exist between the strength of 

a field and the variation of potential with distance; these are 

explored in detail in this theme.

This theoretical study of fields has practical consequences: 

The first use of magnetic fields for recording sound dates to 

1888 and magnetic tape was developed in 1928. By storing 

the 1s and 0s of binary data as a pattern of magnetised areas 

on a magnetic tape or disc, large quantities of data can be 

stored and this method of storing data is still used today. A 

1 TB hard disk, now considered a small storage amount, can 

hold roughly 19 million documents each one four pages 

long or perhaps 40 days of video. Bigger and better forms of 

computer storage are being developed all the time.

The moon’s surface is covered with craters, each of which 

are due to the transfer of gravitational potential energy into 

kinetic energy of an asteroid. The size of the crater is related 

to the work done on the moon’s surface by the asteroid’s 

collision which in turn, is related to the gravitational potential 

energy of the asteroid. Since all these asteroids were in the 

same gravitational field – that of the moon, an asteroid with 

more mass will have a greater initial energy and thus cause 

a larger crater. The pattern of craters on the moon tells the 

history of these impacts.

One final but important caveat: What field theories cannot 

tell us is how the fields arise – we do not yet know what 

causes one mass to attract another. Nevertheless, the 

inverse-square laws of Newton and Coulomb, and the field 

theories to which they lead, enable physicists to measure 

the properties of the smallest particles in our Universe and to 

plan journeys deep into interstellar space.

473
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Sometimes the origin of the force acting between two 

objects is obvious. One example is the friction pad in a 

bicycle brake rubbing on the rim of the wheel to slow the 

bicycle down. In other cases there is no physical contact 

between two objects even though a force exists between 

them. Examples of this include the magnetic force 

between the north-seeking poles of two magnets and the 

electrostatic force between a charged plastic comb and 

some small pieces of paper. Such forces are said to “act at 

a distance”. 

We say that in the case of the comb picking up the paper, 

the paper is in the electric field due to the comb. The 

concept of a field is a powerful one in physics, not least 

because there are many ideas and pieces of mathematics 

common to all fields. 

We need to quantify what we mean by a field. In this topic, 

this is done in the context of gravitation. TopicD.2 extends 

the field concept to electrostatics and magnetism. Similar 

mathematical rules are imposed on all three fields. Learn the 

underlying ideas and concepts of one type and you have 

learned them for the others too. 

An over-arching connection between electrostatics and 

gravitation is the inverse-square law that you have already 

met in the context of light intensity: double the distance 

from a point source, and the intensity decreases to one-

quarter of its original value. The implication here carries 

through to the inverse-square law fields — the influence 

of the electric or the gravitational field stretches out to 

infinity. It took the genius of Newton to recognize the truth 

of this for gravity.

It is this consequence — that gravitational force extends 

to infinity — that allows us to predict the effects of gravity 

at large distances from our planet and our Sun. We can 

calculate to a high degree of precision the future path of 

a space vehicle as it travels away from Earth. All from a 

simple law that states that

force ∝
1

distance2

How are the properties of a gravitational field quantified? 

How does an understanding of gravitational fields allow for humans to explore the Solar System?

D.1   Gravitational fields

• Kepler’s three laws of orbital motion

• Newton’s universal law of gravitation 

• the conditions under which extended bodies can 

be treated as point masses

• the definition of gravitational field strength 

• gravitational field lines

In this topic, you will learn about: 

A
H

L• the work done in moving a mass m in a 

gravitational field

• equipotential surfaces for gravitational fields

• the relationship between equipotential surfaces 

and gravitational field lines

• escape speed and orbital speed

• the effect of the atmosphere on the height and 

speed of an orbiting body.A
H

L • gravitational potential and gravitational potential 

energy

• gravitational field strength g as gravitational 

potential gradient

▴ Figure 1 This observatory in Arizona, USA, monitors and 

searches for near-Earth asteroids. Tracking these asteroids and 

calculating their future paths can predict whether they are likely to 

collide with Earth.
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Introduction
Isaac Newton developed a theory of gravitation as well as his laws of motion. His 

law of gravitation is mathematical in nature but cannot be proved. He makes no 

attempt to explain why two masses are attracted by the force of gravity; he simply 

accepts that they are. Topic D.1 examines Newton’s law of gravitation in detail.  

As well as setting out the law, it describes the mathematics of eld theory and  

its consequences.

▸ Figure 2 The force of gravity is signicant on very 

large scales. Here, two spiral galaxies are seen interacting 

and merging 450 million light years from Earth.

The realization that Earth orbits the Sun rather than the 

other way round was one of the great developments in 

scientic understanding. Galileo Galilei and others in 

the 16th century overcame cultural, philosophical and 

religious prejudices to establish this. Some even suered 

persecution for the scientic truths they discovered. 

However, Galileo was not the first scientist to propose 

such a model. Copernicus, a Polish mathematician and 

astronomer, had published a model of the universe 

with the Sun at its centre shortly before his death in 

1543 — almost 90 years before Galileo published 

hisideas.

An earlier suggestion of heliocentrism (the idea of the 

Sun being at the centre) was proposed by Aristarchus, 

an Ancient Greek astronomer (c.310–c.230 BCE). Many 

Islamic astronomers of the 12th and 13th centuries 

questioned astronomical models in which the Sun 

orbited Earth. Copernicus cited the work of these 

astronomers, naming al-Battānī (c.858–929), Thābit ibn 

Qurra (c. 836–901), al-Zarqālī (1029–1087), ibn Rushd 

(1126–1198) and al-Bitruji (died c. 1204). However, it 

appears that he removed the section which cited the 

work of Aristarchus.

Research the lives and discoveries of some of these 

astronomers.

▴ Figure 3 A diagram from De revolutionibus orbium 

coelestium in which Copernicus shows Earth orbiting around 

the Sun.

Research skills  ATL

Fields

Pick up a stone and you feel the pull of Earth acting on the stone through your 

hand. Let go and it accelerates towards the ground. There is a gravitational force 

acting on the stone that is direct and observable. 

This gravitational force acts at a distance and has a force eld associated with 

it. Imagine two masses in deep space with no other masses close enough to 

inuence them. One mass (call it A) is in the gravitational force eld due to the 

second mass (B). A force acts on A due to B. B is in the gravitational eld of A 

and it also experiences a force. These two forces have an equal magnitude (even 

though the masses may be dierent) but act in opposite directions.
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The term eld is used in physics for cases where two separated 

objects such as A and B exert forces on each other. A eld exists 

when one object can exert a force on another object at a distance. 

Every mass has a gravitational eld associated with it. Any other 

mass placed in this eld experiences the gravitational force. 

The idea that an object must be in the relevant eld, but not 

necessarily in contact with the source of the eld, is known as 

“action at a distance”. It is normally assumed that there are no 

time delays whatever the distance between the two masses. 

However, a consideration of time delays becomes essential when 

relativistic eects need to be included, as in Topic A.5.

The concept of a eld requires the idea of action at a distance 

where one object inuences another without the need for 

physical contact. The acceptance, in the history of science, of 

action at a distance was dicult and represented a signicant 

paradigm shi.

The same idea is applied to electric charge in Topic D.2 where 

one charged object can attract or repel another.

The benets of both a consistent terminology 

and a consistent set of concepts to describe 

eld theory are clear and are explained 

throughout this theme. This consistency goes 

beyond its convenience when learning the 

subject and underpins the work of the whole 

scientic community.

Scientists have to communicate and 

collaborate with each other. They adopt similar 

conventions to make this communication 

unambiguous.

What other concepts in this course involve a 

consistent terminology that links scientic work 

in dierent areas of the subject?

What are the benefits of using 
consistent terminology to describe 
different fields? (NOS)

Modern theories suggest that elds, in general, do not have 

a negligible time delay. According to Einstein’s theory of 

general relativity, rapidly accelerating masses should create 

a change in the gravitational eld that ripples outwards as a 

gravitational wave. These waves were rst detected in 2015 

by the LIGO detectors. A year later, gravitational waves 

were detected from two colliding neutron stars. These 

waves coincided with the detection of gamma rays from 

the same event. Even though the event occurred about 

130 million light years away, the two signals were detected 

within two seconds of each other. This demonstrated that 

gravitational waves propagate at the speed of light.

Modern physics explains interactions using the concept 

of exchange particles that have a nite (and calculable) 

lifetime. The eld is our way of observing the operation 

of these particles at a macroscopic level. This model 

suggests that there must be an exchange particle for 

the gravitational interaction. This hypothetical particle is 

named a graviton and, like the photon which propagates 

electromagnetic interactions, should have no mass. The 

graviton has not been proven to exist and the models and 

theories which explain it are incomplete.

Theories

▴ Figure 4 One of the LIGO detectors which were responsible 

for detecting gravitational waves in 2015.

Dening gravitational eld strength 

When both masses are small (the size of a human being), the force of gravity 

between them is extremely small. Even two large rocks with a mass of 1000tonnes 

each only have a gravitational attraction of about one newton when they are 

touching. The force becomes noticeable to us on an everyday basis when one mass 

is the size of a planet. Gravitational force is the weakest of the fundamental forces and 

we need a way to measure the strength of a eld that arises from even a small mass. 

The strength of a gravitational eld is dened using the idea of a small test mass. 

This test mass must be small so that it does not disturb the eld being measured. 
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If the test object were large, then it would a exert a large enough force on 

the object that originates the measured eld to accelerate it and change 

the system that is being measured. 

The gravitational force that acts on the small test mass in Figure 5 has both 

magnitude and direction. These are shown in the diagram. The test mass 

will accelerate in this direction if it is free to move.

Gravitational eld strength g is dened as

g =
F

m

where F is the gravitational force on the test mass of size m. The units of 

gravitational eld strength are N kg−1. 

Gravitational eld strength is a vector quantity as it has a magnitude and a 

direction — the direction of the force acting on the test mass. 

A formal denition in words is as follows.

Gravitational eld strength g at a point is the force per unit mass  

experienced by a small point mass placed at that point.

This denition requires that the mass of the test object is not only small but is also 

an innitesimally small point in space. The presence of any test object distorts and 

alters the eld in which it is placed since the test object carries its own eld. This 

raises the question of how the situation changes when there is more than one 

mass, excluding the test object itself.

Field strength is independent of the magnitude of the point test mass (because  

g =
F

m
). The vector eld strengths can therefore be added together (Figure 6). 

field strength A

4 units 

field strength B

3 units 

resultant field strength 4 − 3 = 1 unit

▴ Figure 6 Two gravitational eld strengths act at the same point. The resultant of these two 

vectors is the total gravitational eld strength there. The eld strengths are added vectorially.

The denition of eld strength as 

a quantity involves the idea of a 

test object. This object has the 

property that it is aected by the 

eld. For a gravitational eld we 

need a test mass. For an electric 

eld we need a test charge. 

The eld strength is dened as

force acting on the test object

size of the test object

What is meant by “size” here 

depends on the eld. For gravity, it 

will be mass of the test object; for 

electric elds, it will be the amount 

of charge on the object.

The denition is changed slightly 

for magnetic elds because 

of the way these elds arise. 

However, the general shape of 
force

size of the quantity
 can still be 

seen in the denition of magnetic 

eld strength in Topic D.3.

Measurements — 

Dening eld strength 

in general

large mass M

small test

mass, m

force, F

gravitational

field strength =
F
m

▴ Figure 5 The denition of gravitational 

eld strength.

The gravitational, electric and magnetic 

elds described in Theme D are vector 

elds because the elds and the forces they 

represent have magnitude and direction. 

Other types of elds have only magnitude 

and are known as scalar elds. The scalar 

potential eld is used to describe gravitational 

and electric elds (Topic D.2). See page 339 

for more on vectors and scalars. 

At Earth’s surface (using Newton’s second law: F = ma),

=
force on amass at the surface due to gravity in N

size of themass in kg

acceleration due to gravity

at the surface inm s
2

The acceleration =
F

m
 but 

F

m
 is also the denition of gravitational eld strength 

for a test mass, so

acceleration due to gravity ≡ gravitational eld strength = g

(The symbol ≡ means “is equivalent to”.)

The magnitude of the gravitational eld strength (measured in N kg−1) is equal 

to the value of the acceleration due to gravity (measured in m s−2). You should 

be able to show that N kg−1
≡ m s−2

Gravitational eld strength vs acceleration due  

to gravity 
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Newton’s universal law of gravitation

Newton realized that the gravitational force F between two objects with masses 

m
1

and m
2

whose centres are separated by distance r is:

• proportional to 
1

r
2

• proportional to the masses m
1

and m
2

• always attractive.

This leads to

F = G
m1m2

r2

where G is known as the universal gravitational constant and has an accepted 

value of 6.67 × 10−11 N m2 kg−2

When we combine Newton’s law of gravitation with the eld strength denition, 

it allows us to write the gravitational eld strength due to a point mass in a more 

useful way.

A simple case is the eld experienced by a test mass of mass m placed a distance r

from a large point object of mass M. The magnitude of the force F between point 

object and test mass is F = G
Mm

r2
. Using the eld strength denition g =

F

m
 gives

g =
F

m
=

G
Mm

r2

m
=

GM

r2

Remember that the distance is measured outwards from the large point object 

but the force on the test object is inwards along the radius towards the position of 

the point object.

Inverse-square laws

Laws that depend on 
1

r
2

are known as inverse square. For Newton’s law of 

gravitation, when the distance between the two masses is doubled without 

changing mass, then the force between the masses goes down to one-quarter of 

its original value.

That the acceleration due to 

gravity is equivalent to the 

gravitational eld strength relies 

on two denitions of mass being 

equivalent. The rst is the concept 

of inertial mass — the property 

of an object that denes how it 

accelerates when an unbalanced 

force is applied. This is the term 

that appears in Newton’s laws 

(F = ma) and in the denition of 

momentum, p = mv. The second 

is the concept of gravitational 

mass — the term that appears in 

equations such as Newton’s law 

of gravitation or the equation for 

weight, W = mg. The idea that the 

inertial mass and the gravitational 

mass of an object are the same is 

called the equivalence principle

The equivalence principle was an 

important consideration in Einstein’s 

development of general relativity. 

One of Einstein’s premises was that 

we cannot distinguish between 

the eects of a gravitational eld 

and the eects of acceleration. The 

equivalence principle has been 

tested experimentally and shown to 

be true to one part in 1015

Should we distinguish between 

these two types of mass?

Equivalence principle

A page of the Physics Data Booklet is devoted to 

fundamental constants. Some of these, such as 

G, c, h and e are truly fundamental in that they are 

believed to be constant throughout the universe and 

unchanging in time. Since 2019, SI units have been 

defined in terms of seven of them.

The fundamental constants are discussed in Tools for 

physics (page 334) . 

Working from these constants, a consistent set of 

units (A, m, s and so on) can be developed and used 

to calibrate instruments.

The determination of the constants is, however, 

ultimately a question of definition. The process used 

existing measurements to give the best estimate of 

each of the definitions. These measured values then 

formed the basis of the new 2019 SI definitions.

The need for a common set of units for mass, length 

and time affects all of us. The agreements between 

scientists and engineers that led to these standard 

units is one of the best examples of the global impact 

of science.

Physics utilizes a number of constants such as G. What is the purpose of these constants and 
how are they determined? (NOS)
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This is a good example of where mathematics can help you to learn and 

conceptualize ideas about physics. When you have learned about one situation 

(in this case, gravitation) then you will be able to apply the same rules to new 

situations (for example, electric elds, in Topic D.2). Both elds obey the inverse-

square law in which the force depends on 
1

distance
2

. An inverse-square rule also 

arises in the context of radiation from the geometry of space (page 229).

The exact value of n in 
1

r
n

 has been tested many times since the inverse-square 

behaviour of electric and gravitational elds was suggested. For electric elds,  

n is known to be within 10−16 of n = 2.

One consequence of a force law being inverse square is that the force becomes 

weaker as the distance increases, but never becomes zero at any nite distance. 

We say that the “force is zero at innity”. There is no actual innity point in space, 

but there can be one in our imagination. We use innity as a useful concept for 

our energy ideas later and in Topic D.2. In one sense, innity can be pushed 

further away as the instruments that measure eld strength become more precise! 

In mathematical terms, as r tends to innity, 
1

r
2

 tends to zero.

There is a story that Newton’s insight into the force of 

gravity arose when he saw an apple falling from a tree. 

Although there are accounts of Newton telling his friends 

about this, they were not published until much later. The 

story was rst published aer Newton’s death by the 

French writer Voltaire. It is sometimes suggested that the 

apple hit Newton on the head while he was asleep but 

there is no evidence to support this.

Newton’s insight was to realize that the force of gravity 

went on beyond the top of the apple tree. It stretched 

up into the sky, to the Moon and beyond. He realized 

that the Moon was falling continuously towards Earth 

under the inuence of gravity and, because it was also 

moving “horizontally” at 90° to the vector direction of the 

gravitational force, it was in orbit.

The story of the apple has become symbolic of Newton’s 

genius and insight. It has even been noted that, since an 

apple has a mass of approximately 100 g, the weight of an 

apple is about 1 newton.

▴ Figure 7 The apple tree near Newton’s home in the UK where 

he is believed to have watched an apple fall. The tree is believed 

to be over 400 years old.

Communication skills ATL

Gravity is always attractive, so 

when the distance is measured 

from the centre of mass M to 

massm, then the force on m due to 

M is towards M. In other words, the 

force is in the opposite direction to 

the direction in which the distance 

is measured. Sometimes a negative 

sign is used here to help predict 

this direction. Otherwise, keep a 

careful track of the force direction.

Measurements — 

Direction and sign

Worked example 1

Calculate the force of attraction between an apple of mass 100 g and Earth.

Mass of Earth = 5.97 × 1024 kg, radius of Earth = 6.37 × 106 m.

Solution

F =
GMm

r2
=

6.67 × 10–11
× 0.100 × 5.97 × 1024

(6.37 × 106)2
= 0.981 N
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Practice questions

1. Two masses, 5.4 kg and 1.2 kg, are initially at a distance of 0.25 m, centre 

to centre. Calculate:

a. the mutual force of attraction between the masses

b. the distance between the masses when the force is 1.0 × 10–9 N.

2. A body of mass 7.4 kg is at a distance of 4.0 × 105 m from the centre of 

a spherical asteroid. The force of attraction between the body and the 

asteroid is 5.0 × 10–7 N. Calculate:

a. the mass of the asteroid

b.  the gravitational field strength due to the asteroid at the position of  

the body.

Topic D.1      Gravitational fields
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Gravitational eld lines

Field lines help us to visualize the shapes of elds and to understand important 

connections between eld strength and other eld properties. 

A gravitational eld line gives the direction in which gravitational force acts on  

a mass placed on the eld line. The closer eld lines are together, the stronger 

the force. 

There is no easy experiment to make gravitational eld lines visible (unlike the 

magnetic and electric eld lines of Topic D.2), but the eld direction can be 

determined simply by hanging a weight on a piece of string! The direction of 

the string gives the local direction of the eld pointing towards the centre of the 

planet (Figure 8).

The arrangement of gravitational eld lines is radial with the eld lines directed 

towards the mass — because gravitational force is always attractive and directed 

to the centre of a spherical and uniform Earth.

It turns out that the gravitational eld strength outside a sphere of mass M is 

the same as g for a point mass: g =
GM

r2
. For this to be true, the sphere must 

be uniform or its distribution of mass must be spherically symmetrical. The 

gravitational eld lines for both the point mass and the sphere are identical 

outside the sphere. The eld lines point towards the centre of mass in both cases. 

Looking from outside the sphere, all the mass of the sphere acts as though it is a 

point mass of size M positioned at the centre of the sphere (the centre of mass). 

We only need one equation for both a point mass and a sphere.

Worked example 2

Calculate the force of attraction between a proton of mass 1.7 × 10–27 kg and an electron of mass 9.1 × 10–31 kg when 

they are at a distance of 1.5 × 10–10 m apart.

Solution

F =
GMm

r2
=

6.67 × 10–11
× 1.7 × 10–27

× 9.1 × 10–31

(1.5 × 10–10)2
= 4.6 × 10–48 N

▴ Figure 8 Each person around the 

sphere thinks that the eld direction is 

towards the centre. The gravitational eld 

lines are radial and in three dimensions. 

In Topic D.2, field lines will help you to study magnetic and electric fields.

Remember, when interpreting eld 

lines (sometimes called lines of 

force), that:

• their direction gives the force 

of attraction on a small mass 

placed at the position of the 

field line

• the relative strength of the field 

is shown by the density of the 

field lines.

For the radial gravitational eld 

due to a point mass in Figure 8, the 

lines become closer (more densely 

packed) as the distance to the point 

mass decreases and the arrows on 

the lines point towards the mass.

Conversely, when you are 

sketching eld lines:

• mark the direction of the field 

as the direction in which the 

gravitational force is acting

• use the density of the lines to 

show the variations in field 

strength.

Interpreting and 

sketching eld lines
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Practice questions

3. An aircraft is flying at an altitude of 10.0 km above sea  

level. The average radius of Earth is 6370 km.  

Calculate the ratio 

gravitational field strength at the location of the aircraft

gravitational eld strength at sea level

4. Determine the height above sea level at which the 

gravitational field strength is reduced to 99% of its 

value at sea level.

5. Two asteroids X and Y can be modelled as 

uniform spheres of the same density. The radius 

of asteroid X is twice that of asteroid Y. What is 

gravitational field strength at the surface of X

gravitational eld strength at the surface of Y
?

A.  1      B.  2      C.  4       D.  8

D. Fields 
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Worked example 3

Calculate the gravitational field strength at the surface of a. Earth and b. the Moon.

Mass of Earth = 5.97 × 1024 kg, radius of Earth = 6.37 × 106 m, mass of the Moon 7.35 × 1022 kg, 

radius of the Moon 1.74 × 106 m.

Solutions

a.  g =
GM

r2
=

6.67 × 10–11
× 5.97 × 1024

(6.37 × 106)2
= 9.81 m s–2. This is the same as the acceleration  

of free fall near Earth’s surface!

b.  g =
GM

r2
= 

6.67 × 10–11
× 7.35 × 1022

(1.74 × 106)2
= 1.62 m s–2. This is about one-sixth of that on Earth.

Worked example 4

Calculate the gravitational field strength of the Sun at the position of Earth.

Mass of Sun = 2.0 × 1030 kg, Earth–Sun distance = 1.5 × 1011 m.

Solution

g =
GM

r2
=

6.67 × 10–11
× 2.0 × 1030

(1.5 × 1011)2
= 5.9 mN kg–1

Extended bodies

Real objects that we deal with in gravitational theory have size and shape. They 

are known as extended bodies. Analysis shows that, when two extended 

bodies interact gravitationally, we can treat them approximately as point masses. 

To do this we must treat the whole of the mass of one object as being placed 

at its centre of gravity. This statement assumes that the objects are in a uniform 

gravitational eld or that they are well away from any other mass.

However, when an object is in a gravitational eld that is not uniform (perhaps 

because the eld varies signicantly across the object), then the bodies in the 

system cannot be treated as point masses. More complex mathematics is needed 

to deal with the forces acting. An example is the tidal force that acts on Earth’s 

oceans. The gravitational eld due to the Moon varies signicantly across Earth’s 

diameter. The centripetal and gravitational forces balance at the centre of gravity, 

but, at Earth’s surface, forces on the water lead to tidal bulges under which Earth 

rotates every day. This leads to a tide in most parts of the world every 12.5 hours.
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Centre of mass is the point about which the distribution 

of mass in an object is the same in all directions. It 

depends on the geometry of the object and any variations 

of density inside it.

Centre of gravity is the point at which all the weight of 

an object appears to act: in other words, the point of 

balance.

These terms are oen used interchangeably and they are 

the same providing that the gravity eld is uniform when 

the centre of gravity is determined. Centre of mass does 

not depend in any way on the gravitational eld. It is, like 

moment of inertia, determined by the mass distribution 

within the object.

Imagine a very tall uniform box-shaped object in Earth’s 

gravitational eld (Figure 9). 

The centre of mass of the object will be in the centre of 

the box. In a uniform gravitational eld, the centre of 

gravity of the object will be in the centre too. However, 

because the gravitational eld strength varies from top 

to bottom of the object, the centre of gravity now lies in 

the lower half of the object, whereas the centre of mass 

remains in the centre.

Observations — Centre of mass or centre of gravity?

gravity strong

gravity weak

▴ Figure 9 Because the gravitational force varies with height 

above the surface, the centre of gravity and the centre of mass are 

not in the same position in the object.

Kepler’s laws of orbital motion

Knowledge of Kepler’s work was a stimulus for Newton. There had been a 

major paradigm shi from the Ptolemaic system (which had Earth stationary and 

everything in the sky moving around it) to the post-Copernican system (where 

Earth moves around the Sun). 

This change to our understanding of the Solar System is 

one of the great paradigm shis in Western science. Before 

it there was complete agreement that Earth was at the 

centre of the universe. Aerwards the Sun was taken to be 

the centre of the Solar System with other stars beyond it.

The shi was in no sense immediate nor universal. There 

are still proponents of the at-earth theory that originated 

with the Ancient Greeks. In July 2020, Physics World — a 

publication of the UK Institute of Physics — covered 

attempts made by professional physicists to convince at-

earthers that their ideas are not true.

When Copernicus’s book De Revolutionibus was 

published, someone added a letter at the beginning. 

This was most likely to have been the editor, Andreas 

Osiander, worried that the conclusions that were 

presented in the book would be controversial. He wrote:

 “For it is not necessary for the hypotheses to 

be true, nor even probable; it is sucient if the 

calculations agree with the observations.”

Osiander hoped that the book would not be immediately 

banned. He was suggesting that the heliocentric model 

was a mathematical model to help astronomers calculate 

the positions of planets and not a suggestion that the 

Solar System actually had the Sun at its centre.

Can there ever be a dierence between reality and an 

accurate model of reality?

▴ Figure 10 A diagram showing the heliocentric model 

of the Solar System.

Theories — Paradigm shi
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Kepler analysed the data collected by the Danish astronomer Tycho Brahe. This 

led him to three laws of orbital motion which were able to account for the 

motion of Mars as observed by Brahe. The resolution of Brahe’s instruments was 

good enough to show that the Ptolemaic system required major adjustments for 

it to predict planetary orbits accurately. Essentially, the Ptolemaic description of 

the universe had been broken. 

The rst breakthrough by Kepler was the following suggestion:

Planets move in elliptical orbits with the Sun at one focus — Kepler’s rst law 

of planetary motion

The ellipse (Figure 11) is one of the conic sections mentioned on page 35. 

A circle is a special case of the ellipse in which the two axes have the same 

length so that a circle has only one radius. The ellipse has two foci (the plural of 

“focus”). Kepler suggested that the Sun — in the case of the Solar System — is 

positioned at one of these foci. This means that the planets and other 

astronomical objects, as they travel around their orbits, have distances from the 

Sun that are constantly changing.

Kepler also recognized that the variation of orbital distance from the Sun implied 

a variation in orbital speed throughout the orbit. He wrestled with this problem 

for a long time, but nally realized that the answer was remarkably simple:

The line connecting the planet to the Sun sweeps out equal areas in equal 

times — Kepler’s second law of planetary motion

Figure 11 shows this. When close to the Sun, the planet (or comet) moves fast so 

that the relatively short line from Sun to planet draws out an area quickly. At the 

other end of the orbit, the line is long and the planet has a slow orbital speed, so 

that the areas for the two cases are drawn by the radius line at the same rate.

These two laws were published by Kepler in 1609. He had to analyse his data for 

nine more years before he could publish his nal empirical law. This indicates the 

following relationship between the orbital time period of a planet and its distance  

from the Sun.

The square of the periodic orbital time T of a planet is directly  

proportional to the cube of the semimajor axis of its orbit

For circular or near-circular orbits, this becomes

The square of the periodic orbital time T of a planet is directly  

proportional to the cube of the orbital radius r: T 2 ∝ r 3 — Kepler’s third  

law of planetary motion

Sun

▴ Figure 11 Two equal-time intervals of 

the elliptical orbit of a planet are shown. 

Kepler’s rst law tells us that the Sun is at 

one of the two foci of the ellipse. Kepler’s 

second law says that the speed of the planet 

is such that it sweeps equal areas of the 

ellipse in equal times.

How can the motion of electrons in the atom be modelled on planetary motion and in  
what ways does this model fail? (NOS)

The work of Niels Bohr and others described in Topic E.1 was influenced by their knowledge of the orbital theory 

set out in this topic. The hypothesis was that an electron could orbit the proton in a hydrogen atom in a similar way 

to the orbit of a satellite around a planetary object. Bohr’s theory succeeded because the force laws in both cases 

are inverse-square. It was unsuccessful because, under a classical theory, the electron must emit energy as a result 

of its circular motion. 

Bohr’s theory ultimately failed but — as we see many times in this course — the adoption of an idea that is 

subsequently rejected is all part of the progress of science. Scientists uncover more and more scientific truth 

through repeated cycles of hypothesis and falsification.
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The work in this topic takes as its basis the assumption that the orbits of the satellites are circular. This is rare in real 

life. The deviation from circularity is small in the case of many of the planets in the Solar System, but nevertheless 

cannot be ignored when it comes to the calculation of spacecraft trajectories. Kepler’s laws come to our aid and 

allow the computation of a trajectory when the orbit is elliptical. 

For a particular circular path, the kinetic energy and gravitational potential energy of the satellite are both constant. 

When the path is elliptical, only the sum of these is constant and the planet–satellite system continually transfers 

energy between kinetic and gravitational potential forms as the orbital distance and orbital speed vary.

Another difference between our assumed model and real life arises when a satellite and planet have similar masses 

(the Moon, for example, has a mass roughly 1% of that of Earth). It is possible for a binary star system to have similar 

masses for both stars. In this case, both stars orbit the common centre of mass of the system. A very different pair of 

orbits from the theory  envisaged here.

How is uniform circular motion like — and unlike — real-life orbits?

The eccentricity of an ellipse tells us how “squashed” it 

is compared with a circle. The value of the eccentricity 

varies between 0 (a circle) and 1 (a parabola — which 

can be regarded as an open ellipse). The small value 

for the eccentricity of Earth’s orbit tells us that our orbit 

around the Sun is almost circular, as are many of the Sun’s 

planets. Earth’s nearly circular orbit gives a stable surface 

temperature. This has had a signicant impact on the 

evolution of life on Earth. 

The orbital eccentricities of some objects in the Solar 

System are shown in the table.

Object Eccentricity

Earth 0.0167

Moon 0.055

Venus 0.0068

Jupiter 0.048

Pluto 0.25

Halley’s comet 0.97

Patterns and trends — Eccentricity in practice

Worked example 5

The orbital period of Earth around the Sun is 365 days. The semimajor axis of Earth’s orbit is 1.50 × 108 km and that of 

the orbit of Venus is 1.08 × 108 km. Calculate, in days, the orbital period of Venus.

Solution
TV

TE

2

=
rV

rE

3

TV = TE

rV

rE

3
2
= 365 ×

1.08

1.50

3
2
= 223 days.

Worked example 6

Mars revolves around the Sun with a period of about 1.9 years. Calculate the ratio 
orbital radius of Mars

orbital radius of Earth

Solution
rM

rE

=
TM

TE

2
3

= 1.9
2
3
= 1.5.
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Practice questions

6. A satellite orbits Earth in an elliptical orbit in the 

direction represented by the arrow.

Earth
C

D

A

B

 At which position is the kinetic energy of the 

satellite increasing?

7. Satellites X and Y move in circular orbits around a 

planet. The orbital period of satellite X is 16 days. The 

orbital radius of satellite Y is 
1

4
 of the orbital radius of 

satellite X. Calculate the orbital period of satellite Y.

8. An asteroid moves around the Sun in a circular orbit. 

The following data are given:

  Orbital period of the asteroid = 3.6 years

  Sun–Earth distance = 1.5 × 1011 m

 Calculate, in m, the radius of the asteroid’s orbit.

D. Fields 
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Linking orbits and gravity

Newton’s genius was his recognition that Kepler’s third law implied the inverse-

square gravitational law that bears Newton’s name. He began with the insight 

that the gravitational force of a planet provides the centripetal force to keep a 

satellite in orbit.

Newton used the example of a cannon on a high mountain (Figure 12). The 

cannon res its cannonball horizontally and the ball accelerates vertically 

downwards. On a at Earth, it will eventually hit the ground. Newton knew that 

Earth is a sphere. Therefore, the curvature of Earth allows the ball to travel further 

before hitting the ground (Figure 12(a)). 

He then imagined the ball being red at larger and larger initial speeds 

(Figure12(b)). Eventually the cannonball will travel “horizontally” at such a high 

speed that the curvature of Earth and the curve of the trajectory will be the same. 

When this happens, the distance between shell and surface is constant and the 

shell is in orbit around Earth (Figure 12(c)). 

What do you expect to happen to the trajectory of the cannonball when it is 

red at even greater speeds? To check your conclusions, nd an applet on the 

Internet that will allow you to vary the ring speed of Newton’s cannon. A good 

starting point for the search is “applet Newton cannon”. 

Despite its apparent success, Kepler’s third law was an approximate 

hypothesis. He had extended his results well beyond the limits of his data. 

When the masses M and m of both objects in the orbit are considered, 

then Kepler’s third law becomes

T 2 ∝
r3

(M + m)

The Sun has so much more mass than any of its satellites (planets) that the 

T2
∝ r3 form is more than good enough for the Solar System.

Hypotheses — Kepler’s third law revisited

▴ Figure 12 Newton’s cannonball 

thought experiment.

cannon

hill

impact if Earth

is flat

impact if

Earth  is a

sphere

(a)

(b)

(c)
constant distance

from surface

in orbit

Earth

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



Topic D.1      Gravitational fields

486

This motion of a satellite around Earth can be analysed by combining the ideas 

of centripetal force and gravitational attraction. The gravitational attraction FG

provides the centripetal force FC, and (ignoring direction signs)

FC = FG =mω
2r=

GMEm

r2

where ME and m are the mass of Earth and the satellite, respectively, and ω is the 

orbital angular speed. The symbol m cancels from the equation which becomes:

ω
2r=

GME

r2

We also know from Topic A.2 that ω=
2π

T
, where T is the orbital time period.

Therefore 2π

T


2

r=
GM

E

r2
 and 

4π2

T2
=
GM

E

r3
, which leads to

T2
=

4π2

GM
E

× r3

This is an expression of Kepler’s third law.

Data-based questions

The Kepler-90 system was rst observed by NASA’s 

Kepler mission in 2013. It has eight exoplanets 

(a planet which orbits a star other than our Sun). 

The eighth planet — third from the central 

star — was discovered in 2017. 

Orbital radius / AU Uncertainty in orbital 

radius / AU

Orbital period / days Uncertainty in orbital 

period / days

0.074 0.016 7.008151 0.000019

0.089 0.012 8.719375 0.000027

0.107 0.03 14.44912 0.0002

0.32 0.05 59.73667 0.00038

0.42 0.06 91.93913 0.00073

0.48 0.09 124.9144 0.0019

0.71 0.08 210.60697 0.00043

1.01 0.11 331.60059 0.00037

• Calculate the percentage uncertainty in the orbital radius for the third planet in the table.

• Show that the percentage uncertainties in the orbital period are more than a million times smaller than the 

percentage uncertainties in the orbital radius.

• 1 AU = 1.50 × 1011 m. Make a table of orbital radius (and its uncertainty) in metres and orbital period in seconds.

Kepler-90 planets orbit close to their star

Kepler-90 system

Kepler-90i

Kepler-90f

Kepler-90g

Kepler-90h

Kepler-90e

Kepler-90d

Kepler-90i

Kepler-90b Kepler-90c

Inner Solar System

EarthVenus

Mercury

▸ Figure 13 A diagram showing the eight planets of 

the Kepler-90 system compared with our Solar System.

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



Practice questions

9. Phobos and Deimos are two moons of Mars that move 

in approximately circular orbits. The radius of Phobos’ 

orbit is 9.4 × 106 m and its orbital period is 7.7 hours. 

 a. Calculate the mass of Mars.

 The orbital period of Deimos is 30 hours.

 b. Calculate the radius of Deimos’ orbit.

10. A satellite is placed in a circular orbit 100 km above 

the surface of the Moon. Calculate the orbital period 

of the satellite.

 Mass of the Moon = 7.35 × 1022 kg

 Radius of the Moon = 1.74 × 106 m

A
H
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• Tabulate values of (orbital radius)3 and (orbital period)2. Calculate the uncertainties in (orbital radius)3

• Plot a graph of (orbital period)2 on the y-axis and (orbital radius)3 on the x-axis. Add the horizontal error bars to 

your graph.

• Add a line of best fit to your graph and find the gradient.

• By considering the maximum and minimum gradients, find the uncertainty in your graph.

• By considering the equation T 2 =
4π

2

GM
× r3, find the mass of the star at the centre of the Kepler-90 system.

• Masses in Astronomy are often quoted in solar masses where one solar mass is 1 M⊙ = 1.99 × 1030 kg. Express the 

mass of the Kepler-90 star in solar masses and give an uncertainty in your value.

Worked example 8

The Moon orbits Earth with a period of about 27 days in an approximately 

circular orbit or radius 3.8 × 108 m. Calculate the mass of Earth using  

this information.

Solution

T
2

=
4π

2r3

GME

⇒ ME =
4π

2(3.8 × 108)3

6.67 × 10–11 (27 × 24 × 3600)2

 = 6.0 × 1024 kg.

Worked example 7

Calculate the orbital period of 

Jupiter about the Sun.

Mass of Sun = 2.0 × 1030 kg, radius 

of Jupiter’s orbit = 7.8 × 1011 m.

Solution

T
2

=
4π

2r3

GM
S

T = 3.7 × 108 s (about 12 years)

Gravitational potential energy

When a mass m is moved through a vertical height change of Δh in a gravitational 

eld of strength g,

ΔEg = m × g × Δh

This equation applies when g is eectively constant over the height change being 

considered. Remember that g has to be the local value of the eld strength. Near 

Earth’s surface, 9.8 N kg−1 is the value to use, but further from the surface a smaller 

value would be required.

The idea that g is constant arises from what Earth’s radial gravitational eld looks 

like on a human scale (Figure 14).

The curvature of Earth is almost imperceptible to us, so that the fact that the eld 

is radial and in dierent directions is equally imperceptible. The eld lines close 

to the surface are eectively parallel to each other and equally spaced so that 

the eld is uniform (Figure 14). The mgΔh formulation for gravitational potential 

energy works most of the time.

In Topic A.3, gravitational 

potential energy was used for the 

energy transfer ΔEg

▴ Figure 14 Although the gravitational 

eld of a uniform sphere is a radial eld, 

close to the surface the eld is uniform  

and perpendicular. 
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On a larger scale this equation will not work for two reasons:

• The gravitational field strength will vary with the distance between the masses.

• The gravitational potential energy arises because there are two masses 

involved. In the mgΔh equation the mass of Earth is included in g.

To see the entire gravitational potential energy stored in a two-mass system, we 

need to look at the work done (energy transferred) in forming the system from an 

initial state in which the two masses do not interact. This non-interaction place is 

called “innity”.

The gravitational potential energy of two objects is the work done (energy 

transferred) in bringing the two objects from innity to their present position.

Innity is not a real place — it is in our imagination — but that does not prevent it 

from having some interesting and useful properties. These properties arise from 

the inverse-square law and the implication that, when two objects are an innite 

distance apart, there is no gravitational attraction between them. As r →∞, F→0

in F = G
Mm

r2

The problem for us is that to use work done = force × distance, we must integrate 

mathematically. This is because the gravitational force varies as the distance 

between the objects changes. This is dierent from the approximation of a 

uniform eld (and therefore force) close to Earth’s surface. The situation is shown 

in Figure 15.

▴ Figure 15 A test mass is moving from innity to a distance R from a mass M. At one point 

in the journey, when it is r from the mass M, it moves through a small distance Δr

mass M

mass m at R

r

Δr
mass m at infinity

The work done over the whole 

journey from innity to the nal 

position is found by integrating 

the expression for work done from 

innity to the distance R from the 

centre of the object:

W = G 
Mm

r2
 dr

= GMm

∞

R


1

r2
 dr

= GMm  1

r


R

= GMm 1

R
+ 0

= –GMm

R

R

∞

∞

You may meet this integration in the 

IB mathematics course.

Integrating the “work 

done” expression

▴ Figure 16 Systems of gravitationally 

bound objects are not always restricted to 

two bodies. This picture shows the globular 

cluster Omega Centauri — a cluster of about  

10 million stars which lies about 17 000 light 

years away in our galaxy. All of these stars 

will exert an attractive force on each other, 

and the system as a whole has gravitational 

potential energy which can be dened 

as the work done to assemble the system 

starting with innite separation of  

each component.

The small object of mass m is on a journey from innity to a nal position that is a 

distance R from the centre of the large object. Figure 15 shows the small object 

when it is at an intermediate position between innity and its nal position. At 

this point the gravitational force acting on the small object is F = G
Mm

r2
 and is 

directed to the le. The small object now moves a small distance Δr also to the 

le. We can assume that Δr is so small that the gravitational force is constant over 

the distance concerned. The equation work done = force × distance becomes

W = G
Mm

r2
Δr

Over the whole distance from innity to R, W = –
GMm

R
.

What is the signicance of the negative sign in this equation? Remember that 

at any distance other than innity, there is an attractive force between the 

objects. This means that, if the masses are free to move, they will both accelerate 

towards each other and collide. For this not to happen, the agent that is moving 

the object from innity must be transferring energy away from the two-object 

gravitational system.
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When the objects are an innite distance apart, zero gravitational potential 

energy is stored in the system. The equation implies that having moved to a 

nite separation R, then the gravitational potential energy stored in the system is 

negative. When we want to move the two objects to an innite separation again, 

we will need to transfer a positive quantity of energy into the system to return to the 

initial amount of stored energy which was zero at innity.

The gravitational potential energy Ep in a system consisting of two masses m1 and 

m2 with centres separated by r is

Ep = –G
m1m2

r

For gravity:

• Separating two objects with mass at a constant speed means that you need to 

add energy to the system.

• Allowing two objects to move closer together at a constant speed means that 

you need to remove energy from the system.

Worked example 9

A satellite of mass 740 kg is to be launched into a circular orbit 320 km above the surface of Earth.  

The radius of Earth is 6.37 × 106 m and the mass of Earth is 5.97 × 1024 kg. Calculate:

a. the gravitational potential energy of the satellite at the surface of Earth

b. the change in the gravitational potential energy between the surface and the orbit.

Solutions

a.  The distance between the satellite and the centre of Earth is equal to Earth’s radius. 

 Ep = –
6.67 × 10–11 × 5.97 × 1024 × 740

6.37 × 106
= –4.63 × 1010 J.

b.  ΔEp = 6.67 × 10–11 × 5.97 × 1024 × 740 ×  1

6.37 × 106

1

6.37 × 106 + 3.2 × 105
= 2.21 × 109 J.

Gravitational potential at a point

Potential is another concept that is strongly connected to the ideas of eld and 

eld strength. Potential and potential energy are not the same thing. Potential 

energy is transferred when a particular object moves — as you see in the 

gravitational potential energy equation which contains the mass of the object. 

Potential at a point, on the other hand, links to the gravitational eld, not to a 

particular object. Potential is an important concept in all eld theories.

One way to learn about gravitational potential at a point is to think of it as the 

work done to bring a unit mass (in other words, one kilogramme in our unit 

system) from innity to the point concerned. Here the unit mass acts as a test 

object in the same way as the test objects we used to develop the denition of 

gravitational eld strength.

The gravitational potential Vg at a point a distance r from the centre of a uniform 

sphere (or point object) of mass M is

Vg = –G
M

r

This equation is obtained by taking the earlier expression for Ep and dividing  

by m. The smaller mass that was moved from innity in the earlier section is 

When there are more than two 

masses, the gravitational potential 

energy Ep of the system of masses 

is the work done to assemble the 

system from infinite separation.
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now the test mass with a mass of 1 kg. The negative sign reects the fact that 

gravitational potential can never be positive because the gravitational force is 

always attractive.

Potential is work done per unit mass: in other words, 
energy

mass
. The SI unit is J kg−1

(or m2 s−2 in the fundamental base unit form).

Again, for consistency, gravitational potential at a point is dened to be zero 

at innity where the test mass and the mass of size M have no interaction. This 

denition allows a visual interpretation of potential too. 

0

point Y

V
X

V
Y

gravitational potential

distance

point X

surface

mass M

mass m

(a) (b)

▴ Figure 17 (a) The surface of a planet represents a potential well. When a mass is released at innity with zero kinetic energy it is attracted 

to the planet. The mass gains kinetic energy at the expense of the gravitational potential energy. As the initial energy was zero and energy is 

conserved, as the kinetic energy increases (and is positive), the gravitational potential energy decreases below zero. (b) In three dimensions 

the shape of the potential is that of a well.

As you saw in Topic B.5, the volt, 

the unit for electric potential 

dierence, is based on the joule 

coulomb−1 (J C−1). You will meet this 

again in Topic D.2.

What makes a good zero reference for potential? One 

obvious reference point could be the surface of the 

oceans. When travel is based only on Earth, this is a 

reasonable choice of reference point. We refer to heights 

as being above or below sea level so that Mount Everest 

is 8848 m above sea level. Despite being an appropriate 

local zero of potential for Earth-based activities, sea level 

is not good enough once we leave Earth. It would make 

no sense to refer the surface of Mars to Earth’s sea level. 

This is why innity makes most sense — although it might 

seem implausible when you rst meet it.

The use of innity as the reference point for the 

denitions of zero gravitational potential and zero 

gravitational potential energy is to ensure that the force 

between objects is zero at this point. Even though this 

is unattainable in practice, it can be imagined and used 

mathematically in calculations.

When a denition of a quantity relies on unattainable 

measurements, is it a useful denition at all?

Why zero at innity?

Figure 17(a) shows that, at large distances from the planet, the gravitational 

potential is close to, and just below, zero. Near to the object the gravitational 

potential is negative and its value is below zero. The gravitational potential 

resembles a water well (Figure 17(b)). 

A test mass on the surface of the planet is deep inside the well and energy must 

be transferred to the system to move it vertically above the surface.

One advantage of using gravitational potential is that it is a scalar quantity that arises 

from the vector eld and is therefore easier to handle as no direction isinvolved.
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Gravitational potential dierence

Look again at Figure 17(a). A small object of mass m sits in the gravitational eld 

due to a large object. Two positions for the small object of mass m in the eld 

of the large object are shown at X and Y. The gravitational potentials of these 

positions are dierent. At position X, which is a long way down in the potential 

well, the gravitational potential is VX. At Y, the gravitational potential is less 

negative (it is higher up the curve and closer to zero) and is VY. Gravitational 

potential at a point is dened as the work done in moving a unit mass from innity 

to the point concerned. Therefore:

• The work done in taking the mass m from infinity to point X is m × VX

• The work done in taking the mass m from infinity to point Y is m × VY

• We start at X and finish at Y.

• So the work done in taking the mass from point X to point Y is m × (VY VX).

This is

(dierence in potential between X and Y) × (mass moved between X and Y)

and can be written algebraically as m × ΔVg, where ΔVg stands for the dierence 

in potential between the two points.

The work done W in moving a mass m between two points in a 

gravitational eld is

W=m × ΔVg

where ΔVg is the gravitational potential dierence between the two points.

To use this equation, you have to assume that only gravitational potential energy 

changes. However, if a mass changes position it must accelerate, which involves 

a transfer of kinetic energy. Therefore, you have to assume that there is no change 

of speed.

Equipotential surfaces

Our knowledge of the gravitational potential means that we can assign some 

values of gravitational potential to Earth.

The average radius of Earth is 6370 km and the best estimate of the mass of Earth 

is 5.972 × 1024 kg. With these data and the value for G of 6.674 × 10−11 Nm2 kg-2, 

we can calculate the gravitational potential Vsl at sea level:

Vsl = –
GM

r
= –

6.674 × 10–11 × 5.972 × 1024

6.370 × 106
= –6.257 × 107 J kg−1

One metre above sea level the gravitational potential will be Vsl + 9.8 J kg−1

(because near the surface raising 1.0 kg requires a transfer of energy of 9.8 J). 

Two metres above sea level it will be Vsl + 19.6 J kg−1 and so on. A scale can be 

imagined drawn vertically up a wall to show the increase in gravitational potential 

with height. Similarly, a diagram of Earth in space can have gravitational values 

drawn on it. For a spherical planet these values are distributed symmetrically so 

that, for example, all the −5 × 107 J kg−1 points lie on a sphere centred on Earth’s 

centre. This sphere is a surface of equal potential — known as an equipotential. 

When a mass moves around on an equipotential surface, then no energy is 

transferred either to or from the gravitational eld.

The gravitational eld lines cut the equipotential surfaces at right angles. 

Figure18 shows the relationship between eld lines and equipotential. 

▴ Figure 18 The gravitational eld lines 

(grey) and equipotential surfaces (green) 

around Earth.

Care is needed with the signs 

in using the expression for the 

gravitational potential dierence 

between the two points X and Y in 

Figure 17.

GM  1

rY

–  1

rX

 = GM  1

rX

1

rY



where rX and rY are the distances 

from the the centre of mass M to 

the points.

Here the magnitude of 
1

r
X

 is greater 

than that of 
1

r
Y

, so the overall 

expression is positive, meaning that 
energy must be transferred into the 

system to move the small object 

from X to Y — as expected.

Rationalizing signs
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If you use a map when walking in the countryside, then you will be very familiar 

with the idea of an equipotential. The contour lines on maps are lines of equal 

potential as well as being lines of constant height, so if you walk along one you 

do not transfer gravitational potential energy.

Worked example 10

A satellite of mass 850 kg is moved from a point where the gravitational potential due to Earth is 6.0 × 107 J kg–1 to a 

point where the gravitational potential is 4.0 × 107 J kg–1. The mass of Earth = 5.97 × 1024 kg. Calculate:

a. the change in the gravitational potential energy of the satellite

b.  the final distance between the satellite and the centre of Earth. 

Solutions

a. ΔEp =mΔVg = 850( 4.0 × 107  ( 6.0 × 107)) = 1.7 × 1010 J.

b. Vg = –G
M

r
⇒ r= 6.67 × 10–11 ×

5.97 × 1024

4.0 × 107
= 1.0 × 107 m.

h
e

ig
h

t 
g

a
in

e
d

distance travelled

▾ Figure 19 A walk in the English Lake District. As the walker 

crosses the contour lines going anticlockwise around the route 

the elevation changes as shown. Walking along a contour line 

means that no gravitational potential energy is transferred. 

@ Crown copyright

Worked example 11

The graph shows how the gravitational potential due to Earth varies 

with the distance r from the centre of Earth. The curve begins at the 

surface of Earth.

A satellite of mass 1200 kg is initially at the surface of Earth. 

Determine the minimum work that must be done on the satellite in 

order to place it in a circular orbit of radius 20 000 km.

Solution

The gravitational potential dierence between the orbit and the 

surface of Earth is ΔVg = (6.3  2.0) × 107 = 4.3 × 107 J kg–1. The 

minimum work is equal to the change in the gravitational potential 

energy, W=mΔVg = 1200 × 4.3 × 107 = 5.2 × 1010 J.

The actual work will be greater because the satellite in orbit will have kinetic energy in addition to gravitational potential 

energy. Later in this topic you will learn how to include kinetic energy to describe fully the orbital motion of planets  

and satellites.
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11. The diagram shows gravitational field lines (grey) 

and equipotential surfaces (green) around Earth. 

The potential difference between any two adjacent 

equipotential surfaces is 5.0 × 106 J kg–1

A

B

 a.  An object of mass 80 kg is moved from point A 

in the field to point B. Calculate the work done 

against the gravitational force.

 b.  The gravitational potential at B is one half of the 

gravitational potential at A. The gravitational 

field strength at A is 2.3 m s−2. Determine the 

gravitational field strength at B.

12. A projectile of mass 1.0 kg is fired vertically up from 

the surface of Earth with a speed of 7.7 × 103 m s–1. 

 a.  Calculate the initial kinetic energy of the 

projectile.

 b.  Use the graph in Worked example 11 to estimate 

the maximum height from the surface of Earth that 

the projectile can reach.
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Field strength and potential

There is one more fundamental link between the eld quantities discussed so far.

The gravitational potential at a point Vg at a distance r from a point object of mass 

M is given by Vg = –
GM

r
. When this equation is dierentiated with respect to 

r it becomes 
dVg

dr
= 

GM

r2
. The right-hand side of this expression is the value for 

g due to a point object of mass M at a distance of r from the object: g = –
GM

r2

(including, in this case, the sign). We can write 
dVg

dr
= g or, in a non-dierential 

form,

g = –
ΔVg

Δr

Two graphical links between gravitational eld strength and gravitation potential 

follow from these equations. 

The rst link appears in a graph showing the variation of gravitational eld 

strength with distance for a point mass (Figure 20).

The change in gravitational potential in moving from P to Q on the graph is  

equal to g × Δr. This is the area between the 
1

r2
 - shaped curve of gravitational 

eld strength and the distance axis (shaded in blue). On the graph this is a 

negative area and the negative sign in g × Δr cancels with it to give an overall 

positive value for the potential change. This is what we expect, because going 

from P to Q means moving towards innity and energy will need to be transferred 

into the gravitational system.

The second link is in the graph of variation of gravitational potential with distance 

(Figure 21). This time the gravitational eld strength at a point is equal to 
ΔVg

Δr
which is the gradient of the graph at the point concerned. The sign shows that 

the direction of the gravitational eld 

strength is opposite to the direction in 

which gravitational potential increases.

P

g
Q

g
P

Δr distance

gravitational

field strength

Q

1
r2

▴ Figure 20 A graph of gravitational eld 

strength against distance.

▴ Figure 21 (a) When the distance between two positions is small, then the 

gravitational eld strength is the change in potential divided by the change in distance. 

(b) The gravitational eld strength at a point is the negative of the gradient of the line. 

Δr

[Δr small]

ΔV

distance

gravitational

potential

(a)

(b)

distance

gravitational

potential
ΔV

Δr

1
r
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The graph of potential against distance can help when 

a rocket is being designed to reach another object in 

the Solar System. 

The graph in Figure 22 shows the variation in 

gravitational potential between Earth and the Moon. 

Before take-off, a spacecraft sits in a potential well 

on Earth’s surface. When the rockets are fired, the 

spacecraft gains speed and moves away from Earth. 

It only needs enough energy to reach the maximum 

of the potential at point L (this is known as a Lagrange 

point and it is also the point where the gravitational 

field strengths of Earth and Moon are equal and 

opposite). Once at L, the spacecraft can fall down the 

other side of the potential hill to arrive at the Moon.

How is the amount of fuel required to launch rockets into space determined by considering energy?

▴ Figure 22 The maximum of gravitational potential between 

Earth and the Moon is known as Lagrange point L. There are ve 

Lagrange points that represent equilibrium points where the 

gravitational forces are balanced. L1 is an unstable equilibrium point 

which allows a spaceship from Earth at L1 to fall down the potential 

hill to the Moon.

Earth
Moon

L

distance

gravitational

potential
–63 MJ kg–1

–0.77 MJ kg–1

0

The two stars in a binary star system are bound together 

by gravity. They obey the rules of gravitational fields 

outlined in this topic. A full investigation of the nature 

of the stars requires physics from other themes in this 

course. Visual binary systems can be seen to orbit each 

other using an Earth-bound or satellite-based telescope 

with all the optical limits that such an instrument 

involves (Theme C). Astronomers can determine the 

nature of spectroscopic binaries using the emission 

and absorption spectral lines that are described and 

explained in Theme E. When the orientation of the 

binary stars relative to Earth is suitable, then changes in 

the overall luminosity of the pair (Theme B) will give an 

astronomer important clues about the nature of the stars.

What measurements of a binary star system need to be made in order to determine the nature 

of the two stars?

Worked example 12

Two point objects of mass M and 25 M are at a distance R

from each other  A particle of mass m is moved along the 

line joining the masses.

a.  Determine the distance from M at which the 

gravitational potential has a maximum value.

b. Calculate the maximum potential energy of the 

particle.

Solutions

a.  Since g = –
ΔVg

Δr
, the maximum of Vg corresponds to 

zero value of the gravitational field strength g. This 

can only occur on the line joining the masses, at a 

point where the field strength from M is equal but 

opposite to the field strength from 25 M

  Let P be a point on the line joining the masses, at a 

distance x from M and (R − x) from 25 M

P

x R – x

25MM

  The field strength at P is zero if G
M

x2
= G

25 M

(R  x)2
. This 

can be written as 
R  x

x
= √25 = 5, which implies that 

x =
R

6
. The potential has a maximum value at one-

sixth of the distance between the masses.

b.  The particle is at a distance of 
R

6
 from M and 

5 R

6
 from 

25 M.  

Ep = –G 
Mm

R/6
G 

25 Mm

5 R/6
= –36

GMm

R
.
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Worked example 13

The graph shows how the gravitational potential 

Vg between a planet and its moon varies with the 

distance r from the centre of the planet.

The centre of the moon is 8.0 × 107 m from the 

centre of the planet. Point A is at the surface of 

the planet and point C is at the surface of the 

moon. The gravitational potential is a maximum 

at point B.

a.  Explain why the gravitational field strength at 

B is zero.

b.  Estimate the ratio 
mass of the planet

mass of the moon

A space probe of mass 2.4 × 103 kg is launched from the surface of the planet.

c.  Calculate the gravitational potential energy of the space probe when it is at a distance of 1.0 × 107 m from the 

centre of the planet.

d. Determine the minimum work that has to be done on the space probe so that it can reach the moon.

Solutions

a.  The gradient of the gravitational potential is zero at B. The field strength is equal to the (negative) gradient of the 

potential, so it must also be zero at B.

b.  For the combined field strength to be zero at B, the field strength due to the planet must be equal but opposite to 

the field strength due to the moon.

G 
Mp

(6.0 × 107)2
= G 

Mm

((8.0 – 6.0) × 107)2
. Therefore, 

Mp

Mm

=  6.0 × 107

2.0 × 107


2

= 9.

c.  Ep = mVg = 2.4 × 103 × (−1.8 × 107) = −4.3 × 1010 J.

d.  The space probe must first reach B. The minimum work to move the probe from A to B is  

W = mΔVg = 2.4 × 103 × (−0.4 × 107 − (−4.4 × 107)) = 9.6 × 1010 J.

2 3 41
0
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6 7 8
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B

A

Outside Earth, the gravitational eld strength varies as 

1

r
2

. But what happens to the eld strength inside? Is it 

zero? Is it a constant? Does it become larger and larger, 

reaching innity, as we get closer to the centre? You 

might, at rst sight, expect this from Newton’s law of 

gravitation.

In Journey to the Centre of the Earth, the novelist Jules 

Verne imagined going through a volcanic tunnel to the 

centre of the planet. Visualize his travellers when they 

have travelled halfway down the tunnel. They stand on 

the surface of a “smaller” Earth dened by their present 

distance from the centre (Figure 23). ▴ Figure 23 When Jules Verne’s travellers have reached a point 

inside Earth, they have a reduced gravity because the concentric 

shell with solid shading does not contribute to the gravitational pull. 

this part does

not contribute

this is the part that

accounts for gravity

tunnel

Patterns and trends — G and V
g
 inside Earth 
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The shell of Earth “above” the travellers makes no 

contribution to the gravitational eld. All the parts of the 

outer shell cancel out. Only the mass inside the “small” 

Earth contributes to the gravitational pull. The mass of 

this “small” Earth is equal to its density ρ × its volume V: 

in other words, ρ ×
4

3
πr3. The eective mass therefore 

varies with r3 inside Earth, assuming a constant density for 

the solid Earth (not a good assumption, in fact). Because 

the gravitational force varies with 
1

r2
, these two variations 

mean that, overall, g inside Earth varies with r. The whole 

graph for the variation of g for a planet (inside and out) is 

given in Figure 24.

The inner solid sphere, a miniature Earth with a smaller 

radius, behaves as a normal Earth but with a dierent 

gravitational eld strength g’ given by:

g’ = G ×
mass of the “small” Earth

radius of the “small” Earth2

The inverse-square law gives rise to a linear relationship 

because the 
1

r2
 behaviour of the force cancels with the r3

variation of the mass of the “small” Earth.

Another surprising result appears when the planet is a 

spherical shell, like an empty eggshell. In this case, when 

Verne’s travellers break through into the interior, there will 

be no gravitational force arising from the shell at all.

▴ Figure 24 The graph of gravitational eld strength g versus 

distance from the centre of a uniform spherical Earth. Inside the 

planet g is proportional to the distance from the centre. 

distance from

center of Earth

outside Earth

inside Earth

g

outside Earth

r
E

Orbiting a planet

When a satellite orbits a planet, the centripetal force that keeps the satellite in 

orbit is provided by the gravitational attraction to the planet.

The derivation of Kepler’s third law of planetary motion equated the centripetal 

force FC and the gravitational attraction FG. This time, we use the linear orbital 

speed vorbital rather than the angular speed ω:

FC = FG =
mvorbital

2

r
= 

GMEm

r2

where r is the radius of the orbit.

A simple rearrangement of the equation leads to

v 
2
orbital = GME × 

r

r2

and hence

orbital speed, vorbital =
GME

r

The angular orbital speed is ω =
v

r
, leading to ω =

GME

r3

The time T that a satellite takes to orbit a planet once is

T =
2π

ω
= 2π

r3

GME

= 
2π

√GM
E

r 
3
2

The orbits of planets, moons and 

satellites are oen not circular. For 

example, the orbit of the dwarf 

planet Pluto around the Sun is a 

narrow ellipse. However, for these 

calculations you can assume that 

planetary orbits are circular.

Modelling assumptions

Remember that r in the equation 

for orbital speed is the radius of the 

orbit — counting from the centre 

of the planet. It is not the distance 

above the planet surface h. When 

you are given the orbiting height 

h of a satellite, you must add the 

radius of Earth RE or the planet to 

this height: 

r = RE + h

What is r?
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which for a satellite in low-Earth orbit (so that the orbital radius is eectively 

Earth’s radius) is about 85 minutes. Low-Earth orbit does not mean that the 

satellite is grazing the rooops! Such satellites orbit at about 200 km above the 

surface, but this is a radius dierence of only about 3%.

Worked example 14

A satellite orbits Earth in a circular orbit 150 km above the surface.

a.  Calculate the orbital speed of the satellite.

b. Show that the mechanical energy of the satellite is given by E = – 
GMm

2r
, where M is the mass of Earth and  

m is the mass of the satellite.

c.  Determine the energy needed to increase the orbital radius of the satellite to 250 km. The mass of the  

satellite is 450 kg.

Mass of Earth = 5.97 × 1024 kg, radius of Earth = 6.37 × 106 m

Solutions

a. The radius of the orbit is r = 150 × 103 + 6.37 × 106 = 6.52 × 106 m.

v =
GM

r
=

6.67 × 10−11 × 5.97 × 1024

6.52 × 106
= 7.81 × 103 ms−1

b.  The kinetic energy of the satellite is Ek =
1

2
mv2 =

GMm

2r
, using the formula for the orbital speed. The potential 

energy is Ep =
GMm

r
 and the total mechanical energy is therefore E = Ek + Ep = 

GMm

2r

GMm

r
= – 

GMm

2r

c.  The energy needed to increase the orbital radius is equal to the change in the total orbital energy between the initial 

and the final orbit.

ΔE = –
GMm

2rnew

–  GMm

2rold

 = 
GMm

2
 1

rold

1

rnew



ΔE =
6.67 × 10−11 × 5.97 × 1024 × 450

2
 1

6.52 × 106
– 

1

6.62 × 106


= 2.1 × 108 J

Worked example 15

A satellite of mass 790 kg is at rest on the surface of Earth. Determine the energy needed to put the satellite in a 

circular orbit 400 km above the surface.

Solution

Before launch, the satellite only has the gravitational potential energy E = –
GMm

rE

, where rE is the radius of Earth (we 

ignore the kinetic energy due to the rotation of Earth because it is much smaller than the kinetic energy in the nal orbit). 

In orbit, the total energy of the satellite will be Ef = –
GMm

2(rE + h)
, using the equation derived in Worked example 14. The 

energy needed to reach the nal orbit is the dierence ΔE = Ef − E = GMm  1

rE

– 
1

2(rE + h)


ΔE = 6.67 × 10−11 × 5.97 × 1024 × 790 ×  1

6.37 × 106
– 

1

2 × (6.37 × 106 + 400 × 103)
 = 2.6 × 1010 J.
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Practice questions

13.  A satellite orbits a planet of radius R. The satellite 

is initially in circular orbit A, at a height R above the 

surface of the planet. The satellite is moved to a new 

orbit B at a height 2R

A

R

B

 a.  Calculate the ratio 
speed in orbit A

speed in orbit B

 b.  The total energy of the satellite in orbit A is E. 

Calculate, in terms of E, the work done on the 

satellite to move it from orbit A to orbit B.

14. A space probe has a mass of 1300 kg.

 Calculate the energy needed to:

 a.  put the space probe in a circular orbit 300 km 

above the surface of Earth

 b.  increase the orbital radius by a further 10 km.

15. Ida is an asteroid (minor planet) in the Solar System. 

Ida has a moon, Dactyl, orbiting it with a period 

of about 20 hours. The exact orbit of Dactyl is not 

known, but we can assume that it is a circle with radius 

of about 90 km.

 a.  Calculate the orbital speed of Dactyl.

 b.  Determine the mass of Ida.
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Earlier we saw that inside a tunnel drilled through Earth the gravitational eld 

strength g’ is proportional to the distance from Earth’s centre: g’ ∝ r. The 

force towards the centre in the tunnel is mg’ and this linear dependence on r

is the condition for simple harmonic motion (see Topic C.1). 

A vehicle inside a tunnel drilled right through Earth will therefore perform 

simple harmonic motion when friction is neglected. The vehicle released at 

one end of the tunnel will stop momentarily when arriving at the opposite 

end, 42 minutes aer release. This is the half the period of a satellite that is 

in low-Earth orbit. Get the timing right and mail bags could be exchanged at 

the surface! 

Chordal tunnels dug between two cities (not passing through the centre of 

Earth) will also allow the mail to be delivered with the same time period. Use 

some of the ideas and equations from the course to assess the engineering 

issues with putting this plan into operation!

Models — Delivering the mail! 

Types of orbit

Although satellites can be put into orbits of any radius (provided that the radius is 

not so great that a nearby astronomical body can disturb it), there are two types 

of orbit that are of particular importance.

The polar orbit is used for satellites close to Earth’s surface. The satellites orbit 

over the poles in one plane (intersecting the centre of Earth) with Earth rotating 

beneath it (Figure 25(a)). Over the course of a 24-hour period, the satellite can 

view every point on Earth.
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Geosynchronous satellites orbit at much greater distances from Earth and have 

orbital times equal to one sidereal day, which is roughly 24 hours. This means that 

the geosynchronous satellite stays in the same area of sky and typically follows a 

gure-of-eight orbit above a region of the planet. A typical track in the southern 

hemisphere is shown in Figure 25(b).

A geostationary orbit (Figure 25(a)) is a special case of the geosynchronous 

orbit. In this case, the satellite is placed in orbit above the plane of the Equator 

and will not appear to move when viewed from the surface. 

rotation of Earth

polar axis

geostationary

orbit

(a)

polar orbit

▴ Figure 25 (a) A polar orbit and a geostationary orbit around Earth. (b) The track of a 

geosynchronous orbit in the sky.

Worked example 16

Calculate the orbital period for a satellite in polar orbit.

Solution

The orbital period can be found by rearranging the Kepler’s third law equation, T =
4π 

2 r 3

GM
.  

The radius of the orbit is the orbital height (100 km) plus the radius of Earth.

T =
4π

2
× (100 × 103

+ 6.37 × 106)3

6.67 × 10−11
× 5.97 × 1024

= 5180 s  (about 86 min)

Worked example 17

A geostationary satellite has an orbital period of 24 hours. Calculate:

a.  the distance of the orbit from the surface of Earth

b.  the gravitational field strength at the orbital radius of a geostationary satellite.

Solutions

a.  24 hours is 86 400 s.

T2
=

4π
2 r3

GM
⇒ r = 3

T2 GM

4π 
2

⇒ r = 3
864002

× 6.67 × 10−11
× 5.97 × 1024

4π 
2

= 4.22 × 107 m

The distance from the surface is r rE = 3.59 × 107 m = 35 900 km.

b.  g = 
GM

r2
= 

6.67 × 10−11
× 5.97 × 1024

(4.22 × 107)2
 = 0.223 N kg−1
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Escaping Earth

A space launch from Earth may put a satellite into Earth orbit  or send a cra to 

explore a region of space far away from Earth. In the second case, the cra must 

escape Earth’s gravity and eventually come under the gravitational inuence of 

other planets and stars. 

What is the minimum energy needed to allow the cra to escape Earth? 

The total (mechanical) energy of a satellite is made up of the gravitational 

potential energy and the kinetic energy (ignoring any energy transferred to the 

internal energy of the atmosphere by the satellite). To escape from the surface of 

Earth, work must be done on the satellite to take it to innity. For an unpowered 

projectile this is equal to the kinetic energy — which means that the total of the 

(negative) gravitational potential energy and the (positive) kinetic energy must 

add up to zero. Thus, to reach innity,

gravitational potential energy + kinetic energy = 0

and therefore

GM ms

r
+

1

2
ms v 2esc = 0

where r is the distance of the satellite from the centre of Earth, vesc is the escape 

speed, and M and ms are the masses of Earth and the satellite, respectively. The 

gravitational potential energy is negative because this is a bound system. Kinetic 

energy is always positive. (It is important to keep track of the signs in this proof.)

To escape Earth’s gravitational eld completely, the total energy of the satellite 

must be (at least) zero. For the case where it is exactly zero (for the satellite to just 

reach innity), v 2esc =
2

ms

× 
GM ms

r

Thus, escape speed, vesc =
2 GM

r
Notice that:

• the escape speed is independent of the satellite mass, depending only on the 

properties of the planet

•  vesc = vorb × √2

• vesc = √2gr , where g is the gravitational field strength at the surface

• for Earth, from its surface, vesc is about 11 200 m s−1 (40 000 km h−1).

The true meaning of escape speed is the speed at which an unpowered object, 

something like a bullet, would have to be travelling to leave Earth from the 

surface. In theory, a rocket with enough fuel can leave Earth at any speed. All that 

is required is to supply the 63 MJ for each kilogram of the mass of the rocket (the 

gravitational potential of Earth’s eld at the surface is –62.5 MJ kg−1). However, in 

practice, it is best to reach the escape speed as soon as possible.

Similarly, when a spacecra begins its journey from a parking orbit, then less fuel 

will be required from there because part of the energy has already been supplied 

to reach the orbit.
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Practice questions

16. Calculate the speed needed to escape the 

gravitational influence of the Sun from the orbital radius 

of Earth. Mass of the Sun = 2.0 × 1030 kg; Sun–Earth 

distance = 1.5 × 1011 m.

17. A space probe of mass 640 kg is to be launched from 

the surface of Earth. Calculate:

 a.  the energy needed to move the probe from the 

surface to a parking orbit at a height of 500 km

 b.  the escape speed from the parking orbit

 c.  the energy needed to escape the gravitational 

field of Earth from the parking orbit.

D. Fields 
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Worked example 18

Calculate the escape speed from the surface of the Moon.

Mass of the Moon = 7.35 × 10 22 kg, radius of the Moon = 1.74 × 106 m.

Solution

vesc =
2 × 6.67 × 10−11

× 7.35 × 1022

1.74 × 106
= 2.37 × 103 m s−1

Worked example 19

A space probe of mass 2500 kg is in a circular parking orbit 350 km above the surface of Earth. The 

main engine of the space probe is fired for a short time in the direction of motion so that the space 

probe reaches the speed needed to escape Earth’s gravitational field.

Determine the work done on the space probe by the engine.

Solution

To escape the gravitational eld of Earth, the space probe must have the kinetic energy corresponding to 

the escape speed from the radius of the parking orbit, Ek = 
1

2
mv 2esc = 

1

2
m 

2GM

r
=

GMm

r
.  

The space probe already has the kinetic energy due to its orbital motion, Ek, orbit = 
1

2
mv 2orbit = 

GMm

2r
.  

The work done by the engines is W = Ek – Ek, orbit = 
GMm

r
 – 

GMm

2r
= 

GMm

2r
.  

The orbital radius is r = 6.37 × 106 + 350 × 103
= 6.72 × 106 km.

W = 
6.67 × 10−11

× 5.97 × 1024
× 2500

2 × 6.72 × 106
 = 7.4 × 1010 J

Orbits and the atmosphere

In Theme A, the eects of air resistance on the motion of a projectile were 

described. Drag force acts to reduce the range of a projectile. It also alters the 

trajectory to a steeper angle to the horizontal compared with the situation where 

drag is negligible. 

The atmosphere does not suddenly end at one xed altitude. The gas density 

decreases with height until eventually there are so few gas atoms that a satellite 

is eectively travelling in a vacuum. However, at the orbital radii of low-orbit 

satellites, there is still a signicant eect over time. 

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



A
H

L

Topic D.1      Gravitational fields

502

The gradual decrease in orbital radius and increase in orbital speed mean 

that low-orbit satellites that are intended for long-term use need to have 

their orbits boosted periodically, perhaps three or four times every year. 

The consequence of not doing so is that the orbit continues to decay and 

the speed continues to increase within an increasingly dense atmosphere 

as the orbital radius decreases. The collisions with atoms become more 

frequent and a runaway process begins, which eventually leads to a  

burn-up of the satellite in the atmosphere.

How can air resistance be used to alter the motion of a 

satellite orbiting Earth?

The collisions between the satellite and the gas atoms transfer energy from the 

satellite to the atmosphere. The atmosphere heats up at the expense of the total 

energy of the satellite. As a result, the radius of the satellite’s orbit decreases. 

Paradoxically, this means that the speed of the satellite in its orbit must increase 

because

vorbital =
GME

r

As the radius decreases, vorbital increases. 

This is because the kinetic energy of the satellite is a positive quantity which 

increases with decreasing radius, while the gravitational potential energy of the 

satellite decreases (that is, becomes more negative) as the radius decreases. 

The total energy E of a satellite is the sum of the kinetic energy Ek and the 

gravitational potential energy W: E = W + EK. Using the energy quantities from 

earlier,

E = – 
GMms

r
 +

1

2
msv 2orbital

We already know that vorbital =
GM

r
 and therefore 

1

2
msv 2orbital = 

1

2
ms ×

GM

r
. This 

is 
1

2
×

GMms

r
, which is 

W

2
. The magnitude of the gravitational potential energy 

is twice that of the kinetic energy — although remember that the gravitational 

potential energy is negative, whereas the kinetic energy is positive.

A loss in orbital energy –ΔE leads to a decrease in the orbital radius of Δr that has 

two contributions:

• a loss of gravitational potential energy of –2ΔE

• a gain in kinetic energy of +ΔE.
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Worked example 20

A satellite of mass 700 kg is in a circular orbit of height 380 km above the surface of Earth. 

a.  Calculate the total energy of the satellite.

Due to residual atmospheric drag, the satellite loses mechanical energy at an average rate of 0.10 W.

b.  Explain why the kinetic energy of the satellite is increasing.

c.  Calculate the change in the orbital radius of the satellite:

 i.  during one orbital revolution

 ii.  during one year.

Solutions

a.  E = −
GMm

2(rE + h)
= −

6.67 × 10−11 × 5.97 × 1024 × 700

2(6.37 × 106 + 380 × 103)
= −2.1 × 1010 J

b.  The total mechanical energy decreases and hence the orbital radius of the satellite decreases.  

The orbital speed is 
GM

r
, so it increases as the orbital radius r decreases.

c.  One orbital revolution takes 
4π

2r3

GM
= 

4π
2 (6.75 × 106)3

6.67 × 10−11 × 5.97 × 1024
= 5.52 × 103 s. 

 i.  Energy loss of the satellite during one orbit is ΔE = 0.10 × 5.52 × 103 = 552 J. 
The change Δr of the orbital radius can be calculated from the equation  

ΔE = –
GMm

2r
–  GMm

2(r − Δr)
, where r = 6.75 × 106 m is the original radius.

   552 =
6.67 × 10−11 × 5.97 × 1024 × 700

2
 1

6.75 × 106 − Δr
– 

1

6.75 × 106
. 

  Solving this equation for Δr gives Δr = 0.18 m. The orbital radius decreases by 18 cm  
  per revolution.

 ii.  In one year, the satellite makes about 
365 × 24 × 3600

5.52 × 103
= 5700 orbits. The orbital radius will 

decrease by 5700 × 0.18 = 1000 m. This is an approximate answer because the orbital period 

is gradually decreasing and the magnitude of the drag force is increasing as the satellite is 
getting closer to Earth.
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There is a long experimental story that led to the discovery 

of the electron. Many scientists have done sustained 

experimental work based on the theory of electric and 

magnetic fields. You will read more about this in Theme E.  

There is a detailed description of the experiment where 

charged beams are deflected by both electric and 

magnetic fields in Topic D.3.

Visualization aids our understanding. The field line is one 

of the best examples of this type of thinking. Scientists 

began by imagining the shape and strength of a magnetic 

field through the position and direction of fictitious lines of 

force (or field lines) that surrounded a magnetic dipole — a 

bar magnet. The image proved to be so powerful that the 

visualization was later used for electric and gravitational field 

lines too. However, such a technique can only go so far and 

an algebraic representation of field is needed as well. 

This topic uses the ideas of field theory that you met in Topic 

D.1 and applies them to both electrostatics and magnetism. 

Field theory does not attempt to explain the origins of the 

electric and magnetic forces. It is a way of describing these 

fields in an algebraic and quantitative way — in the case of 

electrostatics using an inverse-square law. 

Much of our modern world is driven by the interactions 

between electric and magnetic fields. The historical and 

physical consequences of these are described elsewhere 

in this course. There are forces acting between two wires 

when both carry electric current. Understanding this is 

one endpoint in your study of electric and magnetic fields.

Which experiments provided evidence to determine the nature of the electron?

How can the properties of fields be understood using both an algebraic approach and  
a visual representation?

What are the consequences of interactions between electric and magnetic fields? 

D.2 Electric and magnetic fields

In this topic, you will learn about: 

A
H

L

• the two types of electric charge and the direction of 

the electric forces between them

• Coulomb’s law 

• conservation of electric charge

• Millikan’s experiment 

• the transfer of electric charge using friction, 

electrostatic induction and by contact

• electric field lines

• electric field line density and field strength

• magnetic field lines

• electric potential energy and electric potential

• the electric field strength as electric potential gradient 

• the work done in moving a charge in an electric field 

• equipotential surfaces.

Introduction
Electromagnetism is an effect observed when charge 

moves in a circuit. The electric current leads to the 

appearance of a magnetic field. But it was not the 

observation of a magnetism arising from current electricity 

that began the ancient study of magnetism. Early navigators 

knew that some rocks are magnetic and that the rocks 

could move to indicate the direction of magnetic north. 

However, the true origins of magnetic effects remained 

obscure for many centuries. Only comparatively recently 

has our knowledge of the microscopic aspects of materials 

allowed us to understand how magnetism arises. 

▴ Figure 1 Many devices such as laptops and mobile phones 

have touchscreens. These work by detecting the change in the 

electric eld when your nger (a conductor) is nearby.
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Explaining electrostatics

In Topic B.5 the origin of electric current was explained in terms 

of free charges (electrons) that move through conductors. In 

the context of electrostatics, static electrons are added to, or 

removed from, an object. 

Experiments show that a positively charged object is attracted 

to objects with a negative charge but repelled by a positive 

charge. Simple electrostatic effects are due to the movement 

of negatively charged electrons. Positive charge arises from the 

presence of ions in a substance. An object with no observed 

charge has an exact balance between the electrons and the 

positively charged protons; it is said to be neutral. 

Figures 2(a) and 2(b) show the interactions between opposite 

charges and like (same sign) charges. There can be an attraction 

between charged and uncharged objects due to charge 

separation in the uncharged object. In Figure 2(c), the free 

electrons in the uncharged sphere A are repelled by the negative 

sphere B. They move away to the other side of sphere A. Sphere 

A is now polarized with a surplus of negative charge on its 

left and a surplus of positive on the right. These positives are 

closer to sphere B than the negative charges. The electric force 

increases with decreasing distance and so the overall force on 

sphere A is towards sphere B. 

When explaining the effects described here, always describe 

negative charge in terms of a surplus of electrons and describe 

positive charge in terms of a lack (or deficit) of electrons.

Conservation of charge

Charge carriers in a single conductor must move in and out of the conductor at 

equal rates. The same applies at a junction. Figure 3 shows a junction with three 

incoming currents and two outgoing ones. Current splits at a junction but the 

number of electrons moving into and out of it is the same in each second.  

So I1 + I2 + I3 = I4 + I5, which means that the sum of the currents flowing into the 

junction equals the sum of the currents flowing out. This is a consequence of 

conservation of charge

This important rule was first quoted by Gustav Kirchhoff in 1845. He devised 

another electrical conservation rule: conservation of energy. In a closed electrical 

circuit, the energy being converted into electrical energy (by emf sources) must 

equal the energy being transferred from electrical to internal (by pd sinks).  

Transferring charge

There are three methods through which charge can be transferred between 

objects.

(a) Charge transfer by friction

Rub a Perspex rod with a cloth and both objects become charged by friction. 

(This is known as the triboelectric effect.) 

+

+

+ +

+

+
+

+

(a) Opposite charges attract.

+

+ +

+

+
+

++ +

+

+ +

+

+
+

+

(b) Like charges repel.

(c) Charge separation means that attraction occurs

when one body is charged.

neutral

A

A

A B

B

B

+
+ +

+

+

+

+

+

▴ Figure 2 The three interactions between (a) unlike,  

(b) like and (c) charged bodies and uncharged bodies.

I2

I5

I1

I4

I3

▴ Figure 3 The sum of the currents into a 

junction is equal to the sum of the currents 

away from the junction. This is conservation 

of charge by another name.O
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The Perspex loses electrons and gains an overall positive charge (Figure 4). The 

electrons that are transferred to the silk give it an overall negative charge. Notice 

that electrons are not lost in these transfers. If 1000 electrons are removed from 

the rod, the cloth will be left with 1000 extra electrons at the end of the process. 

Charge is conserved in a closed system. 

Two materials charged by friction end up with opposite charges.

In charging by friction, as the silk and the glass rod are rubbed together, the 

atoms on the surfaces of both materials are in close contact. Initially, the electron 

clouds surrounding the atoms on the surfaces do not interact. However, because 

an external force is being applied, the energy barriers between the electron 

clouds are modified and electrons transfer from one material to the other. When 

the force is removed, the energy barriers return to the original states and the 

electrons remain in their new location.

Table 1 shows some materials in the triboelectric series which shows the 

relative strength of materials with respect to this charging. When one material 

is rubbed against a material lower on the list, the material closer to the top is 

likely to become positive while the lower material becomes negative.

The success of plastic wrap (cling film) is due to several factors, including its elasticity 

and the fact that it becomes charged by friction as it is pulled off the roll. This means 

that it will cling effectively to a neutral object that has some free electrons.

(b) Charge transfer by contact

A simple method to charge an object is to put one charged object in contact with 

an uncharged object. Some of the electrons are transferred from one to the other, 

leaving the initially charged object with a reduced overall charge. The uncharged 

object is no longer neutral but gains charge with the same sign as the original 

charged object. 

The two materials charged by contact end up with the same sign of charge.

(c) Charge transfer by electrostatic induction

▴ Figure 4 Transferring charge by friction. 

The Perspex rod and the cloth are initially 

uncharged. Aer rubbing the cloth on the 

rod, the Perspex is positively charged and 

the cloth is negative.

Earth connection broken,

rod removed, and electrons

re-distributed to leave sphere

positive aer rearrangement

+

+

+

+

+

+

+

+
+

++

+

charged rod

separates charge

conducting sphere

insulating stand

sphere is earthed

and electrons are

repelled to Earth

6 electrons travel 

to Earth

remove

charged rod

+
+

+++
+

connected 

to Earth

▴ Figure 5 Transferring charge by electrostatic induction.

most positive

glass

leather

lead

silk

amber

polystyrene

rubber

plastic wrap

polypropylene

ebonite

most negative

▴ Table 1 A list of some materials in the 

triboelectric series.
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The process is shown in Figure 5. A charged rod is brought up to a neutral 

object, in this case a conducting metal sphere on an insulating stand. The rod 

is negatively charged and this repels some of the free electrons to the bottom 

of the sphere. There is charge separation and the sphere is still neutral because 

the charges remain balanced overall. (Its electric potential has been changed, 

however. The concept of electric potential and how it applies to this charging is 

explained later.)

The sphere is now earthed (grounded) by connecting a conductor between the 

ground and the sphere. (The sphere now has zero potential.) Some of the free 

electrons are repelled by the rod, move through this connection and flow down 

into Earth. 

The loss of electrons leaves the sphere with an overall positive charge. When 

therod and Earth connection is removed, the free electrons in the sphere will  

rearrange themselves to give an even distribution of positive charge on the sphere.

Notice that when the charged rod is removed, there is now a force of attraction 

between it and the sphere because they now have opposite signs. Work must be 

done to remove the rod. (The electric potential of the sphere changes again.)

The rod and the sphere have opposite signs of charge at the end  

of the process.

Worked example 1

A positively charged rod is brought up to an initially neutral 

conducting sphere. The sphere is grounded and the rod does 

not make contact with the sphere.

a. As the rod is moved towards the sphere, there is a short 

pulse of electric current between the sphere and the 

ground. Explain the direction of this conventional current.

b. The ground connection is now removed. State the sign of 

the charge induced on the sphere.

Solutions

a. The rod attracts free electrons in the sphere, causing a flow of electrons from the ground 

towards the sphere. The conventional current represents the flow of positive charge, so it is 

directed from the sphere to the ground.

b. The excess electrons remain on the sphere, and it is now negatively charged.

charged rod

conducting sphere

+

+
+

+

+
+

Forces between charged objects

In 1785, Charles-Augustin de Coulomb reported his series of investigations into 

the effects of forces from charged objects. He found, experimentally, that the 

force between two point charges a distance r apart is proportional to 1

r 
2
. This 

confirmed earlier theories by Daniel Bernoulli, Alessandro Volta, Joseph Priestley 

and others. Like Newton’s law of gravitation, this is an inverse-square law.
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• Tool 1: Recognize and address relevant safety, ethical or environmental 

issues in an investigation.

• Inquiry 1: Demonstrate creativity in the designing, implementation or 

presentation of the investigation.

• Inquiry 2: Identify and record relevant qualitative observations.

• Inquiry 2: Interpret qualitative and quantitative data.

These are sensitive experiments that need care and a dry atmosphere to 

achieve a result.

(a) (b)

insulating support

insulating rod

sensitive

top-pan

balance

+

d∝ sideways 

force on ball

r= distance 

between balls

d

r

▴ Figure 7 Modern versions of Coulomb’s experiment. 

• Take two small polystyrene spheres and paint them with a metal paint or 

colloidal graphite or cover them with aluminium foil. Suspend one from 

an insulating rod using an insulating thread (perhaps nylon fishing line). 

Mount the other on top of a sensitive top-pan balance, again using an 

insulating rod.

• Charge both spheres by induction when they are apart from each other, 

or, alternatively, touch the terminal of a laboratory high-voltage power 

supply to a sphere. Your teacher will give you instructions about this.

• Bring the spheres together as shown in Figure 7(a) and observe changes 

in the reading on the balance.

Another method is to bring both charged spheres together as shown in Figure 

7(b). The distance d moved by the sphere depends on the force between the 

charged spheres. The distance r is the distance between the centres of the 

spheres.

• Vary d and r, making careful measurements of them both.

• Plot a graph of d against 1

r 2
. An experiment performed with care can give a 

straight-line graph.

Replicating Coulomb’s experiment

▴ Figure 6 The apparatus used by 

Charles-Augustin de Coulomb to show that 

the force between two charged objects 

obeys an inverse square law.

Scientists at the time of Coulomb 

published their work in very 

dierent ways from scientists today. 

Some of the text of Coulomb’s 

original Mémoire is:

Coulomb’s work will not have been 

subject to peer review unlike the 

published research and review 

papers of scientists working in the 

21st century.

Evidence
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Later experiments confirmed that the force is proportional to the product of the 

size of the point charges q1 and q2. Combining Coulomb’s results together with 

the later work gives

F ∝
q1q2

r 2

The magnitude of the force F between two point charges of charge q1 and q2

separated by distance r in a vacuum is given by

F = k q1q2

r 2

where k is the constant of proportionality known as Coulomb’s constant. In SI 

units, the value of k is 8.99 × 109 N m2 C 2

This equation does not appear to give the direction of the force between the 

charged objects. Forces are vectors, but the quantities charge and distance2 are 

scalars. There are mathematical ways to cope with this, but, for point charges, the 

equation gives an excellent clue when the signs of the charges are included.

Take the positive direction to be from charge A to charge B. In Figure 8 this is 

from left to right (the positive x-direction). Begin with both charge A and charge 

B positive. When two positive charges are multiplied together in k q1 × q2

r 2
, the 

resulting sign of the force acting on charge B due to charge A is also positive. This 

means that the direction of the force on B will be assigned the positive direction 

(from charge A to charge B): in other words, left to right. This agrees because 

charge B is repelled. When both charges are negative, then the answer is the 

same because multiplying two negatives gives a positive value. The charges are 

repelled and the force is again to the right.

When one of the charges is positive and the other is negative, then the product 

of the charges is negative and the force direction will be opposite to the left-to-

right positive direction. The force on charge B due to charge A is now to the left. 

Again, this agrees with what we expect, that is, that the charges attract because 

they have opposite signs.

Another way to quote the constant is

k =
1

4πε0

The constant ε0 is called the permittivity of free space

(“free space” is a historical term for a vacuum). The 4π is 

added to rationalize electric and magnetic equations — in 

other words, to give them a similar shape and to retain 

an important relationship between them (see Topic D.3, 

page 550).

The equation becomes

F =
q1q2

4πε0r 2

This means that ε0 takes a value of 8.854 × 10 12 C2 N 1 m 2

or, expressed in base (fundamental) units, m 3 kg 1 s4 A2. 

The equation as it stands applies only to charges that 

are in a vacuum. When the charges are immersed in a 

dierent medium (say, air or water), then the value of the 

permittivity is dierent. It is usual to amend the equation 

slightly. k becomes

k =
1

4πε

as the “0” subscript in ε0 is only used for the case of a 

vacuum. For example, the permittivity of water is  

7.8 × 10 10 C2 N 1 m 2 and the permittivity of air is 

8.8549 × 10 12 C2 N 1 m 2. The value for air is so close 

tothe free-space value that we normally use  

8.85 × 10 12 C2 N 1 m 2 for both air and a vacuum. The 

table gives permittivity values for some dierent materials. 

Material Permittivity / 10 12 C2 N 1 m 2

paper 34

rubber 62

water 779

graphite 106

diamond 71

Measurement — Another form of the force equation

positive

direction

negative

direction

force on

 A due

to B

force on

 B due

to Acharge

A

charge

B

r

▴ Figure 8 A sign convention for 

force and charge. Force to the right is 

considered positive. Force to the le is 

considered negative.
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Worked example 2

Two point charges of +10 nC and 10 nC in air are separated by a distance of 15 mm.

a. Calculate the force acting between the two charges.

b. Comment on whether this force can lift a small piece of paper about 2 mm × 2 mm in area.

Solutions

a. It is important to take great care with the prefixes and the powers of ten in electrostatic calculations. 

The charges are: +10 × 10 9 C and 10 × 10 9 C. The separation distance is 1.5 × 10 2 m. (Notice how 

the distance is converted right at the outset into consistent units.)

So F= 8.99 × 109 (+1.0 × 10 8) × (−1.0 × 10 8)

(1.5 × 10 2)2

=−4.0 × 10 3 N

The charges are attracted along the line joining them. (Do not forget that force is a vector and needs 

both magnitude and direction for a complete answer.)

b. A sheet of thin A4 paper of dimensions 210 mm by 297 mm has a mass of about 2 g. So the small area of 

paper has a mass of about 1.3 × 10 7 kg and therefore a weight of 1.3 × 10 6 N. The electrostatic force 

could lift this paper easily.

Worked example 3

Two point charges of magnitude +5 μC and +3 μC are 1.5 m apart in a liquid that has a 

permittivity of 2.3 × 10 11 C2 N 1 m 2. Calculate the force between the point charges.

Solution

F=
(+5 × 10 6) × (+3 × 10 6)

4π × 2.3 × 10 11 × (1.5)2
= 23 mN; a repulsive force acting along the line joining the charges. 

Practice questions 

1. Two point charges of equal magnitude are separated 

by an air gap of 5.0 cm. The force between the 

charges is 0.80 mN.

a. Determine the magnitude of each charge.

b. Calculate the force between the charges when:

i. their separation increases to 10 cm

ii. the space between the charges is lled with a 

material of permittivity 1.8 × 10−11 C2 N−1 m−2.

2. Two point charges of +5.6 × 10−7 C and −1.2 × 10−6 C 

in a vacuum are separated by a distance of 45 mm.

a. Calculate the magnitude of the electrostatic force 

between the charges.

b. Calculate the distance between the charges at 

which the force is 1.0 N.

Electric fields

In Topic D.1, the concept of (gravitational) field was developed and you were 

introduced to new concepts such as potential and field strength. In field theory, 

all force laws of the same type (in our case, the inverse-square force) can be 

described using similar concepts. Topic D.1 gives a good understanding of 

gravitational fields, but all the concepts are re-introduced here as it gives you a 

different perspective on field theory.
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There are many similarities and dierences between elds. 

For example, gravitational elds are always attractive, 

whereas electric and magnetic elds can be attractive or 

repulsive; gravitational potentials are always negative, 

whereas both positive and negative potentials are 

possible in electric and magnetic elds; and magnetic 

monopoles are thought not to occur, so true point sources 

are only possible in electric and gravitational elds.

But there are also other comparisons to make. It is 

important to remember that Topics D.1 and D.2 give 

a description of elds in terms of a common set of 

concepts. There is no attempt to explain how the 

gravitational or electrostatic forces arise. To show this 

distinction, gravitational force can be explained in 

Einstein’s general theory as a distortion of spacetime by 

the mass of the attracting object. This leads to an inverse-

square law — and it is at this point that our theory began.

The assumption of inverse-square behaviour for electric 

and gravitational elds is a useful algebraic description 

but by no means the whole story.

How are electric and magnetic fields like gravitational fields?

Electric field strength

The definition of field strength arises from a “thought experiment” involving the 

measurement of the force acting on a test object. There is a problem in carrying out 

the measurement of field strength practically. The presence of a test object will distort 

and alter the field in which it is placed since the test object carries its own field.

The definition of field strength in general is force acting on the test object

size of the test object
 (as on 

page 476). This leads directly, for electric charge, to

E =
force acting on a positive test charge

magnitude of test charge
=

F

q

where q is the size of the test charge.

The unit of electric field strength is N C 1. 

The definition for electric field strength at a point is that it is the force per unit 

charge experienced by a small positive point charge placed at that point

The direction of the field is the same as the direction of the force acting on a 

positive charge. Electric field strength is a vector. It has the same direction as the 

force F (because the charge is a scalar). Extra attention to direction is required 

with electric fields because of the two signs of charge.

Electric eld strength due to a point charge

Imagine an isolated charge of size q sitting in space. What is the strength of the 

electric field at a point P, a distance r away from the isolated charge? We use a 

positive test charge of size qt at P and measure the force F that acts on the test 

charge due to the isolated charge. Then the magnitude of the electric force F

acting on the test charge is k × q × qt

r 2

The electric field strength is given by

E =
force acting on a positive test charge

magnitude of test charge
=

F

qt

Therefore, E =

(k q × qt

r 2
)

qt

= k q

r 2

This leads to the following definition.

The electric field strength E at a distance r from an isolated point charge q is

E = k q

r 2
=

q

4πε0 r 2

You will see many similarities 

between the definition of 

gravitational fields, on page 476, 

and electric fields. One important 

difference is that the definition of an 

electric field specifies that the small 

point charge must be positively 

charged.

Just as a thermometer can alter 

the temperature of the object it 

measures, so test objects aect the 

eld that they are being used to 

measure. They may accelerate the 

original current element or disturb 

the pattern of eld lines. In practice, 

test objects are really imaginary 

constructs that we use to help our 

understanding just as we cannot 

travel to points at innity.

This is food for thought from a 

theory of knowledge perspective: 

these are measurements that 

we can think about but not, in 

practical terms, carry out. The 

German language has a word for 

it: gedankenexperiment (thought 

experiment). 

How can a practical subject 

such as science have a 

gedankenexperiment?

Do test charges and 

small current elements 

aect the original elds?
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Adding electric elds

When there is more than one charge, the strength of an electric field due to two 

or more components must be found by vector addition. This means using either a 

calculation or a scale diagram. Vector addition is discussed on page 340.

Figure 9(a) shows a positive test charge that lies on the line between two charges 

of size +Q and −q. The force on the + test charge due to +Q is to the right. The 

electric field also produces a force on the test charge to the right due to the  

−q charge. These two forces are drawn as vectors that act in the same direction 

(they are shown apart for clarity in the figure). They add to give a resultant force 

and therefore a resultant electric field as shown.

Figure 9(b) shows an arrangement where the situation is no longer collinear 

(the charges and the test charge do not lie in a straight line). There are three 

charges. Charges 1 and 2 have charge +Q while the third has charge +2Q but 

is much closer to the position of the test charge. Again, either a scale diagram or 

a calculation works. The length representing the force acting on the test charge 

due to +2Q is much greater than the other two, which leads to a final summed 

field that is downwards on the diagram.

Worked example 4

An oxygen nucleus has a charge 

of +8e. Calculate the electric field 

strength at a distance of 0.68 nm 

from the nucleus

Solution

Recall from Topic B.5 that the 

elementary charge (the charge  

of one proton, or the magnitude  

of the charge of one electron) is  

e = 1.6 × 10 19 C. The charge on  

the oxygen nucleus is thus  

8 × 1.6 × 10 19 C. The distance is 

6.8 × 10 10 m.

E =
1.3 × 10 18

4πε0 × (6.8 × 10 10)2

= +2.5 × 1010 N C 1 away from 

the nucleus.

3. A nucleus of gold has a charge of +79e and a radius 

of about 7 fm. 

a. Calculate the electric eld strength at a distance 

of 1.5 nuclear radii from the centre of the gold 

nucleus.

b. A free proton is at a distance of 1.5 nuclear radii 

from the centre of a gold nucleus. Calculate the 

magnitude of the electric force on the proton.

4. The magnitude of the electric field at a distance of 

0.25 m from a point charge is 470 N C 1. The field 

is directed towards the point charge. Calculate the 

value of the point charge, including its sign.

5. Calculate the distance from a point charge  

+2.4 × 10 8 C at which the electric field strength 

is1.0 × 102 N C 1

Worked example 5

Calculate the electric field strengths in a vacuum:

a. 1.5 cm from a +10 μC charge

b. 2.5 m from a –0.85 mC charge.

Solutions

a. Begin by putting the quantities into consistent units: r = 1.5 × 10 2 m and 

q = 1.0 × 10 5 C.

Then E =
1.0 × 10 5

4πε0(1.5 × 10 2)2
= +4.0 × 108 N C 1

The field direction is away from the positive charge.

b. E =
8.5 × 10 4

4πε0(2.5)2
= –1.2 × 106 N C 1

The field direction is towards the negative charge.

Practice questions
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Worked example 6

Two point charges, a +25 nC charge X and a +15 nC charge Y are separated by a distance of 0.5 m.

a. Calculate the resultant electric field strength at the midpoint between  

the charges.

b. Calculate the distance from X at which the electric field strength is zero.

c. Calculate the magnitude of the electric field strength at the point P on  

the diagram.

Solutions

a. EX = 2.5 × 10 8

4πε0 × 0.252
= 3600 N C 1     EY = 1.5 × 10 8

4πε0 × 0.252
= 2200 N C 1

  The field strengths act in opposite directions, so the net electric field is  

(3600  2200) = 1400 N C 1. This is directed away from X towards Y.

b. For E to be zero, EX = −EY and so

2.5 × 10 8

4πε0 × d2
= 1.5 × 10 8

4πε0 × (0.5 − d)2

 Thus

d2

(0.5 − d)2
= 2.5

1.5
  or  d

(0.5 − d)
= √ 2.5

1.5
= 1.3

d = 0.65  1.3d

 2.3d = 0.65

d = 0.28 m

c.  PX = 0.4 m, so Ex at P is 2.5 × 10 8

4πε0 × 0.42
= 1400 N C 1 along XP in the  

direction away from X.

  PY = 0.3 m, so EY at P is 1.5 × 10 8

4πε0 × 0.32
 = 1500 N C 1 along PY in the direction away from Y.

  PX is perpendicular to PY so the magnitude of the resultant electric field strength is √14002 + 15002 = 2100 N C 1

  (The calculation of the angles was not required in the question and is left for the reader.)

P

X Y

0.3 m

0.5 m

0.4 m

P

X

EX

EY

Y

n
e

t 
e

le
c

tr
ic

 fi
e

ld

test charge

field due to –q q field

field due to +Q
net

electric field

+Q q
gives

+Q field
(a)

net

electric fieldgives

(b)

gives

field due to 1 field due to 2

field due to 1 and 2

field due to 3 field due to 3

charge 3

test charge

+Q

=

+2Q

+Q
◂ Figure 9 Electric eld 

strength is a vector quantity 

and so vector addition must 

be used to add electric elds.

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



Topic D.2    Electric and magnetic fields

514

Electric field lines

Electric field lines show the direction of the force acting on a test charge and help 

us to visualize the shapes of electric fields that arise from static charges. The field 

lines are imaginary, but they give us a clear impression of the variation of the field 

strength in the space between charged parallel plates, around point charges and 

charged spheres, and other arrangements.

The concept of the field line was first introduced by Michael Faraday. His original 

idea was of a set of elastic tubes that repelled other tubes, rather than a set of lines. 

There are some conventions for drawing these electric field patterns:

• The lines start and end on charges of opposite sign.

• An arrow is essential to show the direction in which a positive charge would 

move (that is, away from positive charge and towards negative charge).

• Where the field is strong, the lines are close together. The lines act to repel 

each other.

• The lines never cross.

• The lines meet a conducting surface at 90°.

Practice questions 

6. The diagram shows two point charges −80 μC and 

+80 μC. Point P is at an equal distance of 0.25 m from 

the two charges.

0.25 m

P

45°45°

0.25 m

+80 μC–80 μC

a. Determine the magnitude and direction of the 

resultant electric eld at P.

b. A test charge of −5.0 nC is placed at P. Calculate 

the magnitude of the electric force on the test 

charge and state the direction of the force.

7. Two positive point charges Q1 and Q2 are 1.0 m apart. 

Point P is on the line joining Q1 and Q2, at a distance of 

0.20 m from Q1

0.20 m

PQ1 Q2

1.0 m

 The electric field strength at P is zero. What is Q1

Q2

?

 A. 1

16
   B. 1

4
   C. 4   D. 16

8. Two charges +Q and −q are shown in the diagram. The 

magnitude of +Q is greater than the magnitude of −q

A +Q –qB C D

At which of the points A, B, C or D can the electric 

field strength due to the two charges be zero?
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• Tool 1: Recognize and address relevant safety, ethical 

or environmental issues in an investigation.

• Inquiry 1: Demonstrate creativity in the designing, 

implementation or presentation of the investigation.

• Inquiry 2: Identify and record relevant qualitative 

observations.

• Inquiry 2: Interpret qualitative and quantitative data.

Laboratory experiments can be used to make electric fields 

visible. Patterns of electric field lines can be observed 

using small particles floating on a liquid. The particles line 

up in the field that is produced between the wires. The 

patterns observed resemble those in Figure 11. 

• Put some castor oil in a Petri dish and sprinkle some 

grains of semolina (also known as grits) onto the oil. 

Alternatives for the semolina include grass seed and 

hairs cut about 1 mm long from an artist’s paint brush.

• Take two copper wires and bend one of them to form 

a circle just a little smaller than the internal diameter 

of the Petri dish. Place the end of the other wire in the 

centre of the Petri dish.

• Connect a 5 kV power supply to the wires. Take care 

with the power supply!

• Observe the grains slowly lining up in the electric field.

• Sketch the pattern of the grains that is produced.

• Repeat with other wire shapes such as the four 

examples shown in Figure 10.

• The patterns observed in such experiments will  

resemble those in Figure 11. 

Plotting electric elds

+

castor oil

semolina

(a)

(b)

(c)

▴ Figure 10 The Petri dish contains a copper point with a 

copper collar around the edge. A potential dierence between 

the two pieces of copper produces an electric eld in the liquid. 

Small grains show the shape of this eld. Other electrode shapes 

are shown too.

The radial eld due to a point charge

The electric field lines radiate outwards from a positive point charge and inwards 

towardsa negative point. As with the similar pattern in a gravitational field, 

thisisa radial field

The eld between two point charges

It is not hard to imagine how the two separate fields of Figure 12 combine to give 

the case where the point charges are close (Figures 13 and 14). There are two 

cases possible: two like charges and two unlike charges. Although a 2-D view is 

given, the fields are, of course, in 3-D.

+
Q Q

▴ Figure 12 Radial elds for an isolated 

positive charge and an isolated negative 

charge.

+
+

+

+

+

+

+

+

+
+

+

++ +

▴ Figure 11 Electric eld patterns due to four charge 

congurations used in the semolina experiment.
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(a) Like charges

There will be a point where the field is zero somewhere between the charges 

(where the electric forces on a test charge are equal and opposite). When both 

charges have the same magnitude, this position of zero field strength will be 

midway between them.

(b) Unlike charges

The electric field lines now link the two unlike charges in the direction that is 

from positive to negative charge. There is some resemblance to the field of a bar 

magnet that you meet later in this topic.

The eld between two parallel charged plates 

An electric field exists in the space between two identical parallel metal plates 

that are connected to a dc power supply. A positive test charge in the electric 

field is attracted to the negative plate and repelled by the positive plate. The field 

pattern is shown in Figure 15.

This electric field:

• is uniform in the region well within the plates

• becomes weaker at the edges. These are known as edge effects. This is 

where the field changes from the strength inside the plates to the value 

outside the plates (often zero). You should be able to use the properties 

of the field lines to explain that there cannot be an abrupt change in field 

strength. At the plate edges, the field lines curve outwards as the field 

gradually weakens from the large value between the plates to the much 

weaker field well away from them. For the purposes of this course, you 

should assume that this curving begins at the edges of the plates (in practice, 

it begins a little way in from the edge).

Try to predict the way in which the shape of the field lines might change when a 

small conducting sphere is introduced in the middle of the space between the 

two plates. (Use your knowledge of charging by induction.)

Sometimes field lines are called lines of force. These lines represent the force 

acting on a positive test charge (by definition) with direction indicated by the 

arrow on the field line. When the line is curved, the tangent at a point on a line of 

force gives the direction of the electric force acting on a positive test charge. The 

relative density of the lines (how close they are) indicates the strength of the force.

+ + + + + ++

– – – – – –

▴ Figure 15 View of the eld between two 

parallel plates including the edge eects.

+ +

▴ Figure 13 The eld around two positive 

point charges.

+

▴ Figure 14 The eld around a positive 

point charge and a negative point charge.

Imagine that you are a small test charge sitting in the 

middle of two horizontal uniformly and oppositely 

charged parallel plates. You can see the plates stretching 

out to the distant horizon, much as if you were standing in 

a huge at eld, except that there is also a plate overhead. 

The view would be the same in all horizontal directions 

and so the electric eld must be vertical.

Imagine moving to the side a short distance. Since the 

plates are uniformly charged, your view would hardly 

change. As a result, the electric eld due to the plates 

will be the same at this new position — the eld must 

beuniform.

Now imagine that you move to the edge of the plates. If 

you are centrally between the plates, then any horizontal 

contribution to the eld from the positive plate will be 

cancelled out by the opposite contribution to the negative 

plate — this would not be true if you were not positioned 

at an equal distance from each. Now, though, the plates 

will only occupy half of your eld of view. The electric eld 

strength is half the strength it was at the centre.

Thinking skills ATL
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• Tool 1: Recognize and address relevant safety, ethical 

or environmental issues in an investigation.

• Inquiry 1: Identify and justify the choice of dependent, 

independent and control variables.

• Inquiry 2: Identify and record relevant qualitative 

observations.

• Inquiry 3: Relate the outcomes of an investigation to 

the stated research question or hypothesis.

A small piece of charged foil can be used to detect the 

presence of an electric field.
foil

detector

charged

plate

high voltage

power supply

+
+
++

+
+

+
+
+
+
+
+

+–
▸ Figure 16 Demonstrating  

the electric eld between 

two charged parallel plates.

• The detector is made from a rod of insulator. A plastic 

ruler or a strip of polythene is ideal. Attached to the 

rod is a small strip of foil: thin aluminium or gold foil 

or “Dutch” metal are suitable. The dimensions of the 

foil need to be about 4 cm × 1 cm. The foil can be 

attached to the rod using adhesive tape or glue.

• Set up two vertical parallel metal plates connected 

to the terminals of a power supply that can supply 

a potential difference (pd) of about 1 kV to the 

plates. Take care when carrying out this experiment. 

(Usethe protective resistor in series with the supply 

ifnecessary.) 

• Begin with the plates separated by a distance that is 

roughly one-third of the length of their smaller sides.

• Touch the foil briefly to one of the plates. This charges 

the foil. You should now see the foil bend away from 

the plate it touched. 

• The angle of bend in the foil indicates the strength of 

the electric field. Explore the space between the plates 

and outside them too. Notice where the field starts to 

become weaker as the detector moves outside the 

plate region. Does the force indicated by the detector 

vary inside the plate region or is it constant?

• Turn off the supply and change the spacing between 

the plates. Does having a larger separation produce a 

larger or a smaller field?

• Change the pd between the plates. Does this affect the 

strength of the field?

• An additional experiment is to place a candle flame 

midway between the plates. What do you notice 

about the shape of the flame when the power supply 

is turned on? Can you explain your observation in 

terms of the charged ions in the flame?

The foil detector itself can also be used to explore the field 

around a charged metal sphere such as the dome of a van 

der Graaf generator.

Field between parallel plates

Potential difference between parallel plates

The uniform electric field between two charged plates provides us with another 

way to think about electric field strength.

In Figure 17, a positive charge with size q is in a field between two charged 

plates separated by a distance d. This field has a strength E. The force acting on 

the charge is (from the definition of electric field strength) F = E × q. Work must 

be done on the charge to move it towards the positive plate at constant speed. 

This is force × distance moved in the usual way. The field lines are parallel to 

the displacement, so there is no component of force to worry about. The work 

done= F × x = Eq × x, where x is the distance moved. When the charge is moved 

from the negative plate to the positive, the work done on the charge is Eqd

From Topic B.5 (page 301), the potential difference V between the plates is

V =
work done in moving a charge

magnitude of a charge

from Topic B.5 (page 303). Therefore

 V =
work done

q
=

Eqd

q
 or E =

V

d

+

+

+

+

+

+

+

+q

V

d

▴ Figure 17 The symbols used to show 

that E =
V

d
 between two parallel plates.
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Electric field strength can be written and calculated in 

twoways:

• 
force acting on a charge

magnitude of charge
;  

this implies that the unit for electric field 

strength is N C 1

• 
potential difference

distance moved
;  

this implies that the unit for electric field  

strength is V m 1

These give two alternative units for electric field strength 

as well as two ways to calculate it.

To see this, write

N

C
≡ 

kg m s 2

C
≡ 

kg m2 s 2

C m
≡ 

kg m2 s 2

C
×

1

m
≡ 

V

m

Writing the equations in full for the uniform field between 

parallel plates gives

E = 
F

q
=

V

d

In practice, it is easier to measure a potential difference with 

a voltmeter in the laboratory than to measure a force so an 

electric field strength is commonly expressed in V m 1

Calculating electric eld strength

Worked example 7

A pair of parallel plates with a potential difference between them of 5.0 kV  

are separated by 120 mm. Calculate:

a. the electric field strength between the plates

b. the electric force acting on a doubly ionized oxygen ion between the plates.

Solutions

a. E =
V

d
=

5000

0.12
= 4.2 × 104 V m 1

b. The charge of the ion is 2e = +3.2 × 10 19 C

 F = qE = 3.2 × 10 19
× 4.2 × 104

= 1.3 × 10 14 N

 The force is directed towards the negative plate.

Worked example 8

A pair of parallel plates are separated by 80 mm. A droplet with a charge of 11.2 × 10 19 C is in the field.

a. Calculate the potential difference required to produce a force of 3.6 × 10 14 N on the droplet.

b. The plates are now moved closer to each other with no change to the potential difference. The 

force on the droplet changes to 1.4 × 10 13 N. Calculate the new separation of the plates.

Solutions

a. E =
F

q
=

3.6 × 10 14

11.2 × 10 19
= 3.2 × 104 NC 1

 V = Ed = 3.2 × 104
× 0.080 = 2600 V

b. The force changes by a factor of 1.4 × 10 13

3.6 × 10 14
= 3.9

 The separation decreases by this factor, to 80

3.9
= 21 mm.
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Practice questions 

9. A charged particle of mass 2.5 g is placed in an 

electric field between two charged parallel plates. The 

potential difference between the plates is 8.0 kV and 

the plates are separated by 12 cm.

a. Calculate the electric eld strength between 

theplates.

b. The particle accelerates towards the positively 

charged plate with an acceleration of 1.6 m s 2. 

No other forces than the electric force act on the 

particle. Determine the magnitude and the sign of 

the charge on the particle. 

10. A particle of charge +15 nC is suspended between 

two parallel plates separated by 2.0 cm. The electric 

force acting on the particle is 1.2 mN.  

Calculate:

a. the electric eld strength at the position of the 

particle

b. the potential dierence between the plates.

The electronvolt 

The energy possessed by an individual electron is very small. When a single 

electron is moved through a potential difference of 15 V, then, as W = qV, the 

energy gained by this electron is 15 × 1.6 × 10 19 J = 2.4 × 10 18 J. This small 

quantity involves large negative powers of ten. It is convenient to define a new 

unit for energy and work done.

The electronvolt (symbol eV) is defined as the energy gained by one electron 

when it moves through a potential difference of one volt.

An energy of 1 eV is equivalent to 1.6 × 10 19 J. The electronvolt is used extensively 

in the nuclear and particle physics of Theme E.

Worked example 9

An electron, initially at rest, is accelerated through a potential difference of 180 V. 

Calculate, for the electron:

a. the gain in kinetic energy

b. the final speed.

Solutions

a. The electron gains 180 eV of energy during its acceleration.

 1 eV ≡ 1.6 × 10 19 J, so 180 eV ≡ 2.9 × 10 17 J

b. The kinetic energy of the electron = 1

2
mev2 and the mass of the electron is 9.1 × 10 31 kg.

 So v = √ 2Ek

me

= √ 2 × 2.9 × 10 17

9.1 × 10−31
 = 8.0 × 106 m s−1O
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Worked example 10

In a nuclear accelerator a proton is accelerated from rest and gains an energy of 250 MeV.  

Estimate the final speed of the particle and comment on the result.

Solution

The energy gained by the proton, in joules, is 4.0 × 10 11 J.

As before, v = √ 2Ek

mp

= √ 2 × 4.0 × 10 11

1.7 × 10 27
, but using a value for the mass of the proton this time.

The numerical answer for v = 2.2 × 108 m s 1

This is a large speed, 70% of the speed of light. In fact, the speed will be less than this as some  

of the energy goes into increasing the mass of the proton through relativistic effects rather than  

into increasing the speed of the proton.

• Tool 1: Recognize and address relevant safety, ethical 

or environmental issues in an investigation.

• Tool 3: Construct and interpret tables and graphs for 

raw and processed data including scatter graphs and 

line and curve graphs.

• Inquiry 1: Justify the range and quantity of 

measurements.

• Inquiry 2: Collect and record sufficient relevant 

quantitative data.

+

+

+

+

+

+

+

+

+

plate

d

area A

charge q

power supply

coulomb-

meter

flying lead

0 V

0 V

V

+

▴ Figure 18 Measuring the variation of charge on parallel plates.

This experiment shows how electric field strength 

between parallel plates varies with applied voltage, the 

area of the plates and the distance between them. Great

care is needed as this experiment uses high voltages

• Set up a pair of parallel plates, a 5 kV power supply, a 

well-insulated lead attached to the positive terminal 

of the power supply and a coulombmeter (a meter that 

will measure charge directly in coulombs) as shown in 

the circuit. Later you will need to replace the parallel 

plates with ones that have different areas. You will also 

need to record the distance between the plates with 

the supply turned off.

• Set and record a suitable voltage V on the power 

supply. Your teacher will suggest values to use. 

• Measure and record the distance d between the 

parallel plates.

• Turn on the power supply and touch the flying lead to 

the right-hand plate briefly. Then remove it from the 

plate. This charges the plates. 

• Zero the coulombmeter and then immediately touch 

its probe to the right-hand plate that you just charged. 

Record the charge q shown on the meter. This is the 

charge on the plate. You may wish to repeat this 

charging and measurement procedure as a check.

• Change the distance between the plates without 

changing the setting on the power supply.

• Repeat the measurements of d and q. Don’t forget to 

switch off the power supply before you measure the 

separation of the plates.

• Repeat the experiment with constant power supply 

voltage V and plate separation d, but use pairs of 

plates with different areas. Record each plate area A

• Carry out another experiment in which V is changed 

but A and d are constant.

• Plot your results as q versus V, q versus A, and q versus d. 

Charged parallel plates

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



D. Fields

521

Field close to a conductor

The charge q stored on one of the parallel plates in the two-plate arrangement 

depends on the potential difference V between the plates, the area A of the 

plates and their separation d:

• q ∝ V

• q ∝ A

• q ∝
1

d

These relationships can be combined to give q ∝
VA
d

 where the constant of 

proportionality turns out to be 1

4πk
 and therefore:

q =
VA

4πkd

This expression can give a value for the density of charge on the surface of 

charged parallel plate. It rearranges to:

q

A
=

V

4πkd
=

1

4πk
×

V

d

Here q

A
 is the charge per unit area, the surface charge density σ. The units of σ are 

C m 2. Therefore, between two parallel plates:

E = 4πkσ

Each plate contributes half of the field, so that the electric field very close to the 

surface of any single conductor is E = 2πkσ. “Very close” means close enough for 

the surface to be considered locally flat.

surface

+ + surface

leaving electric field only

perpendicular to surface

parallel to

surface cancel

+ +

perpendicular

to surface add

◂ Figure 19 Although from a distance 

away, the surface of a sphere is curved, 

very close to the surface it appears at and 

the electric eld lines are locally normal to 

the surface.
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Imagine going very close to the surface of a conductor. Figure 19 shows what you 

might see in the case of a conducting sphere. When we are sufficiently close, the 

surface appears flat (just as we are not aware of Earth’s curvature until we can see 

it from Space). We would also see that the free electrons are equally spaced. This 

is because any electron has forces acting on it from all the other electrons. The 

electron will accelerate until all these forces balance out and it is in equilibrium. 

For this to happen they must be equally spaced. 

The electric field vectors radiate out from each individual electron (acting as a 

point source). Parallel to the surface, all these vectors cancel so there is no electric 

field along the surface. No electron accelerates along the surface because the 

component of field strength is zero. Perpendicular to the surface, however, things are 

different. The field vectors add up and, because there is no field component parallel 

to the surface, the local field must act at 90° to the surface. Close to any conducting 

surface, the electric field is at 90° to the surface and has strength E= 2πkσ

Field due to a conducting spherical body

(a) Outside the sphere

Knowledge of the electric field very close to a conductor can be taken a step 

further for a conducting sphere — whether hollow or solid. Again, the free 

electrons on the surface are equally spaced and all the field lines at the surface of 

the sphere are at 90° to it. The consequence is that the field must be radial, just 

like the field of an isolated point charge (Figure 19). 

To a test charge outside the sphere, the field of the sphere appears the same as 

that of a point charge. Mathematical analysis confirms that outside a sphere the 

field indeed behaves as though it came from a point charge placed at the centre 

of the sphere with a charge equal to the total charge spread over the sphere.

(b) Inside the sphere

Inside the sphere is a different matter. There is no electric field inside a 

conducting sphere, hollow or solid, a result that was experimentally determined 

by Benjamin Franklin. It can be shown using Coulomb’s law and the ideas of 

surface charge density.

Because the sphere is a conductor, all the surplus charge must reside on the 

outside of the sphere. This follows because the charges will move until: 

• they are as far apart as possible

• they are all in equilibrium (which, as earlier, means that they must be 

equidistant on the surface).

To find the field strength inside the conductor, we need to compute the force that 

acts on a positive test charge q placed at a random position inside the conductor 

(Figure 20).

What is the force acting on this test charge? Focus on two cones that meet at the 

test charge. The test charge is close to the conductor surface on one side, so that 

one of these cones is small and the other is large. The surface charge density on 

the cone is σ over the whole sphere. 

Analysis shows that the forces acting on the test charge due to the two surfaces 

are equal 
kqσπx

2

s

r
2

s

=
kqσπx

2

r
2

and opposite in direction. The two forces cancel out, 

leaving no net force due to these two areas of charge.

▴ Figure 20 No resultant force acts on 

the charge +q from the two areas of charge 

indicated. This means that, overall, there 

can be no force on the charge. There is no 

electric eld inside the sphere.

surface of charge

conducting sphere

σ, surface

charge density

+q

2x

2xs

r

rs

▴ Figure 21 In the same way that there is 

no electric eld inside a conducting sphere, 

any other shape made of a conducting 

material will have no electric eld inside it. 

This is oen called a Faraday cage, although 

the eect was rst noted by Benjamin 

Franklin. In this picture, a man is wearing 

a conducting suit of chain mail, which 

protects him from the large electric elds he 

is demonstrating. The same eect can be 

used to shield sensitive electrical equipment 

from external electric elds.

The reasoning why there is no 

electric field inside a closed sphere 

should remind you of the similar 

suggestion for the gravitational field 

inside a spherical shell on page495.
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This proof applies for any pair of cones and any test point inside the sphere. 

There is no net force on the test charge anywhere inside the sphere. 

Consequently, there can be no electric field either. 

Benjamin Franklin was a scientist who conducted research into electricity and 

electrical elds. He was the rst to use some of the language and vocabulary 

still used to describe electricity. Examples such as “charging and discharging” 

and the distinction between conductors and insulators came from Franklin. 

He famously ew a kite during a storm to demonstrate that lightning was an 

electrical eect and he invented the lightning rod.

Franklin was also a writer, printer and publisher. As a politician he was one 

of the founding fathers of the Unites States and one of the draers of the 

Declaration of Independence.

In his autobiography, Franklin devoted a signicant portion to self-

management. He identied thirteen virtues (temperance, silence, order, 

resolution, frugality, industry, sincerity, justice, moderation, cleanliness, 

tranquillity, chastity and humility) and reected at the end of each day upon 

whether he had fallen short in any one of these virtues. He concentrated 

on one virtue each week to practise and strengthen that virtue. He also 

constructed an “order” so that “every part of my business should have its 

allotted time”. 

Franklin acknowledged that other people might have other routines and 

that, when his business involved other people, that compromise would be 

needed.

What will your timetable look like when revising for your exams so that each 

subject “should have its allotted time”?

Self-management skills ATL

Millikan’s experiment to determine the charge on an electron

In 1909, the American physicists Robert A Millikan and Harvey Fletcher carried 

out an elegant experiment to estimate the charge on an electron. Nowadays the 

experiment is attributed to Millikan alone and is known as Millikan’s method 

for the determination of e. Millikan won the Nobel prize in 1923 for the 

combination of his work on this and the photoelectric effect (Topic E.2).

The method has two steps:

• Step 1. A cloud of small oil drops is sprayed into a chamber (Figure 22(a)). 

The drops are ionized using X-rays or a source of beta particles, or they charge 

by friction as they fall through the aperture into the chamber. One drop is 

selected and allowed to fall through air in the absence of an electric field. The 

drag force together with the buoyancy force and the gravitational force lead to 

zero resultant force on the drop during this fall (Figure 22(b)). Measurement of 

the terminal speed of the drop allows the weight of the drop to be calculated. 

• Step 2. The same drop is charged while in the apparatus and is held stationary 

using an upward electric force that is equal and opposite to the weight  

(Figure 22(c)). This allows the electric force on the drop to be determined  

(see Worked example 11).

This proof relies on the inverse-

square law and the fact that the 

area of the ends of the cones also 

depends on the (distance of the 

test charge from the area)2

▴ Figure 22 The stages of Millikan’s 

experiment. A drop is selected and 

charged, its terminal speed is measured and 

the charge it carries is estimated. 

V

0 V

ionizing
radiation

oil droplets

(a)

terminal
speed

terminal
speed

drag force + upthrust

weight force

sprayer to
produce oil
droplets

microscope
to view
droplet

(b)

V

0 V drop
stationaryelectric force

weight force

sprayer to
produce oil
droplets

microscope
to view
droplet

(c)
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The two sets of measurements allow the excess charge on the drop to be 

estimated. Millikan and his co-worker found that the excess charge was always an 

integer multiple of a basic charge. He ascribed this basic charge to the charge of 

one electron.

When many drops have been measured each with many different charges, it is 

possible to estimate the lowest common denominator of all the charges. To see 

how this works, imagine that you have several opaque bags containing identical 

objects. You know that the mass of each bag is negligible. Can you estimate the 

mass of one object?

Suppose the masses of four bags are: 420 g, 840 g, 560 g and 1260 g. The 

highest common factor of these measurements is 140 g, indicating that this is 

a good estimate for the mass of one object (there will be 3, 6, 4 and 9 objects, 

respectively, in the bags). However, if the masses had been 420 g, 840 g, 630 g 

and 1260 g, then the highest common factor is now 70 g and you will need to 

revise the object mass down.

This was the basis of Millikan’s method. After many trials he estimated the 

elementary charge to be (1.592 ± 0.003) × 10 19 C. Later experiments have  

failed to find a lower value for the charge, even though the value for e has 

increased slightly over the 100 years since the original experiment.  

Nowadays the electronic charge is a matter of definition and the value assigned 

to e is 1.602 176 634 × 10 19 C exactly.

Millikan’s work shows the importance of error estimates in scientic experiments. 

He claimed an error of about 0.5% at the time. However, later examinations of the 

original notebooks showed that of the 175 drops that he measured, only 58 were 

used for the nal result for e

There are comments in the notebooks about the 100 or so drops that were 

ignored. These range from “This is almost exactly right…” through “Error high 

not used” to “too high by 1.5%”.

Experiments that collect data are sampling random points on a normal 

distribution (which gives a bell-shaped curve). Millikan may have been 

unconsciously rejecting  outliers well away from the curve centre (the true 

result) and distorting the shape of the distribution, moving the true result away 

from where it should havebeen.

Millikan was highly respected and his result carried weight. Richard Feynman 

noted that the value of e in later experiments only gradually crept up to its 

modern accepted value as scientists became more and more condent about 

the correct result and were less inuenced by the fame of Millikan.

Experiments

When a quantity is quantized, 

it can only take a set of unique 

values. ThemeE shows you that 

a number of physical quantities 

besides charge have this formal 

property. They include the discrete 

energy levels for an isolated 

hydrogen atom (and other simple 

atoms too). This is related to the 

quantized angular momentum 

of the system. The spectrum of 

hydrogen consists of distinct 

spectral lines for this reason.

Other quantities that are quantized 

that are not met in this course 

include the weak hypercharge, 

colour charge, baryon number, 

lepton number and spin.

Charge is quantized.  
Which other physical 
quantities are quantized? 
(NOS)
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Worked example 11

In Millikan’s experiment, a negatively charged oil drop is introduced into  

the space between two parallel horizontal plates (see Figure 22). 

a. When the electric field between the plates is switched off, the drop falls  

vertically reaching a constant speed of 0.23 mm s 1. 

i. Draw a free-body diagram showing the forces acting on the drop.

ii. Determine the radius of the drop.

 Density of the oil = 850 kg m 3

 Density of air = 1.2 kg m 3

 Viscosity of air = 1.8 × 10 5 Pa s

b. When the electric potential difference between the plates is adjusted to  

1750 V, the drop is brought to rest. The distance between the plates is 1.2 cm. 

 Determine the charge on the drop. State the answer in terms of the elementary charge, e

Solutions

a. i.  The weight, W of the drop is balanced by two forces acting upwards: the  

buoyancy force, B and the viscous drag force, Fd

 ii.  The net force on the drop is zero; hence Fd = W − B. Substituting expressions  

for the individual forces in terms of r and v, we obtain 

  6π ηrv = 4

3
π r 3 ( ρoil − ρair )g ⇒ r = √ 9ηv

2( ρoil − ρair )g

r = √ 9 × 1.8 × 10 5 × 0.23 × 10 3

2(850 − 1.2)(9.8)
= 1.5 × 10 6 m.

b.  The net force on the drop is again zero, but the drag force is replaced by the electric force Fe = qE = qV

d

 The equilibrium of the forces gives 

qV

d
= 4

3
πr 3 ( ρoil − ρair )g ⇒ q = 4π r 3 ( ρoil − ρair )gd

3V

q = 4π (1.5 × 10 6)3 (850 − 1.2)(9.8)(0.012)

3 × 1750

= 8.0 × 10 19 C.

This is equal to 5e, so there is an excess of five electrons on the oil drop.

Practice questions 

11. An oil drop of mass 3.3 × 10 14 kg has an excess of ten 

electrons. The drop is suspended at rest in a uniform 

electric eld in vacuum. Calculate the magnitude of 

the electric eld strength and state its direction.

12. In Millikan’s experiment, a negatively charged oil 

drop of radius 1.8 μm and mass 2.1 × 10 14 kg is at rest 

in the space between two parallel horizontal plates. 

The distance between the plates is 9.0 mm and the 

potential dierence is 1.9 kV.

a. Calculate the charge on the oil drop, giving the 

answer in terms of e. Ignore the buoyancy force.

b. The charge on the drop is changed and the drop 

starts to move upwards, reaching a constant 

speed of 0.11 mm s 1. The electric eld strength 

remains unchanged. Determine the new number 

of excess electrons on the drop. The viscosity of 

air is 1.8 × 10 5 Pa s.

B

F
d

W
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Electric potential

In Topic B.5 the quantity electric potential difference was introduced. There 

it was called either “potential difference” or, more colloquially, “voltage” and 

“pd”. Potential differences are associated with the charge movement that we 

call electric current. Electric potential difference V is the measure of the energy 

transfer W when a charge q moves through the potential difference:

V =
W

q

This led to the unit of one volt (1 V) as one joule per coulomb (1 J C 1). Electric 

potential difference is the work done per unit charge.

If you have already studied the gravitational potential ideas in Topic D.1, you 

will recognize the similarity between this definition and the expression for 

gravitational potential difference ΔVg =
W

m
Once we have defined a zero of electric potential, then we can extend this idea 

of electric potential difference to that of an absolute electric potential relative to 

the zero. As in gravitation, we define the zero of electric potential to be at infinity 

so that there is no influence of one charge on another when they are separated by 

an infinite distance.

Our formal definition of electric potential difference between two points then 

becomes ΔVe =
W

q
 with ΔVe as the electric potential difference and W as the 

work done in moving a test charge +q between the two points. 

This definition resolves an additional issue: the sign of the test charge. This is 

not a problem in gravitation because mass is only positive. In electrostatics, the 

presence or absence of excess electrons leads to positive or negative overall 

charges. For all definitions in electric field theory, it is conventional to choose a 

positive test charge.

This leads directly to the following definition of electric potential.

Electric potential at a point is the work done in bringing a unit positive  

test charge from infinity to the point.

Sometimes you may see the term 

absolute electric potential used 

for this denition when ascribing a 

zero potential toinnity. 

It is possible to choose another 

location for zero potential. One 

example of this is Earth. We are 

usually happy to assume that Earth 

has a zero potential and we call 

this value the “earth” or “ground”. 

You can see an example of this near 

the start of this topic in charging by 

induction. In fact, the magnitude 

of the electric eld near Earth’s 

surface is about 150 N C 1 and it has 

a downwards direction. This means 

that Earth has a non-zero potential 

relative to innity.

An analogous situation occurs in 

gravitation (see page 488) where 

we describe the absolute zero of 

gravitational potential as being zero 

at innity, but for practical purposes 

we could set our zero on Earth to sea 

level and count mountains as having 

positive potential and seabeds as 

having negative potentials.

Measurement — 

Absolute electric  

potential

Worked example 12

A particle of charge +20 nC is initially at rest. The particle is moved through a potential  

dierence of 1.5 kV in an electric eld. Calculate the work done in moving the particle.

Solution

W = qΔVe = 20 × 10 9 × 1.5 × 103 = 3.0 × 10 5 J.

Worked example 13

The electric potential at the surface of a conducting body is −300 V. A particle of charge −15 nC, initially  

at rest at the surface of the body, accelerates away from it due to electrostatic repulsion. Calculate the kinetic  

energy of the particle when it has moved to a region of zero potential, a long distance from the conducting body.

Solution

The work done on the particle by the electric force is W = – qΔVe = – (–15 × 10−9 ) (0 – (–300)) = 4.5 × 10−6 J. 

This work is equal to the increase in the kinetic energy of the particle. Since the initial kinetic energy of the  

particle was zero, we have Ek = W = 4.5 × 10−6 J.
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Equipotential

We know that the field for an isolated point positive charge 

has the radial pattern shown in Figure 23. Also on the figure 

are the paths of two identical test charges, both coming from 

infinity. Although their paths end on different field lines, after 

their journey from infinity they are the same distance from the 

positive charge and will therefore be subject to the same final 

field strength (k q

r 2
, where r is the distance from X or Y to the 

+q charge). The same work must have been done to take X 

and Y to their final positions near the point charge. The electric 

potential at both positions is the same. 

A spherical surface connects all possible points that have the 

same electric potential for a point charge. This surface is called the equipotential 

surface. Figure 24(a) shows what a series of equipotentials look like in three 

dimensions for a positive point charge. Figure 24(b) shows a two-dimensional 

view that includes the field lines as well. Notice that, as for gravitational field lines 

and equipotentials, field lines and equipotentials meet at 90°. This is always true.

No work is done when a charge moves on the surface of an equipotential.

The field pattern due to two parallel charged plates is uniform with electric field 

lines equally spaced and at 90° to the plates (except close to the edges where 

the edge effect occurs). Figure 25 shows the arrangement of electric field lines 

and equipotentials for two charged plates with a potential difference between 

them of 12 V. Edge effects are not shown in this example. The (blue) electric field 

lines run from plate to plate; the black equipotentials are equally spaced (and 

shown here with 2 V intervals).

As the positive charge moves to the left in the field from the +12 V plate, it moves 

from a region of high potential to low potential. Work is done by the electric force 

(with no other forces acting, the charge will accelerate to the left). 

For a negative charge to move to the left in Figure 25 from high to low potential, 

it would need to have work done by an external force (against the electric force) 

because the negative plate repels it. 

0 V 2 V 4 V 6 V 8 V 10 V 12 V

+

+

+

+

+

▴ Figure 25 Work is done by the electric 

eld on the charge when a positive 

charge moves from a high potential to a 

low potential. The energy will transfer to 

the kinetic form because the charge will 

accelerate when free to do so.

+
q

charge X
charge Y

▴ Figure 23 The electric potential due to a point charge (or a 

charged sphere) depends on distance from the charge (or the centre 

of the sphere). The eld is conservative (see Topic A.3, page 117).

(b)

5V10V

15V

20V

25V

(a)

▴ Figure 24 (a) The shape of the equipotentials for a point charge in three dimensions. 

(b) There is a 5 V dierence between each equipotential. They are not separated by equal 

distances because V∝
1

r
.
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• Inquiry 1: Demonstrate independent thinking, 

initiative, or insight.

• Inquiry 2: Identify and record relevant qualitative 

observations.

• Inquiry 2: Interpret qualitative and quantitative data.

• Inquiry 3: Compare the outcomes of an investigation 

to the accepted scientific context.

This experiment shows you how potential varies between 

two charged parallel plates.

voltage probe

at end of flying

lead

voltmeter

6 V

cells

0 V

▴ Figure 26 Measuring equipotentials in two dimensions.

You need a sheet of material that has a uniform graphite 

coating on one side. One type is called “Teledeltos” 

paper. In addition, you will need:

• a 6 V power supply (domestic batteries are suitable), 

• two strips of copper foil 

• two bulldog clips

• a high-resistance voltmeter (a digital meter or an 

oscilloscope will be suitable)

• connecting leads.

• Connect the circuit shown in Figure 26. Take 

particular care with the connections between the 

copper strips and the paper. One way to improve 

these is to paint the connection between copper 

and paper using a conducting liquid consisting of a 

colloidal suspension of graphite in water. 

• Press the voltage probe onto the paper. There should 

be a potential difference between the lead and the 

0 V strip. 

• Choose a suitable value for the voltage (say 3 V) and 

explore the region between the copper strips. Mark 

several points where the voltage is 3 V and draw on 

the paper to join these points up. 

• Repeat for other values of voltage. Is there a consistent 

pattern for the line that represents a particular voltage? 

• Try other configurations of plates. One important 

arrangement is a point charge, which can be 

simulated with a single point at 6 V and a circle of 

copper foil outside it at 0 V. One way to create the 

point is to use a sewing needle or drawing pin (thumb 

tack). You will need the colloidal graphite to make a 

good connection between the point and the paper. 

• An alternative method, this time in three dimensions, 

is to use the same circuit with a tank of copper (ii)

sulfate solution and two copper plates. 

Measuring equipotentials in two dimensions

The conducting-paper experiment in Figure 26 is two-dimensional. The foil 

detector on page 517 allowed you to explore a three-dimensional electric field. 

Equipotentials between the charged plates in three dimensions are sheets 

parallel to the plates themselves, always at 90° to the field lines. A consequence 

of extending equipotential ideas to three dimensions is that it is possible to have 

equipotential surfaces and even volumes. 

An example of an equipotential volume is a solid conductor. When there is 

a potential difference between any part of the conductor and another, then 

a charge will flow until the potential difference has become zero. All parts 

of the conductor must therefore be at the same potential as each other. The 

whole interior of the conductor is an equipotential volume. Consequently, 

the field lines emerge from the volume at 90° — whatever the shape of the 

conductor. This links to the earlier work on the electric field lines close to a 

charged surface. 
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In summary, equipotential surfaces or volumes: 

• link points having the same potential 

• are regions where charges can move without work being done on or by 

thecharge 

• are cut by electric field lines at 90°

• do not have direction (potential, like any energy, is a scalar quantity) 

• can never cross or meet another equipotential with a different value.

Electric potential and electric field strength

Electric potential can be represented graphically too. Figure 27 shows the 

electric potential plotted against distance r from the 0 V plate in Figure 25.

The graph is a straight line because the electric field is uniform. The gradient of 

this graph is change in V

change in r
, which is potential difference between plates

distance between plates
. We saw 

earlier that this ratio is equal to the magnitude of the electric field strength  

(E =
F

q
=

V

d ). Therefore, the magnitude of the electric field strength =
change in V

change in r
or, algebraically, E =

ΔVe

Δr
. (As usual, “Δ” stands for “change in”.)

This equation is almost complete, but it requires a negative sign. Look at 

Figure 25 again. The direction of increase in electric potential is to the right. 

The direction of the electric field is to the left. (This is the direction in which the 

positive charge will travel when released.) 

Travel in the opposite direction to that of the field means, for a positive charge, 

moving to a position of higher potential and thus a positive potential gain. In 

Figure 25, when the positive charge moves fully from right to left, ΔVe is negative 

(final state − initial state is 0 V − (+12) V = −12 V). According to the equation, E

will be positive and this tells us that the motion is in the direction of the field. In 

other words, moving against the field means going to higher potential so gaining 

potential energy (a positive change in ΔVe): E = − 
ΔVe

Δr
Does the argument change when the moving charge is an electron? No, it does 

not: when an electron moves from 0 V towards the 12 V plate (a position of higher 

potential), its potential energy is reduced because the potential energy change 

is given by eΔV as usual, but here e is negative and ΔV is positive. The electron 

accelerates towards the +12 V plate when it is free to doso, gaining kinetic 

energy from the field at the expense of its electrical potential energy.

For Figure 25, when the potential difference is 12 V and the distance between the 

plates is 6.0 cm, then the electric field strength E = − 
ΔVe

Δr
= − 

12

0.06
= − 200 V m 1. 

This can also be written as −200 N C 1

Figure 28(a) shows a graph of electric force against distance for a constant force. 

The work done when this force moves an object through a distance Δr is equal to 

the area under the graph. In symbols F × Δr = W. When the electric force varies 

with distance (Figure 28(b)), then the work done is still the area under the graph.

Electric field strength is the electric force per unit charge, and so the area under a 

graph of electric field strength against distance is equal to the work done per unit 

charge — in other words, the change in electric potential. In algebraic terms,  

E = − 
ΔVe

Δr
 can be rewritten as E × Δr = −ΔVe

distance

work done

= area under graph

e
le

ct
ri

c 
fo

rc
e

e
le

ct
ri

c 
fo

rc
e

(a)

(b)

work done

= area under graph

= F × Δr

distance

Δr

F

▴ Figure 28 The work done on a charge 

that moves in an electric eld is equal to 

the area under the graph of force against 

distance.
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▴ Figure 27 The variation of potential with 

distance from the 0 V plate.
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Figure 29 shows the variation of electric field strength against distance for a 

single point positive charge. As usual, this obeys the inverse-square law. Two 

areas are shown on this graph: 

• Area A shows the electric potential difference between r1 and r2

• Area B shows the electric potential at r3. In this case, the area included goes 

all the way to infinity.

The equation E = − 
ΔVe

Δr
 can be written in calculus form as

E = − 
dVe

dr

This calculus version can be applied to the equation for the electric field strength 

of a single point charge E = k
q

r 2
 and it leads to the following definition.

The electric potential at a distance r from a point charge +q, is Ve = + k
q

r
This predicts that the closer we are to a (positive) charge, the greater (more 

positive) is the potential. Conversely, the closer we are to a negative charge, the 

more negative is the potential. These predictions agree with the conclusions we 

reached earlier.

Graphs of field strength and potential against distance for the field due to a single 

positive point charge are shown in Figure 30.

Potential inside a hollow conducting charged sphere

The point-charge and parallel-plate arrangements have been considered in 

detail. Another important charge configuration is that of the hollow conducting 

charged sphere.

Outside a charged conducting sphere, the electric field is indistinguishable from 

that of a point charge placed at the sphere’s centre. The field lines are radial, and 

an observer outside the sphere cannot distinguish, using the field lines, between 

a charged sphere and a point charge with the same charge magnitude placed at 

the sphere’s centre. Likewise, outside the sphere the equipotentials are spherical 

and concentric. The sphere surface itself is an equipotential. (Otherwise free 

charges would continue to move across it.)

We saw earlier that the electric field inside the sphere is zero. The potential inside 

the sphere has a constant value. Because the electric field is zero, 
ΔVe

Δr
 must 

be zero too. When V is constant, then no work is required to move a charge at 

constant speed inside the charged sphere. The potential throughout the interior 

is equal to the potential at the surface.

We can plot both the electric field strength and the electric potential for a 

charged conducting sphere, and these graphs are shown in Figure 31.

Charging a sphere by induction — An alternative view

Earlier in this topic, we described how to give a sphere a positive charge using a 

negatively charged rod (Figure 5, page 506). The charging process can also be 

discussed in terms of changes in the electric potential V
s
 of the sphere relative to 

the earth (0 V) when both rod and sphere are isolated from any other objects.

• Initially V
s
 is zero when the rod is well away from the sphere (at infinity) because 

there is no interaction between them and the sphere has no net charge.

• The rod is now brought up to the isolated conducting sphere. The charges on 

the sphere separate with the mobile free electrons being repelled by the rod 

distance
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▴ Figure 29 The work done per unit 

charge on a charge that moves in an electric 

eld is equal to the area under the graph of 

electric eld strength against distance.
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▴ Figure 31 The electric eld strength E

and electric potential V around and inside 

a charged conducting sphere at distances r

from the sphere centre. 
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▴ Figure 30 The graphs of electric eld 

strength–distance and electric potential–

distance are linked by area and gradient.
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to the opposite side of the sphere. V
s
 becomes negative. The presence of the 

negative rod gives the sphere the possibility (“potential”) of losing electrons 

through a connection to a third object.

• The sphere is then earthed (grounded) and some free electrons are repelled to 

earth. V
s
 becomes zero as it is connected to the earth (the local zero of potential).

• The connection to earth is broken and the rod is removed to infinity again. 

The sphere has an overall positive charge after losing some electrons. The 

negative rod and positive sphere attract each other. An increase in V
s
 occurs 

because work is done on the rod–sphere system in separating the negative 

rod and the positive sphere. V
s
 is now positive as is expected for an isolated 

positively charged sphere.

Electric potential energy

Potential is the work done in moving a positive unit charge (from infinity) to a 

particular point, so the work required to move a charge of size q from infinity 

to the point will be Ve × q. This is the electric potential energy that charge q 

possesses due to its position in the field that is giving rise to the potential.

When a charge q1 is in a field that arises from another point charge q2, then its 

electric potential energy Ep = q1Ve, or

Ep = k 
q1q2

r

Worked example 14

The diagram shows electric equipotential lines for an electric eld. The values 

of theequipotential are shown. Explain where the electric eld strength has its 

greatest magnitude.

Solution

The work done in moving between equipotentials is the same between each 

equipotential. The work done is equal to force × distance. So the force on a test 

charge is greatest where the distance between lines is least. This is in the region 

around the base of the 20 V equipotential. Provided that potential change is the same 

between neighbouring equipotential lines, then the closer the equipotential lines are 

to each other, the stronger the electric field strength will be.

10 V

20 V

30 V

40 V

50 V

Worked example 15

A proton is moved through a distance of 15 cm in a uniform electric eld.  

The electric potential energy of the proton decreases by 350 eV. 

a. State the potential dierence through which the proton is moved.

b. Calculate the component of the electric eld strength along the direction of motion of the proton.

Solutions

a. The potential energy of the proton decreases and hence a positive work of 350 eV is done by the  

electric force and the proton is moved to a position of lower potential. ΔVe =−
350 eV

+e
=−350 V.

b. E =−
ΔVe

Δr
=−

−350

0.15
= 2.3 kV m 1. The positive sign of E is consistent with the fact that the electric  

force does positive work on the proton.

When there are more than two 

charges, the electric potential 

energy Ep of the system of charges 

is the work done to assemble the 

system from infinite separation.
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Worked example 16

The electric potential on the surface of a conducting sphere of radius 5.0 cm is 6.0 kV, with the potential dened to be 

zero at innity. Determine the charge on the sphere.

Solution

The electric potential outside of the sphere is the same as if the charge of the sphere has been placed at its centre, so it 

follows the equation Ve =
kq

r
. When r= 0.050 m, we have Ve = 6000V. Hence q= Ver

k
=

6000 × 0.050

8.99 × 109
= 3.3 × 10 8 C.

Practice questions 

13. a.  Calculate the electric potential at a distance of 

1.5 m from a point charge of −0.48 nC.

 b.  Another point charge is placed 1.5 m from the 

rst charge. Calculate the potential energy of 

the system of the two charges, when the second 

charge is:

 i. −1.3 nC

 ii. +0.90 nC.

 c.  For each of the charges in part b., calculate the 

work needed to change the separation of the 

system to 0.50 m.

14. A charged particle of −1.4 μC is placed at a distance 

of 0.85 m from the centre of the sphere in Worked 

example 16. Calculate:

 a.  the electric potential energy of the system of the 

sphere and the particle

 b.  the work that has to be done in order to move the 

charge to an innite separation from the sphere.

15. When a point charge of +56 μC is moved through 

a distance of 0.50 m along an electric eld line, the 

electric potential energy of the charge increases by 

6.7 mJ. Calculate:

 a.  the electric potential dierence between the initial 

and the nal position of the charge

 b. the average electric eld strength.

The connection between eld strength and potential gradient is universal 

and applies to all elds based on an inverse-square law. It tells us about 

the fundamental relationship between force and the energy that can be 

transferred. It gives this in a way that is independent of the mass or charge of 

the test object moving in the eld. Field strength is a quantity that represents 

force but with the mass or charge term of the test object stripped out.

Mass  / charge
dependent
quantities

Mass / charge
independent

quantities

force

potential energy

field strength

potential

Patterns and trends — Potential and potential 

energy for all inverse-square elds.
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Magnetic fields

The repulsion between the like poles of two bar magnets is a familiar 

phenomenon. Impressive forces act between magnets of even quite modest 

strength. Modern materials are used in tiny neodymium magnets (less than 

1 cm in diameter and a few millimetres thick) that can easily attract another 

ferromagnetic material through significant thicknesses of a non-magnetic 

substance. 

Magnetism is another field phenomenon. A magnetic field exists at a point when 

a magnetic force acts on a magnetic pole (in practice, a pair of poles) placed at 

that point. As with electrostatics and gravitation, magnetic fields are visualized 

through the construction of field lines.

Magnetic field lines have similar (but not completely identical) properties to 

electric field lines. The magnetic properties of field line are as follows.

• Magnetic field lines are conventionally drawn from the north-seeking pole to 

the south-seeking pole or can be closed lines that do not end at a pole. The 

line directions represent the direction in which a north-seeking pole at that 

point would move. 

• The strength of the field is shown by the density of the field lines. Lines drawn 

closer together imply a stronger field. 

• The field lines never cross. 

• The field lines act as though made from an elastic thread. The system acts as if 

to make the field lines shorter.

These assumed properties suggest ways in which the system can change to 

reduce the total length of the lines. This can be imagined as a reduction in the 

total energy stored in the system if there is a fixed “energy per unit length of line”.

Physicists have so far identied four fundamental forces. 

These are:

• gravitational force

• electromagnetic force

• weak nuclear force (arising from the weak nuclear 

interaction)

• strong nuclear force (arising from the strong nuclear 

interaction).

Theme D deals with the ideas of the gravitational and 

electrostatic forces. The strong nuclear force is described 

in Topic E.3 as a short-range interaction that acts between 

nucleons. At very close distances it is repulsive and a greater 

distances it is attractive. This force is not observed to act 

outside the nucleus. (The weak interaction is not discussed 

further in this course. It is responsible for beta decay.)

The table indicates the approximate relative magnitudes 

and the ranges of these four fundamental forces. These 

comparative strengths are approximate as there is 

no standard way to compare one force with another. 

Compare the relative strengths of the gravitational force 

and the electrostatic between two protons. How does 

this ratio change when the two particles are electrons?

Force Relative 

strength

Range / m

gravity 10 38
∞

weak nuclear 10 13 10 18

electromagnetic 10 2
∞

strong nuclear 1 10 15

What are the relative strengths of the four fundamental forces?

Magnetic fields arise when electric 

charges move. It is not surprising 

that charges moving through a 

magnetic field experience a force. 

They are, after all, interacting with 

the field due to other moving 

charges. 

This magnetic force, which is 

examined in much more detail in 

Topic D.3 allows moving charges 

to be accelerated to very high 

speeds in nuclear machines. This 

means that the charges, which are 

associated with electrons, protons 

and other charged nuclear material 

can collide with each other and 

nuclei to give us an insight into 

the structure of matter at the very 

smallest scale.

The links between Themes A, D 

and E are clear and important both 

for science and everyday life.

How can moving charges 
in magnetic fields help 
probe the fundamental 
nature of matter?
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It can be confusing when you are talking about magnetic 

poles due to differences in notation. This partly arises 

from the original observations of magnetism when 

early navigators noted that a “lodestone” suspended 

from a thread would align itself north–south. When 

we write “magnetic north pole” what we really mean 

is “the magnetic pole that seeks the geographic north 

pole” (Figure 32(a)). We often talk loosely about a 

magnetic north pole pointing to the north pole. A 

misunderstanding can occur here because we also 

know that like poles repel and unlike poles attract. We 

could end up with the situation that a magnetic north 

pole is attracted to the “geographic north pole” — which 

seems wrong in the context of two poles repelling. In 

this book we talk about a north-seeking pole meaning “a 

geographic north-seeking pole” and south-seeking poles 

meaning “geographic south-seeking”. On the diagrams 

of magnets, N always means geographic-north seeking; 

S always means geographic-south seeking. Figure 31(a) 

shows the magnet that must effectively be at the planet’s 

centre to give rise to the observed magnetic field pattern 

of Earth.

Figure 32(b) shows the patterns for a single bar magnet 

and Figures 32(c) and 32(d) give two arrangements of a 

pair of bar magnets of equal strength.

In the magnet pairs, notice the characteristic field pattern 

when the two opposite poles are close (Figure 32(c)) and 

when the two north-seeking poles are close (Figure 32(d)). 

When two north-seeking poles are close (alternatively, two 

south-seeking poles), there is a position where the field is 

zero between the magnets (called a null point). When two 

opposite poles are close, the field lines appear to connect 

the two magnets, forming a pattern like that of the single 

bar magnet. In this situation, the magnets will be attracted, 

so this field pattern implies an attraction between poles.

In terms of the rules for the field lines, poles moving 

closer together in Figure 32(c) will shorten the field lines 

between the poles. This implies that magnets will do this if 

they are free to do so as it is energetically favourable.

S

N

(a)

N S

(b)

(d)

(c)

N N

▴ Figure 32 (a) The magnetic eld pattern of Earth. 

(b–d) The magnetic eld patterns for a bar magnet 

and for like and unlike poles.

Observations — Talking about magnetic poles 
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While gravitational and electric fields obey an inverse-

square law, magnetic fields are not so simple. Along the 

axis of a bar magnet, theory suggests that the magnetic 

field will vary with 1

r 3
, where r is the distance from 

the midpoint of the poles. The data for this question 

were taken using the sensor on a smartphone and a 

Magnadur magnet.

You could try this experiment yourself, but don’t put 

strong magnets too close to a smartphone. Your school 

may have a Hall probe or other means of measuring a 

magnetic field.

magnet

smartphone

ruler x

table

▴ Figure 33 The experimental arrangement used to investigate 

the variation of magnetic eld strength due to a bar magnet.

• The smartphone was placed flat on a table and 

a metre ruler was placed vertically next to the 

smartphone. With the magnet at a large distance 

(greater than one metre), the vertical background 

component of the magnetic field was measured. 

Three readings of 16.92 μT, 17.34 μT and 16.32 μT 

were recorded.

• The magnet was then held against the ruler vertically 

above the smartphone, as shown in Figure 33. 

Readings of distance x between the table and the 

bottom of the smartphone against the strength of the 

magnetic field were recorded.

x / cm 

(± 0.1 cm)
B / μT

30 43.14 46.92 46.38

25 65.40 66.48 64.84

20 105.64 103.66 104.22

17 155.58 157.46 153.92

14 244.88 241.46 243.66

12 358.80 353.92 355.20

10 536.20 541.98 546.48

9 691.32 677.50 683.38

• The exact position of the sensor in the smartphone 

is unknown. As a result, the distance was measured 

from the bottom of the magnet to the table. Suggest 

one other reason why x might be measured like this 

rather than measuring from the centre of the magnet 

to the smartphone sensor.

• Using the measurements of the background 

magnetic field, calculate the average field for each x

and give an uncertainty with your answer.

• Tabulate values of the average magnetic field, 

corrected for the background reading.

• Calculate the uncertainties in the average magnetic 

field. You should include the uncertainty in the 

background magnetic field in your calculation.

• Calculate values of B
1

3 and add them to your table. 

Calculate the uncertainty in these values.

• Plot a graph of B
1

3 against x

• The suggestion is that B varies as C

(x x0)3
, where x0 is 

a distance correction (for the position of the sensor) 

and C is a constant. Use your graph to find the values 

of x0 and C

• By considering the maximum and minimum gradients 

of your graph, establish uncertainties in your values of 

C and x0

• Using similar apparatus, think about how you could 

extend or vary this experiment. You might even carry 

out this experiment.

Data-based questions
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• Inquiry 2: Identify and record relevant qualitative 

observations.

• Inquiry 3: Compare the outcomes of an investigation 

to the accepted scientific context.

There are several ways to carry out this experiment. They 

can involve the scattering of small iron filings, observation 

of suspensions of magnetized particles in a special liquid 

or other techniques. This experiment uses iron-filings.

• Take a bar magnet and place a piece of rigid white 

card on top of it. You may need to support the card 

along its sides. Choose a non-magnetic material for 

the support. 

• Take some iron filings in a shaker (a pepper pot is 

ideal) and, from a height above the card of about 

20 cm sprinkle filings onto the card. Tap the card 

gently as the filings fall onto it. 

• You should see the field pattern forming as the 

magnetic filings fall through the air and come 

under the influence of the magnetic field. Sketch or 

photograph the arrangement. 

• The magnetic field is strong close to the magnet, but 

becomes weaker further away from it. Make this clear 

when you draw the field pattern. The lines of force 

should be drawn at increased spacing as the distance 

from the magnet increases.

• The iron filings give no indication of field direction. 

The way to observe this is to use a plotting 

compass — a small magnetic compass a few 

centimetres in diameter. The plotting compass 

indicates the direction to which a north-seeking pole 

sets itself. Place one or more of these compasses on 

the card and note the direction in which the north-

seeking pole points. 

• Repeat with two magnets in several configurations. 

Try at least the two in Figure 32. 

Electric currents also give rise to a magnetic field. A 

vertical current-carrying wire can be passed through the 

hole in a horizontal piece of card to show this.

wire
magnetic

field lines

current

▸ Figure 34 The magnetic 

eld pattern for a long 

straight wire carrying an 

electric current.

However, currents small enough to be safe will only give 

weak fields, not strong enough to affect the filings as they 

fall. To improve the effect: 

• Run a long lead through the hole in the card (the lead 

will need to be a few metres long). 

• Loop the lead in the same direction through the card 

a number of times (about ten turns if possible). This 

trick enables one current to contribute many times to 

the same field pattern. 

• You may need at least 25 A in total (2.5 A in the lead) 

to see an effect. 

Observing eld patterns of permanent magnets and electric currents 

Magnetic eld patterns 

(a) Due to a current in a long straight wire

The magnetic field pattern due to a current in a long straight wire is a circular 

pattern centred on the wire. This seems odd to anyone previously used to the 

bar-magnet pattern. Observations using plotting compasses show that the 

direction of the field depends on the direction of the current. 

Using the conventional current (i.e. the direction that positive charges drift in the 

wire, see page 303) the relationship between the current and the magnetic field 

direction obeys a right-hand corkscrew rule. 
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To remember this, hold your right hand with the fingers curled into the palm and 

the thumb extended away from the fingers (see Figure 35). The thumb represents 

the direction of the conventional current and the fingers represent the direction 

of the field. Another way to think of the current–field relationship is in terms of a 

screwdriver being used to insert a screw. The screwdriver inserts a right-handed 

screw by turning clockwise to drive the screw forwards. The direction in which 

the imaginary screw moves is that of the conventional current, and the direction 

in which the screwdriver turns is that of the field. You can use any direction rule

you prefer but use it consistently. Remember that the rules work for conventional 

current. 

The farther the pattern is from the wire itself, the greater the separation of the field 

lines. This is telling us that the magnetic field strength decreases as the distance 

from the wire increases.

(b) Due to the current in a circular coil

The magnetic field due to a coil is shown in Figure 36. A coil is a circular winding 

of wire with the thickness of the coil much less than its diameter. 

To understand how the magnetic field pattern arises, you need to imagine a long 

straight wire being formed into a one-turn coil shape. As it does so, it carries its 

circular field with it so that the circular field bends round. Figure 36 shows this. 

The field lines run along the centre of the coil and then around the outside. The 

pattern is identical to the bar magnet pattern (outside the magnet), so that we can 

assign north-seeking and south-seeking poles to the coil (Figure 36(a)). The easy 

way to remember is to use N and S to show the north-seeking and south-seeking 

poles (Figure 36(b)). The arrows on the N and S show the current direction when 

looking into the coil from outside. When the conventional current is anticlockwise 

as you look into the coil, then that end is north-seeking. When the current is 

clockwise looking in, then that is the south-seeking end of the coil. 

The strength of the magnetic field in a coil can be increased by: 

• increasing the current in the wire 

• increasing the number of turns. 

(c) Due to the current in an air-core solenoid

A solenoid is a form of coil where the coil length is much greater than the 

diameter. The magnetic field pattern is similar to that of a coil and it arises in a 

similar way. Two adjacent turns of wire in the solenoid are shown in Figure 37. 

With current in the wire, a circular field is set up in the wire. The familiar circular 

field adds together with identical fields from neighbouring turns in the solenoid. 

Figure35 shows this. Look closely at what happens close to the individual wires. 

The black lines show the field near the wires. The blue lines show how the fields 

begin to combine.

▴ Figure 35 How to apply the right-hand 

corkscrew rule.

▴ Figure 36 Predicting the magnetic eld 

direction from a coil or solenoid.

anticlockwise
current gives

a north
seeking pole

(b)

clockwise
current gives

a south
seeking pole

magnetic field

(a)

S N

You will meet the equation that 

describes this variation of magnetic 

field strength in Topic D.3.
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circular

field 

near turn

(a)

(b)

fields add

together

consecutive

turns on solenoid

south pole

north pole

uFigure 37 (a) The magnetic eld pattern 

of a coil or solenoid is formed from the 

addition of the magnetic patterns from many 

parallel straight wires wound together. 

(b) Outside a solenoid the magnetic eld 

pattern resembles that of a bar magnet but 

without the poles.

Figure 37(b) gives an overall view of the magnetic field once it is built up.

Remember that the field is only shown in one plane and, in three dimensions, it 

is rotated through 360° about the axis of the coil. The appearance of the north-

seeking and south-seeking poles of the solenoid obey the same rule as for the 

coil (Figure 37).

The strength of the magnetic field in a solenoid can be increased by: 

• increasing the current in the wire 

• increasing the number of turns per unit length of the solenoid 

• adding an iron core inside the solenoid. 

Worked example 17

Four long straight wires are placed perpendicular to the 

plane of the paper at the edges of a square.

The same current 

is in each wire 

in the direction 

shown in the 

diagram. Deduce 

the direction of the 

magnetic eld at 

point P in the centre 

of the square.

P

Solution

The four field directions are shown in the diagram. The 

sum of these four vectors is another vector directed from 

point P to the left.

BA

D C

P

D

C

A

B
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The puzzle of permanent magnets or the magnetism of 

Earth was not explained earlier. Magnetic effects arise 

when charges move relative to each other. Can this 

explain the reasons for permanent magnetism (known 

as ferromagnetism)? Permanent magnetism is rare in the 

Periodic Table. Only iron, nickel, and cobalt and alloys of 

these metals demonstrate it. 

Permanent magnetism is due to the arrangement of the 

atomic electrons in these metals. Electrons are known 

to have the property of spin — an internal orbiting 

motion of the electron. In iron, cobalt and nickel, there 

is a particular arrangement that involves an unpaired 

electron. This is the origin of the moving charge needed 

for a magnetic field to appear. 

The second reason why iron, nickel and cobalt are 

strong permanent magnets is that neighbouring atoms 

can cooperate and align the spins of their unpaired 

electrons. Many electrons then spin in the same 

direction and give rise to a strong magnetic field. 

It is thought that a liquid-like metallic core, deep in 

the centre of Earth, contains free electrons and rotates 

relative to the rest of the planet. These are conditions 

that can lead to a magnetic field. In which direction do 

you predict that the electrons are moving? However, this 

phenomenon is still the subject of research interest. Why, 

for example, does the magnetic field of Earth flip every 

few thousand years? There is much evidence for this, 

including the magnetic “striping” in the undersea rocks of 

the mid-Atlantic ridge and in the anomalous magnetism 

found in some ancient cooking hearths of the aboriginal 

peoples of Australia.

Global impact of science — Why permanent magnets? 

▴ Figure 38 The position of Earth’s magnetic north pole 

has changed over time. The shape of the magnetic eld is 

more complicated than that of a simple bar magnet. The 

geomagnetic pole is the location of the best-t model of 

Earth’s magnetic eld assuming it acts as a bar magnet.

Practice questions 

16. Two parallel wires X and Y carry equal currents out of 

the plane of paper. Point P is at the same distance from 

X and Y.

B

D

AC
P

X
Y

a. Which arrow correctly shows the direction of the 

resultant magnetic eld at P?

b. Current in wire X is reversed and is now into 

the plane of paper. What is the direction of the 

magnetic eld at P aer the change?

17. A circular ring carries a constant current. Point P is 

at the centre of the ring. The magnetic eld at P is 

directed into the page. What is the direction of the 

current in the ring and the direction of the magnetic 

eld at point Q?

P

ring

Q

Current in the ring Magnetic eld at Q

A. clockwise out of the page

B. clockwise into the page

C. anticlockwise out of the page

D. anticlockwise into the page
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The beautiful eects of the aurora, cyclotrons used in medical 

treatment and the colossal 27 km ring that steers and accelerates 

particles at CERN all rely on the movement of charged particles in 

magnetic and electrostatic elds. 

The kinematics of these motions is straightforward and stems from 

your knowledge of Theme A. The electric charges and fields in 

Topic D.2 did not change with time — hence, the older name for that 

study: electrostatics. Although charges moved through potential 

differences, they were implicitly stationary at both points of potential. 

We never considered the effect of kinetic energy on the overall 

situation. Now we examine the forces that act on moving charges 

and the link between electrodynamics and magnetism. 

This topic shows that there are essential differences when charged 

particles interact with a magnetic field and an electric field. When 

the fields are uniform, then these differences result in a fundamental 

and easily recognizable distinction between the motions of a 

moving charged object. Observations of the path of a particle give 

us information about its charge, its speed and its mass. These were 

some of the techniques used at the beginning of the 20th century to 

explore the properties of the newly discovered nuclear particles such 

as the electron.

How do charged particles move in magnetic fields?

What can be deduced about the nature of a charged particle from observations of it moving in 

electric and magnetic fields?

540
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• the magnitude and direction of the force on a 

charge moving in a magnetic field 

• the magnitude and direction of the force on a 

current-carrying conductor in a magnetic field 

• the force per unit length between two  

parallel wires 

• the motion of a charged particle in a uniform 

electric field

• the motion of a charged particle in a uniform 

magnetic field

• the motion of a charged particle in a uniform 

electric field and a uniform magnetic field at right 

angles to each other. 

In this topic, you will learn about: 

▴ Figure 1 Solar particles spiral in Earth’s magnetic 

eld and ionize atoms in the upper atmosphere to 

produce the beautiful eects of the aurora borealis over 

Norway. Similar eects produce the aurora australis in 

the southern hemisphere.

Introduction
There is a very close connection between electric and magnetic elds. For 

example, in Theme C electromagnetic radiation is described in terms of 

co-oscillating electric and magnetic elds at 90° to each other. The electric eld in 

the radiation cannot exist without its magnetic counterpart. In this topic, you will 

see that the electric elds associated with a static charge undergo a transformation 

when the charge accelerates and this leads to a magnetic eect on other nearby 

charges. A force acts on a moving charge in a magnetic eld — remembering that 

the magnetic eld is itself the result of other moving charges. 
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Forces on moving charges 

Force between two current-carrying wires 

Magnetism originates in the interactions between conductors when they carry 

electric current.

(a)

foil strips

+

(c)

current out of

page

current into

page

(b)

currents in same directions

▴ Figure 2 Two long aluminium foil strips are mounted parallel to each other. There is an 

electric current in each strip. The magnetic elds due to each current interact so that when 

the currents are in the same direction the strips attract each other. When the currents are 

opposed, the strips repel.

Figure 2(a) shows two conducting foil strips hanging vertically. The current 

directions in the strips can be the same or opposite directions. When the 

currents are in the same direction, the strips move together due to the force on 

one foil strip as it sits in the magnetic eld of the other strip. When the currents 

are in opposing directions, the strips move apart. This eect was the basis for 

the denition of the ampere until 2019 (see page 550).

You can set this experiment up for yourself using two pieces of aluminium foil 

about 3 cm wide and about 70 cm long for each conductor. The power supply 

should be capable of providing up to 25 A. So take care! Connections are 

made to the foils using crocodile (alligator) clips.

The forces on the foil can be explained in terms of the interactions between 

the elds as shown in Figure 2(b). When the currents are in the same direction, 

the eld lines from the foils combine to give a pattern in which eld lines loop 

around both foils. The notation used to show the direction of conventional 

current in the foil is explained on the diagram. Look back at Figure 32 on  

page 534, which shows the eld pattern for two bar magnets with the opposite 

poles close. You know that the bar magnets are attracted to each other in this 

situation. The eld pattern for the foils is similar and leads to attraction too. 

Think of the eld lines as trying to be as short as possible. They become shorter 

when the foils are able to move closer together. 

When the currents are in opposite directions, the eld pattern changes 

(Figure2(c)). Now the eld lines between the foils are close together and in the 

same direction, and thus represent a strong eld. 

Understanding and interpreting 

eld line diagrams can be dicult. 

Sometimes it helps to think of the eld 

lines as being elastic in some way (this 

can work for gravitational and electric 

elds, not just magnetic elds). Oen 

this leads to an interpretation of the 

right forces  — attraction or repulsion.

However, eld lines are not really elastic 

links between objects. The reason that 

it works is because eld lines can show 

the direction of a force. When objects 

are allowed to move, then the work 

done is the force multiplied by the 

distance travelled in the direction of the 

eld. Therefore, if the objects move so 

that the eld lines are drawn as being 

shorter, it is likely that work has been 

done by the eld and that the objects 

have moved to a state of lower energy.

Sometimes an easy way to 

communicate a complex idea is 

appealing, even if the reasoning isn't 

quite correct.

Communication skills ATL
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It seems reasonable that a strong magnetic eld (like a strong electrostatic eld) 

represents a large amount of stored energy. This energy can be reduced when 

the foils move apart, allowing the eld lines to separate too. Again, this has 

similarities to the bar magnet case, but this time with like poles close together.

The magnetic forces can be determined quantitatively too. This is le for later in 

this topic.

Force between a bar magnet eld and  
a current-carrying wire 

One extremely important case is the interaction between a uniform magnetic 

eld and the eld due to a current in a wire. 

We begin with the eld between two bar magnets with unlike poles close 

together. In the centre of the region between the magnets, the eld is uniform 

because the eld lines are parallel and equally spaced. 

S
N S

+ =

(a) (b)

force on wire

N

▴ Figure 3 Combining the uniform magnetic eld between two magnets and the eld 

around a long straight wire gives a distorted eld pattern. The new magnetic eld leads to a 

force acting on the wire.

Suppose a long wire carrying a current is in this eld. Figure 3(a) shows the 

arrangement and the directions of the uniform magnetic eld and the eld due to 

the current. 

The effect can again be explained in terms of the interaction between the 

two magnetic fields. The circular field due to the wire adds to the uniform 

field due to the magnets to produce a more complicated field. This is shown 

in Figure3(b). Overall, the field is weaker below the wire than above it. 

Using our ideas of the field lines, the system (the wire and the uniform field) 

can overcome this difference in field strength by attempting to move either 

the wire downwards or the magnets that cause the uniform field upwards. 

This effect is sometimes called the catapult field because the field lines 

above the wire resemble the stretched elastic cord of a catapult just before it 

fires the object.

This eect is of great importance as it is the basis for the transfer of electrical 

energy into a kinetic form. It is used in electric motors, loudspeakers and other 

devices where we need to produce movement from an electrical power source. 

It is the motor eect. 

It is possible to predict the direction of motion of the wire by drawing the eld 

lines on each occasion when required, but there are several direction rules that 

are used to remember the direction of the force easily. One of the best known 

of these is due to the English physicist Fleming and is known as Fleming’s le-

hand rule.
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Worked example 1

Wires P and R are equidistant from wire Q.

Each wire carries a current of the same magnitude and the currents are  

in the directions shown.

Describe the direction of the force acting on wire Q due to wires P and R.

Solution
Using the right-hand corkscrew rule, the field due to wire P at wire Q is out of the 

plane of the paper, and the field due to wire R at wire Q is also out of the plane of the paper.

Using Fleming’s left-hand rule, the force on wire Q is in the plane of the paper and directed to the left.

wire P

I

wire Q

I

wire R

I

D. Fields
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To use the rule, extend your le hand as shown in Figure 4. Your rst (index) 

nger points in the direction of the uniform magnetic eld and your second nger 

points in the direction of the conventional current in the wire. Then your thumb 

gives the direction of the force acting on the wire.

Explaining the motor eect

The explanation for the motor eect has been given so far in terms of eld lines. 

This is, of course, not the complete story. We should be looking for explanations 

that involve interactions between individual charges, both those that produce 

the uniform magnetic eld and those that arise from the current in the wire. 

Electrostatic eects (as their name implies) arise between charges that are not 

moving. Magnetic eects arise because the sets of charges that produce the 

elds are moving relative to each other and are in dierent frames of reference. 

There have been no electrostatic eects because we are dealing with conductors 

in which there is an exact balance of positive and negative charges. Magnetism 

can be thought of as the residual eect that arises when charges are moving with 

respect to each other.

As Topics D.1 and D.2 showed, visualizations of electric, magnetic and gravitational elds are commonly used to allow 

us to imagine the eld and its properties. Other representations are those mathematical constructs such as eld strength 

and potential that permit a quantitative description of the elds beginning with an inverse-square dependence on 

distance. If you study physics beyond school or college, you will meet even more sophisticated treatments that involve 

vector eld theory. 

These are all ways to model the abstract notion of a “eld”. However, these visualizations have nothing to say about the 

underlying origins of the elds: how they arise and how one object can inuence another “at a distance”.

What is the value or otherwise of the eld concept in terms of explaining the nature of matter and space?

How are the properties of electric and magnetic fields represented? (NOS)

field along

F irst finger

le

hand
current along

seCond finger

force (motion) 

along thuMb

B

I

F

▴ Figure 4 Fleming’s le-hand rule.
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Practice questions

1.  A straight current-carrying wire passes between two 

bar magnets. What is the direction of the magnetic 

force on the wire?

current

A. into the page

B. out of the page

C. to the left

D. to the right

2.  A square-shaped conducting loop carries a constant 

current in the clockwise direction. The loop is placed 

near a long current-carrying wire.

current in the wire

current in

the loop

X Y

The force acting on the segment XY of the loop is:

A. zero

B. directed upwards

C. directed downwards

D. perpendicular to the plane of the loop

Topic D.3 Motion in electromagnetic fields
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The magnitude of the magnetic force

Experiments show that the force acting on a straight wire in a magnetic eld is 

proportional to:

• the length L of the wire

• the current I in the wire.

The denition of magnetic eld strength diers from those of electric eld 

strength and gravitational eld strength. We cannot dene the magnetic eld 

strength in terms of 
force

a single quantity
 because the force depends on two 

quantities: current and length. Instead, we dene magnetic eld strength as

force acting on a current element

current in the element × length of the element

The “element” is a short section of a wire that carries a current and is at right 

angles to the magnetic eld direction. When a force F acts on the element of 

length L when the current in it is I, then

magnetic eld strength B is dened by B =
F

I × L

The unit of magnetic eld strength is the tesla, abbreviated T. This is equivalent to 

the base (fundamental) units kg s–2 A–1. The tesla can also be thought of as N A−1 m−1.

The tesla turns out to be a large unit. The largest magnetic eld strength that can 

be created in a laboratory is a few kT in magnitude and then only for very short 

times. The magnetic eld of the Earth is roughly 10–4 T. The largest elds are 

associated with some neutron stars where the magnetic eld strength can be of 

the order of 100 GT.

The denition leads to the force F acting on a wire of length L carrying current I in a 

magnetic eld of strength B:

F = BIL
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This equation applies when the eld lines, the current and the wire are all at 90° 

to each other (Figure 5(a)), as they are when you use Fleming’s le-hand rule. 

When this is not the case and the wire is at an angle θ to the lines, then we need 

to use the component of I at 90° to the eld (see Figure 5(b)).

When the angle is dened as in Figure 5(b), the equation becomes

F = BIL sin θ

This equation is written in terms of the current in the wire. The current is, as usual, 

the result of moving charge carriers. The equation can be modied to reect this. 

The current is I =
q

t
, where q is the charge that ows through the current element 

in time t. 

Substituting gives F = B q

t
 L sin θ = Bq  L

t
 sin θ

The term  L

t
 is the speed v of the charge carriers through the current element 

and making this substitution gives the expression

F = qvB sin θ

for the force acting on a charge q moving at speed v at an angle θ to a magnetic 

eld of strength B

Notice the way that the angle θ is dened in the diagrams. It is the angle between the 

direction in which the charge is moving (or the current direction — the same thing) 

and the eld lines. Do not get this wrong by using (90° − θ) in your calculations.

▴ Figure 5 When there is an angle θ

between the wire and the eld direction 

then sin θ must be included in the magnetic 

force equation.

• Tool 3: Construct and interpret tables and graphs for 

raw and processed data including scatter graphs and 

line and curve graphs.

• Inquiry 2: Collect and record sufficient relevant 

quantitative data.

• Inquiry 2: Assess accuracy, precision, reliability 

andvalidity.

• Inquiry 3: Relate the outcomes of an investigation to 

the stated research question or hypothesis.

C 0

magnets on

steel yoke

balance

current

carrying

lead

L
▸ Figure 6

The magnetic force 

acts on balance 

and wire. The wire 

is xed and the 

balance changes 

the apparent 

weight in response 

to the force.

This experiment gives you an estimate of the size of the 

magnetic force that acts on typical laboratory currents.

It allows you to investigate how the force varies with the 

length of the conductor and the size of the current. 

• You will need some pairs of flat magnets (known as 

“Magnadur” magnets), a sensitive top-pan balance, a 

power supply and a suitable long straight lead to carry 

the current. Arrange the apparatus as shown in Figure 6.

• Zero (tare) the balance so that the weight of the 

magnets is removed from the balance reading. 

• In the first part of the experiment, set the current in 

the wire as the independent variable and measure 

the force on the balance. This is the force acting 

on the magnets. A trick to improve precision is to 

reverse the current in the wire and take balance 

readings for both directions. Then add the two 

together (ignoring the negative sign of one reading) 

to give double the answer. Draw a graph to display 

your data of force against current. 

• Second, use two pairs of magnets side-by-side 

to double the length of the field. Take care that 

the poles match; otherwise the forces cancel out. 

This may not work as well as the first part of the 

experiment as you need to assume that the magnet 

pairs have the same strength. This is unlikely to be 

true. But, roughly speaking, does doubling the 

length of wire in the field double the force? 

Force on a current-carrying conductor

B

(a)

F = BIL

L

(b)

L

B

F = BIL sinθ

θ
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Worked example 4

An alpha particle of mass 6.64 × 10 27 kg moves at a speed of 7.50 × 103 m s 1 through a  

uniform magnetic field of magnitude 0.240 T. The velocity of the particle makes an angle  

of 34.0° with the magnetic field. Determine the acceleration of the particle.

Solution

The charge of the alpha particle is +2e

F = qvB sin θ = 2 × 1.60 × 10 19
× 7.50 × 103

× 0.240 × sin 34° = 3.22 × 10 16 N.

a =
F

m
=

3.22 × 10 16

6.64 × 10 27
= 4.85 × 1010 m s 2. Note that the acceleration is directed at right  

angles to the velocity; hence the speed of the alpha particle does not change.

Worked example 3

A straight horizontal wire carries a current of 3.5 A. A length of 4.0 cm of the wire is 

subject to a horizontal magnetic field between the poles of a magnet. A magnetic 

force of 14 mN acts on the wire.

a. Determine the magnetic field strength, assuming that it is constant between 

the poles of the magnet.

b. State the direction of the magnetic force on the wire.

Solutions

a. The field is perpendicular to the current, so F = BIL. B =
F

IL
= 

0.014

3.5 × 0.04
= 0.10 T.

b. The field is directed to the right and the current flows into the page. Using Fleming’s  

left-hand rule, the force on the wire is vertically downwards.

current

4.0 cm

SN

Worked example 2

When a charged particle of mass m and charge q moves at speed v in a uniform magnetic 

field, then a magnetic force F acts on it. Deduce the force acting on a particle of mass m,  

charge 2q and speed 2v travelling in the same direction in the same magnetic field.

Solution

The equation for the force is F = qvB sin θ

In the equation, sin θ and B do not change but every other quantity doubles, so the force is 4F

Topic D.3 Motion in electromagnetic fields
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Force between two parallel wires

In Topic D.2 the magnetic eld pattern due to a long straight wire was described 

as a series of circular eld lines centred on the wire (Figure 34 on page 536).

The magnetic eld strength B for this arrangement when the current in the wire is  

I and the distance from the wire is r is given by:

B =
μ0I

2πr
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The eld strength is a 
1

r
 law as opposed to the 

1

r2  rule that applies to point 

charges and masses in Coulomb’s law and Newton’s gravitation law.

We can combine this with the expression for the force acting on a wire to 

determine the forces that act between two parallel wires, where r is the 

separation between the two wires.

Wire 1 has a current I1 that gives rise to a magnetic eld of strength B. This eld 

extends to wire 2 which is a distance r away. The eld strength at wire 2 due to 

wire 1 is B =
μ0I1

2πr
. The current I2 in wire 2 interacts with the eld from wire 1 and 

this leads to a force acting on wire 2 towards wire 1. The magnitude of this force 

is F = B × I2 × L, where both wires have length L. Substituting for B gives

F =
μ0I1

2πr
× I2 × L =

μ0I1I2

2πr
× L

Considering the force per unit length on wire 2 rather than the total force on the 

whole length means that

F

L
= μ0

I1I2

2πr

This is the force per unit length on wire 2 which is measured in N m−1. The same 

force per unit length acts on wire 1 due to wire 2 as a result of Newton’s third law 

of motion.

The constant μ0 is known as the permeability of free space and you can regard 

it as the response of a vacuum to the presence of magnetic eld. It has the 

value 4π × 10 7 N A 2, which is 1.26 × 10−6 N A−2. The unit of μ0 can also be 

written as T m A−1

wire 1 wire 2

L

r

F

I
2

I
1

F

▴ Figure 7 Wire 2 lies in the magnetic 

eld due to wire 1. As both wires carry 

current, forces act on both of them.

The equation B =
μ0I

2πr
 is a version of Ampère’s law, named aer the French 

physicist André-Marie Ampère (1775–1836). Ampère’s father was a 

wealthy merchant who took a great interest in his son’s education but did 

not believe in formal schooling. As a result, André-Marie Ampère was 

largely self-taught using his father’s library. One of the few areas where 

Ampère received formal tuition was in Latin, which enabled him to read 

some of the academic texts in the library.

Ampère went on to make many discoveries in what he called 

electrodynamics (now referred to as electromagnetism) and the SI unit of 

current is named aerhim.

Another scientist who researched the magnetic elds caused by electric 

currents was British physicist Michael Faraday (1791–1867). Faraday was 

also largely self-taught. However, his family was not rich. Faraday became 

an apprentice to a bookbinder, and it was by reading some of these books, 

that Faraday was able to start learning about electricity.

While Ampère’s research was largely theoretical, Faraday was a gied 

experimentalist. He was able to conrm Ampère’s law and, in doing so, 

created the rst electric motor.

How can independent research augment your own studies?

Research skills ATL

▴ Figure 8 Michael Faraday.
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Worked example 5
Electric currents of 8.0 A and 3.0 A are established in two long parallel wires X and Y. The magnetic  

force on a length of 0.20 m of wire X due to the current in wire Y has a magnitude of 1.5 × 10 5 N.

a. Deduce the magnitude of the magnetic force on a length of 0.20 m of wire Y due to the current in wire X.

b. Calculate the distance between the wires.

Solutions
a. From Newton’s third law, the force on Y due to the current in X is equal but opposite to the  

force on X due to the current in Y. The magnitude of this force is therefore 1.5 × 10 5 N.

b. 
F

L
= μ0

I1I2

2πr
⇒ r = μ0

I1I2L

2πF
.  r =

4π × 10 7
× 8.0 × 3.0 × 0.20

2π × 1.5 × 10 5
= 6.4 cm.
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A wire was aligned parallel to the edge of a Magnadur 

magnet which rested on a sensitive balance. When there 

was no current in the wire, the balance was zeroed. When 

the power supply was switched on, there was a current 

of 14.4 A in the wire. The variation in the balance reading 

was measured as the distance d between the wire and the 

edge of the magnet was varied, as shown in Figure 9.

d / mm

(± 0.5)
m / g

2.0 5.51 5.93 5.71

3.0 4.07 3.87 4.19

4.0 3.36 3.29 3.20

5.0 2.80 2.89 2.90

7.0 1.98 1.98 2.01

8.0 1.62 1.77 1.67

9.0 1.43 1.45 1.49

12.0 1.00 0.85 1.10

15.0 0.64 0.63 0.61

• Tabulate values of the average mass recorded on 

balance. Convert these values into an average force F

• Calculate uncertainties in your values of the 

average force.

• By considering the variation in the readings of the 

mass, calculate the uncertainty in the average force.

Ampère’s law suggests that F ∝
1

d
. Since the distance 

was measured to the edge of the magnet, it is expected 

that there would be an offset to the measured distance. 

Therefore, we might write F ∝
1

d + d0

 and so a linear 

relationship between 
1

F
and distance is expected.

• Tabulate values of 
1

F
 and the uncertainty in 

these values.

• Plot a graph of 
1

F
 against d. Add error bars to 

your graph.

• The relationship appears to be linear for values of 

d up to 10 mm. Find the gradient of the graph for 

values of d less than 10 mm.

• By considering maximum and minimum gradients, 

find the uncertainty in the gradient of the graph and 

express this as a percentage uncertainty.

• It is suggested that a problem with this experiment 

is that the magnetic field from the wire varies in 

strength across the width of the magnet. As a 

result, it is suggested that the relationship is better 

modelled as F = e k(d+d
0 

)

• Plot a graph of ln F against d to establish whether this 

trend is a better fit. Use your graph to find values for k

and d0. Try to include uncertainties in these values.

Data-based questions

Magnadur magnet
d

0.00

▴ Figure 9 The apparatus to verify Ampère’s law.
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Practice questions

3. Three long, parallel wires P, Q and R are separated by a 

distance of 0.10 m and carry equal currents of 5.0 A in 

the same direction.

wire

wire

wire

P

Q

R
0.10 m

0.10 m

 Calculate the magnetic force per metre of wire  

length on:

a. wire P

b. wire Q.

4. A long straight wire carries a current of 9.0 A. A square 

loop of side length 15 cm is placed 5.0 cm from the 

wire. There is a clockwise current of 4.5 A in the loop.

9.0 A

5.0 cm 15 cm

4.5 A

 Determine the magnitude and the direction of the 

magnetic force acting on the loop due to the current in 

the wire.

D. Fields
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The whole of Theme D involves physics based around the inverse-square law. 

However, Ampère’s law features a 
1

r

 law. The data-based question on  

page 535 featured an example of a 
1

r
3

 law. Why are these dierent?

The inverse-square law applies to single point sources. These could be of 

radiation, charge or mass. It can be thought of as being a consequence of the 

eld lines (or rays of light) spreading out in three dimensions over the surface 

of a sphere, which increases in area as A ∝ r
2

Ampère’s law involves a long wire. You can only move away from it in two 

dimensions, rather than three. The force decreases with a 
1

r

 dependence 

now. The electric eld around a long, straight, charged wire would have a 

similar 
1

r

 dependence because the eld lines cannot spread out over the third 

dimension — the length of the wire.

What about an innite, two-dimensional sheet? You have already seen this 

situation — this is the same as moving away from the surface of Earth (not so 

far as to observe Earth’s curvature, though). In the case of a two-dimensional 

object, the eld lines are unable to spread out at all — the eld is uniform and 

does not decrease with distance.

The data-based question on page 535 is a dierent case — a magnet has 

two poles, north and south, and so we are not dealing with a point source. 

If the north and south poles were placed one on top of another, they would 

cancel each other out and there would be no eld at all. However, the 

two poles are displaced slightly, so you might experience a eld by being 

fractionally closer to one pole than the other. This is called a dipole eld

Models — Beyond the inverse-square law
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Until 2019, the ampere was dened in terms of the force 

between two current-carrying wires. The old denition 

was that an ampere is the constant current which, when 

maintained in two straight parallel conductors of innite 

length and negligible cross-section, one metre apart in 

vacuum, would produce a force between them of  

2π × 10 7 N for every metre of their length. 

Fortunately, students no longer need to learn this. The 

post-2019 denition of the ampere takes as its starting 

point the charge on the electron — dened to be 

1.602 176 634 × 10−19 C. This is also an ampere-second. 

Because the second is also a dened SI unit, this leads to 

a direct denition of the ampere as a coulomb of electrons 

owing past a point in one second. 

This links to the work on electrostatic elds in Topic D.2 

and is explained in more detail in the Tools for physics

section on page 334.

We now have two constants: ε0, the permittivity of free 

space and μ0. ε0 has the units of C2 N−1m−2, while μ0 has 

N A−2. The product ε0 × μ0 has the units 
C2

N m2
×

N

A2
. This 

simplies to 
1

m2
×

C2

A2
. Because 

C

A
 (charge divided by 

current) has the unit of a second, then ε0 × μ0 has the 

overall unit of m−2 s2, which is 
1

speed2
. Multiply the known 

values of permittivity (8.85 × 10−12) and permeability  

(1.26 × 10−6) for free space and the answer is 1.11 ×

10−17, which is 
1

c2
, where c is the speed in a vacuum of 

electromagnetic radiation. In symbols,

c =
1

√ε0 × μ0

This result shows the very strong connection between 

electric and magnetic eects. It arose from the Maxwell 

equations that are discussed elsewhere in this book, but is 

now treated as a denition of ε0 in the most recent version 

of the SI. 

Measurements — The denition of the ampere

It is easy to believe that vectors are simply used for physics 

scale diagrams. But this would not be true. Vectors come 

into their own in mathematical descriptions of magnetic 

force and other parts of the subject.

Scalars can only be multiplied together in one way: run a 

relay with four stages each of distance 100 m and the total 

distance travelled by the athletes is 400 m. The product of 

two scalars is always another scalar.

Vectors, because of the added complication of a 

direction, can be multiplied together in two ways.

• The scalar product (sometimes called “dot” product), 

where, for example, force and displacement are 

multiplied together to give work done (a scalar) that 

has no direction. In vector notation this is written as 

W = F s  The multiplication sign is the dot (hence the 

name). The vectors are written in bold font and the 

scalars in ordinary font.

• The vector product (sometimes called “cross” 

product), where two vectors are multiplied together 

to give a third vector, this is written as a × b = c

The multiplication of qv and B to form the vector force F is 

a vector product. The charge q is a scalar, but everything 

else in the equation is a vector. A mathematical physicist 

writes F = q(v × B) to show that the vector velocity 

and the vector magnetic eld strength are multiplied 

together. The order of v and B is important. There is a 

vector rule for the direction of F that is consistent with our 

observations earlier and the sin θ appears when the vector 

multiplication is worked out in terms of the separate 

components of the vector.

Vector notation is an essential language of advanced 

physics because it allows a concise notation and because 

it contains all the direction information within the 

equations rather than forcing us to use direction rules.

Vector products are not used in the rest of this book. 

Multiplication signs always relate to the product of 

twoscalars.

Patterns and trends — Vectors and their products

Charge moving in a uniform electric field

An electron moves horizontally with constant velocity and enters a region of 

uniform electric eld strength (Figure 10). A simple way to imagine this is for the 

electron to move between two charged parallel plates. This treatment ignores 

any edge eects at the plate boundaries. It also ignores the eects of gravity.

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



D. Fields

551

The top plate is at a potential +V. The bottom plate is at zero potential. The 

electric eld is vertically downwards. The force acting on the electron due to this 

eld is upwards and, therefore, the electron is accelerated vertically upwards. 

Because the eld is uniform, the electric force is constant in both magnitude and 

direction and the acceleration will also be constant. 

This is a familiar situation. The kinematic equations and Newton’s second law of 

motion can be used to analyse the situation. E =
V

d
 for the uniform eld, and

avertical =
F

me

=
qE

me

=
q

me

×
V

d
where me is the mass of the electron.

The electron is not accelerated horizontally, so the horizontal component of the 

velocity does not change. The time t for which the electron is between the plates 

of length X is t =
X

vhorizontal

 (the travel time).

The vertical component of the velocity when the electron leaves the plates can 

be calculated using the kinematic equation v = u + at with an initial vertical 

speed u = 0 as

vvertical = avertical × t =  q

me

×
V

d
 ×  X

vhorizontal



The total vertical deection s of the electron while in the eld is proportional to t2

because s =
1

2
× avertical × t2. This becomes

s =
1

2
×  q

me

×
V

d
 ×  X

vhorizontal


2

which is

s = 
qV

2dmev 
2
horizontal

 × X 2

Because everything in the bracket is constant in this situation, then s ∝ length of 

the plates2, so that the trajectory of the electron is a parabola. 

This derivation ignores the eects of gravity on the electron. Is this justied? To 

answer this, compare the gravitational and electric forces acting on an electron 

when in a reasonable eld (perhaps 1 kV m−1) and travelling in Earth’s gravitational 

eld. Other data you need are in the IB data booklet. Your answer tells you about 

the comparative sizes of gravity and electrostatic eects (see also page 533).

▴ Figure 10 The electron is moving perpendicular to a uniform electric eld. An electric 

force acts on the electron opposite to the eld direction. The blue line shows the parabolic 

trajectory while the electron is between the plates. Once the electron leaves the electric 

eld it continues in a straight path.

=
V

d
E

s

+V

d

0 V
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Worked example 6

A beam of electrons moving horizontally with an 

initial velocity u = 6.7 × 106 m s 1 enters a region 

of a uniform vertical electric field between a 

pair of parallel plates. The potential difference 

between the plates is 25 V and the plates are 

separated by 2.0 cm. The electrons travel a 

horizontal distance of 5.0 cm and leave the 

electric field with velocity v

a. Calculate the acceleration of the electrons due to the electric force alone.

b. Hence, explain why gravitational effects on the motion of the electrons can be ignored.

c. Determine:

 i. the final velocity v of the electrons

 ii. the angle that the final velocity makes with the horizontal

 iii. the distance s by which the beam is deflected vertically.

Solutions

a. The electric force on the electron is F = eE = e 
V

d
= 1.6 × 10 19 × 25

0.020
= 2.0 × 10 16 N. The acceleration is  

a = F

me

= 2.0 × 10 16

9.11 × 10 31
= 2.2 × 1014 m s 2

b. The acceleration due to gravity is 9.8 m s−2, which is negligible compared with the acceleration due to the  

electric force.

c. i. The horizontal velocity u is constant, so the time of travel is t = 0.050

6.7 × 106
= 7.5 × 10 9 s 

The vertical velocity of the electron increases from zero to vvertical = at = 2.2 × 1014 × 7.5 × 10 9 = 1.6 × 106 m s 1,  

so the final velocity is v = √u2 + v2
vertical = 6.9 × 106 m s 1

 ii. 
vvertical

u
= tan θ ⇒ θ = 14°.

 iii.  The vertical deflection can be calculated from kinematics equations, for example,  

s = 1

2
at2 = 1

2
× 2.2 × 1014 × (7.5 × 10 9)2 = 6.1 mm.

Practice questions

5. The velocity of the electrons in Worked example 6 is 

reduced, so that the beam is deected vertically by  

s = 1.0 cm. No other changes are made to the setup. 

Determine the initial velocity of the electrons aer  

the change.

6. A proton enters a region of uniform electric eld with 

an initial velocity of 5.0 × 103 m s 1. The electric eld 

strength is 650 V m−1. 

 Determine the magnitude of the velocity of the proton 

aer a time of 8.5 × 10 8 s, when the initial velocity is:

 a. in the same direction as the electric eld strength

 b.  perpendicular to the direction of the electric eld 

strength.

5.0cm

0V

+25V

e s
u

v
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Charge moving in a uniform magnetic field

For the case of a charge in a magnetic eld, our single electron now travels, 

again horizontally, into a region of a uniform magnetic eld (Figure 11). This is the 

region shaded yellow on the diagram. The eld lines are coming out of the page 

towards you. 

Fleming’s le-hand rule predicts the eect on the electron. The force is at right 

angles to both the velocity and the direction of the magnetic eld. In using 

Fleming’s rule, remember that it applies to conventional current, and that 

here the electron is moving to the right as it enters the magnetic eld — so the 

conventional current is initially to the le.

The prediction from the le-hand rule is that the magnetic force acts vertically 

upwards. 

Newton’s second law of motion tells us that the electron 

accelerates in response to the magnetic force and that its 

direction of motion must change. The direction of this change 

is such that the electron will still travel at right angles to the eld 

and that the magnetic force will continue to be at right angles 

to the electron’s new direction. This is exactly the condition 

required for the electron to move in a circle. The magnetic 

force acting on the electron is providing the centripetal force 

for the electron. As the electron continues in a circle, so the 

magnetic force direction alters, as shown in Figure 11.

By the time the electron has reached the centre of the 

region, its velocity is now vertically upwards. The magnetic 

eld direction is still out of the page, so the magnetic force 

is now horizontal and to the le. The circular motion of the 

electron continues until it leaves the magnetic eld.

The force acting on the electron depends on its chargee, 

its speed v and the magnetic field strength B. Equating 

the magnetic force to the centripetal force equation gives 

evB =
mev2

r
. The radius of the circle can be written in 

several ways: 

r=
mev

Be
=

p

Be
=
√2meEk

Be

where p is the momentum, Ek is the kinetic energy of the 

electron and me is its mass. The second and third equations 

for r can be particularly useful and are worth remembering.

When an electron is moving into a magnetic eld that is not 

at 90° to its original direction, then it is necessary to take 

components of the electron velocity both perpendicular to the eld and parallel 

to it. The perpendicular component leads to a circular motion exactly as before. 

The only dierence will be that r=
mev sin θ

Be
, where θ is the angle between the 

eld direction and the beam direction. The radius of the circle will be smaller than 

in the perpendicular case.

The component of velocity parallel to the field does not lead to circular 

motion. The electrons will continue to move at the component speed 

(v cos θ) in this direction. The overall result is that as the beam enters the 

fieldit moves in a helical path (Figure12).

The “dot in a circle” ⊙ is a common 

way to represent a eld at 90° to a 

plane and coming out of it (towards 

the viewer). For a eld going into 

the page, either ⊗, ⊕ or just a 

cross × is used. The symbols are 

meant to represent the tip of an 

arrow coming towards you or the 

ight going away.

Directions on  

a diagram

 ATL

current

conventional

current

force

force

force

magnetic field out

of plane of paper

magnetic field out

of plane of paper

magnetic field out

of plane of paper

current

▴ Figure 11 The electron is moving perpendicular to a 

magnetic eld. Unlike the electric eld case, the force on the 

electron is now perpendicular to the eld and the electron 

velocity. This provides a centripetal force for circular motion.

Circular motion is described in 

more detail on page 94. The 

problem of electrons moving 

in circular motion and hence 

accelerating was also an important 

consideration in the Bohr model of 

the hydrogen atom (see page 604).
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Worked example 7

An electron is moving in a uniform magnetic field. The velocity of the electron is perpendicular to the magnetic field. 

The speed of the electron is 6.5 × 106 m s 1 and the magnetic field strength is 1.2 mT.

a. Explain why the kinetic energy of the electron does not change.

b. Calculate the radius of the circular path of the electron.

c. Calculate the period of the motion.

d. The magnetic field is adjusted so that the radius of the path is 4.0 cm. Calculate the magnetic field strength after 

the adjustment.

Solutions

a. The magnetic force on the electron is always perpendicular to the electron’s velocity so the magnetic field does not 

do any work on the electron. The change in the kinetic energy is equal to the work done. Hence it is also zero.

b. The centripetal acceleration of the electron is provided by the magnetic force. Hence 
v2

r
=

evB

me

. From here,  

r=
mev

eB
=

9.11 × 10 31
× 6.5 × 106

1.6 × 10 19
× 1.2 × 10 3

= 3.1 cm.

c. t=
2πr

v
=

2π × 0.031

6.5 × 106
= 3.0 × 10 8 s

d. We use the same equation as in part b., but solved for the magnetic field strength.  

B=
mev

er
=

9.11 × 10 31
× 6.5 × 106

1.6 × 10 19
× 0.040

= 0.93 mT
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y

x
z

helical path

B

+q+

θ

▴ Figure 12 When the velocity of the 

charged particle is not at right angles to the 

magnetic eld, the path is a helix — a circle 

with an added linear component. The radius 

of the orbit is unchanged.

Large particle accelerators use magnetic elds to steer charged particles as 

they are accelerated to higher and higher speeds. The initial acceleration is 

usually carried out using electric elds. 

In Topics A.2 and A.4 you studied the physics of rotation. The magnetic force 

that acts on a moving charge has the unusual property that it is at 90° to both 

the direction of movement and the magnetic eld direction. The theory in this 

topic links these together to show that charged particles rotate in a circle or 

have a helical path. 

A simple argument shows that the direction of the particle depends on its 

charge, while the radius of the path is related to the properties of the particle 

and the strength of the magnetic eld. When we know the kinetic energy 

of the particle too, then we can estimate its specic charge (charge per unit 

mass) and therefore gain an insight into itsnature. 

As so oen in physics, many areas of the subject meet to give a practical 

solution to the real-life challenges that particle physicists meet every day.

What causes circular motion of charged particles in a field?

How can the orbital radius of a charged particle moving in a 

field be used to determine the nature of the particle?
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Practice questions

7. A charged particle 

of mass m moves in 

a circular path in a 

region of uniform 

magnetic eld B that 

is directed into the 

plane of the paper. 

The radius of the path 

is R and the speed of 

the particle is v

 a.  State the sign of 

the charge of the particle.

 b.  Determine, in terms of m, B, R and v, the 

magnitude of the charge of the particle.

8. The speed of the particle in question 7 and the 

magnetic eld strength are both doubled. What is the 

radius of the path of the particle aer the change?

 A. 
R

2
B. R   C. 2R   D.   4R

9. An alpha particle (charge = +2e, mass = 6.64 × 10 27 kg) 

is moving in a circular path in a uniform magnetic eld of 

magnitude 0.80T. Calculate:

 a.  the radius of the path, when the velocity of the 

particle is 7.5 × 105 m s 1

 b.  the velocity of the particle, when the radius of the 

path is 2.5 cm.

v
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Determining the charge : mass ratio for a charged particle

The ratio 
charge

mass
 for a charged particle can be determined by making 

measurements of the particle’s path in a uniform magnetic eld. To show how the 

method works, take as an example the measurement of the charge per unit mass 

of an electron (this quantity is also known as the specic charge of the electron).

A beam of electrons is red through a gas (usually hydrogen or helium) using 

the equipment shown in Figure 13. The gas is at a very low pressure, so that the 

electrons do not collide with too many gas atoms and lose too much energy. 

When a uniform magnetic eld is applied at right angles to the beam direction, 

the electrons move in a circle and their path is shown by the emission of visible 

light from atoms that have been excited by collisions with electrons along 

the path. The kinetic energy of an electron (or any charged particle moving in 

this way) can be regarded as constant in the uniform magnetic eld because 

the magnetic eld is perpendicular to the electron velocity and no energy is 

transferred to the electron.  

The electrons of mass me are accelerated using a potential dierence V before 

entering the eld. Their energy is 
1

2
mev2

= eV, so that v  = 
2eV

me

Using v  = 
rBe

me

 from the centripetal acceleration proof earlier gives

e

m
=

2V

B2r2

This is of historical importance to physics because, even though J J Thomson 

identied the electron, this measurement of specic charge was the best that 

physicists could do to measure the properties of the particle until Millikan’s 

determination of the electronic charge (Topic D.2).

For the general case when a particle of mass m with charge q has been 

accelerated through a pd V into a uniform magnetic eld of strength B and moves 
in a circle of radius r, the equation becomes

q
m

=
2V

B2r2

▴ Figure 13 Electrons moving in a circle 

as demonstrated in a ne-beam tube. 

Measurements using  this apparatus lead to 

the specic charge on the electron.

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



Worked example 8

In an experiment to determine the specific 

charge of the electron, a student uses a beam 

of electrons accelerated from rest through a 

potential difference V. The electrons enter a 

region of uniform magnetic field B and the 

radius of their circular path is measured. 

The student varies V and, for each value of V, 

adjusts B until the radius of the path is 4.0 cm. 

The graph shows the values of B2 plotted 

against V and the line of best fit.

a. Estimate the gradient of the line of best fit.

b. Hence, determine the specific charge 
e

me

 of 

the electron.

Solutions

a. gradient =
2.90 × 10 6

400
= 7.25 × 10 9 T2 V 1

b. Rearranging the specific charge formula derived earlier gives 
e

me

=
2V

B2r2 ⇒ B2
=

2me

er2 V. This equation suggests that 

the graph of B2 against V should be a straight line with the gradient equal to 
2me

er2 . In this experiment r = 0.040 m and  

we have the equation 
2me

e(0.040)2
= 7.25 × 10 9

The specific charge 
e

me

=
2

(0.040)2
× 7.25 × 10 9

= 1.72 × 1011 C kg 1 . This is within 2% of the accepted value of 

1.76 × 1011 C kg 1

3
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Charge moving in perpendicular magnetic  
and electric fields

Charge movement in a uniform magnetic eld leads to a circular orbit. Movement 

in a uniform electric eld leads to parabolic trajectories. However, it is possible to 

combine the elds in a particular way to do a useful job. The trick is to combine 

the magnetic and electric elds at right angles to each other. As before, this 

analysis ignores the negligible eect of gravity on the charged particle.

For the arrangement shown in Figure 14, the electric force F
E
 is vertically upwards 

and the magnetic force F
B
 is downwards. When these forces are equal and 

opposite, then no net force acts on the charged particle.

For this to be the case FE = FB and so qE = qvB using the results from earlier in this 

topic and from Topic D.2. This leads to

v =
E

B

For a particular ratio of E : B, there is a unique speed at which the forces will be 

balanced. Charged particles travelling more slowly than this speed will have 

a smaller magnetic force while the electric force is unchanged. The net force 

will be upwards on the diagram. For faster electrons, the magnetic force will 

be the larger and the electron will be deected downwards. This provides a 

way to lter the speeds of charged particles and the arrangement is known as a 

velocity selector.

F
E

F
B

B

+

+

E

▴ Figure 14 Although electric elds lead 

to parabolic path and magnetic elds lead to 

circular paths for charged particles, they can 

cancel out to give no deection at all when 

the electric and magnetic forces are equal 

and opposite.
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Worked example 9

An electron enters a region of crossed electric and magnetic fields. The fields are perpendicular to each other and to 

the electron’s velocity (see Figure 14). The electron travels undeflected through the fields. The magnetic field strength 

is 50 mT. 

Calculate:

a. the velocity of the electron, when the electric field strength is 7.5 kV m−1

b. the electric field strength, when the velocity of the electron is 2.4 × 104 m s 1

Solutions

a. v=
E

B
=

7.5 × 103

5.0 × 10 2 = 1.5 × 105 m s 1

b. E= Bv= 5.0 × 10 2
× 2.4 × 104

= 1.2 × 103 V m 1
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The Bainbridge mass spectrometer is a good 

example of a number of aspects of electric and 

magnetic elds being brought together to 

perform a useful job.

There are two parts to the instrument: 

• a velocity selector with electric and 

magnetic fields at right angles to each other

• a deflection chamber with only a magnetic 

field (in this diagram, into the paper). 

It is le as an exercise for you to show that 

identically charged ions of the same speed 

but dierent mass travel in circles of dierent 

radii in the deection chamber. The ions arrive 

at the photographic plate or electronic sensor 

at dierent positions and, by measuring these 

positions, their mass and relative abundance can 

be determined.

Global impact of science — Bainbridge mass spectrometer

+

‒ magnetic field into paperpositive ionsgas

vacuum

cathode
‒

anode
+

path of ion with

smaller 
m
q

photographic plate

or electronic sensor

velocity selector deflection chamber

ion
source

▴ Figure 15 The Bainbridge spectrometer arrangement. 
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Practice questions

10. Ions of mass 1.50 × 10 26 kg and charge +e are 

accelerated from rest through a potential dierence of 

600 V. The ions enter a region of crossed electric and 

magnetic elds. The magnetic eld strength is 0.250 T. 

 a. Calculate the speed of the ions.

 b.  Given that the net force on the ions is zero, 

calculate the electric eld strength.

11. Ions of charge +e are accelerated from rest through 

a potential dierence of 300 V and pass undeected 

through a region of perpendicular electric and 

magnetic elds. The electric eld strength is 18.1 kV m−1

and the magnetic eld strength is 0.200 T.

 a. Calculate the speed of the ions.

 b. Determine the mass of one ion.

12. A positively charged particle moves to the right with a 

horizontal initial velocity. The particle enters a region 

of a downward electric eld between a pair of parallel 

horizontal plates. There is also a uniform magnetic 

eld between the plates, directed into the page. The 

particle is deected upwards, as shown in the diagram.

+q
B

E

0 V

+V

Which single change would allow the particle to pass 

undeected between the plates?

A. increasing the magnetic eld strength

B. increasing the initial speed of the particle

C. decreasing the potential dierence between  

the plates

D. decreasing the distance between the plates

Topic D.3 Motion in electromagnetic fields
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As is so oen the case, what was originally 

complex and expensive technology can be 

improved and rened over time, making it 

cheaper, more reliable, more compact and 

more useful.

In the case of the mass spectrometer, as well 

as being used for analytical chemistry, it can 

analyse isotopes for dating samples (in carbon 

dating). Mass spectrometers have been sent 

to Mars and to Saturn’s moon, Titan, to analyse 

surface samples.

Recent developments now enable a mass 

spectrometer to provide rapid analyses of body 

tissue. The onko-knife or iknife can determine 

whether tissue is cancerous or not. This informs 

surgeons in real time during an operation, 

making the procedure quicker and  

more accurate.

Measurement

▴ Figure 16 An artist’s depiction of NASA’s Phoenix Mars Lander.
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Energy is conserved in all energy transfers involving electromagnetic elds. Gravitational and electrostatic elds are 

conservative (see Topic A.3, page121). Magnetic elds are not conservative, although in certain circumstances they can 

appear to be. It all depends on the conditions of the circuit, as will become clear in Topic D.4.

For the case of a point charge orbiting in a magnetic eld, energy is conserved. The speed is constant, so that the eld is 

doing no work to transfer energy into the kinetic form. This is a consequence of the fact that the magnetic eld is uniform 

and unchanging. 

When point charge is moving at right angles to a uniform electric eld it moves in a parabolic path (which links to the 

work in Topics A.1, A.2 and A.3) and its speed changes with its potential energy. Energy is transferred from the electric 

eld to the kinetic energy of the charge. 

How can conservation of energy be applied to motion in electromagnetic fields?

One of the classic experiments of 20th-century physics is described in Topic E.1. Rutherford and his co-workers 

measured the deection of alpha particles in a beam that was incident on gold atoms. Some of the alpha particles 

were moving directly towards a gold nucleus. The initial 

kinetic energy of the alpha is transferred into the electric 

potential energy of the system. Eventually the alpha 

particle stops at a position where its kinetic energy is zero 

and the electric potential energy is at a maximum. This 

position can be used as an estimate of the nuclear radius.

The physics involved in these estimates embraces a 

knowledge of Coulomb’s law, and the recognition of 

energy conservation in the particle–nucleus system. This 

was the beginning of particle physics. 

The simple technique has been improved and extended 

since Rutherford’s work and is now a regular feature of 

physical investigation. The physics explored throughout 

this theme is important for these techniques. Electric 

and magnetic elds are used to originate and accelerate 

particles to high speeds to collide with other particles. 

When other, new, particles are created, they move 

through static magnetic elds maintained in cold liquids. 

Measurements of the radius of curvature of the particle 

tracks in the liquid allow estimates of the properties of the 

new particles. 

How are the concepts of energy, forces and fields used to determine the size of an atom?

▴ Figure 17 This is a cloud-chamber image of the rst positron 

to be observed. There is a horizontal thick lead plate across the 

photograph. The positron (an anti-electron) enters bottom le, 

is slowed by the plate, and leaves top le. Notice the increase in 

curvature of the track aer the positron leaves the plate. This is 

because it has lost energy crossing the plate.O
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Discoveries of electrical and magnetic effects have 

changed the conditions of people’s lives for the better. 

The discipline of engineering has used physics to 

improve lives and society.

Generation of electricity only needs a large rotating 

coil of wire and a powerful magnet. When there is 

relative rotational motion between the coil and the 

magnetic field, then an emf appears across the coil. 

Under the right conditions, this emf can be translated 

into a movement of charge and hence a current. Again, 

using appropriate engineering, this current can be used 

outside the generator.

The electromagnetic induction occurs because of the 

relative motion between field and coil. In the case of

the alternating current generator, turn the coil faster and 

two things happen. The magnitude of the peak emf 

from the generator increases, and thus increases the 

potential power output. But the frequency of the supply 

also increases. This is undesirable for the consumers 

of the electrical energy and must be avoided. Other 

changes must be made to increase the power output. 

This topic looks at these changes.

The origins of the energy that is supplied to turn the coil 

give rise to debate in modern society. However, the 

underlying process of generation is clean and relatively 

efficient. The energy can be transported conveniently 

through cables and we can provide different sectors 

of society with its electrical requirements quickly 

andeasily.

What are the effects of relative motion between a conductor and a magnetic field?

How can the power output of electrical generators be increased?

How did the discovery of electromagnetic induction effect industrialization? 
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D.4 Induction

In this additional higher level topic, you will learn about: 
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• magnetic flux 

• how a time-changing magnetic flux can  

induce an emf

• Faraday’s law of induction 

• a uniform magnetic field inducing an emf in a  

straight conductor moving at right angles to it 

• Lenz’s law as a consequence of energy  

conservation

• a uniform magnetic field inducing a sinusoidal  

varying emf in a coil rotating in the field and the  

effect of changing the rotational frequency of  

the coil on the induced emf.

Introduction

Topic D.2 showed that, when an electric charge moves through a magnetic eld, 

a force acts on the charge. The converse case is when a stationary conductor 

containing free charges is subject to a changing magnetic eld. Here energy can 

also be transferred in the arrangement and an electric potential dierence will be 

set up across the conductor. This eect is called electromagnetic induction

Induction is the eect used to generate electrical energy and to transform 

alternating currents from one pd to another. Braking systems in large road 

vehicles use electromagnetic induction as a way to slow the vehicle down and to 

reclaim some of the energy from the kinetic form. 

The history of induction begins with Michael Faraday, (see page 547) who 

became the Professor of Chemistry at the Royal Institution in London. He 

expanded our understanding of electricity and magnetism, paving the way for 

the later work of Maxwell and others.

▴ Figure 1 Electric vehicles are viable 

because of electromagnetic induction.
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• Inquiry 1: Demonstrate independent thinking, initiative, or insight.

• Inquiry 3: Relate the outcomes of an investigation to the stated research question or hypothesis.

Faraday spent over a decade making the discoveries that you can repeat in a few minutes. This experiment replicates his 

work and invites you to make the same inferences as this great scientist.

• Begin with a magnet and a coil of wire (Figure 2). Arrange the coil horizontally and connect it to a galvanometer (a 

form of sensitive ammeter, with the zero in the middle of the scale). You can use a laboratory coil, or you can wind 

your own from suitable metal wire using a cylindrical former. 

S N S N N S N S

• Move the bar magnet along the coil axis so that its 

north-seeking pole approaches one end of the coil 

and observe the effect on the meter. Record the 

direction of the current as indicated by the meter 

and the peak value shown. Relate this to the pole 

produced by the charge flow at the ends of the coil. 

Remember the rule from Topic D.2 that enables 

you to assign a magnetic pole to the end of a coil 

(Figure3).

• Repeat the movement, moving the bar magnet with its 

south-seeking pole towards the coil. 

• Now move the bar magnet away from the coil with 

both options of polarity. 

• Change the speed at which you move the magnet. 

• Compare the current directions for all cases. Also 

compare the sizes of the currents shown on the meter. 

• Now try moving the coil with the magnet at rest. Does 

this change your observations? 

• Now try moving the coil and the magnet at the same 

speed and in the same direction. What is the size 

of the current now? If your coil allows it, you might 

also try making the magnet enter the coil at an angle 

rather than along its axis. You could also try moving 

the magnet completely through the coil and out of the 

other side. Try to interpret this complex situation when 

you have understood the simpler cases. 

• Relate the direction of current flow in the coil to the 

magnetic poles produced at the ends of the coil using 

the ideas in Topic D.2.

Generating emfs and currents

Electromagnetic induction

Faraday’s demonstration of electromagnetic induction can be repeated using a 

bar magnet, a length of wire wound into a solenoid shape (wide enough for the 

magnet to t inside) and a sensitive ammeter (sometimes called a galvanometer). 

The experiment (Figure 2) consists of moving the bar magnet towards and away 

from the solenoid along the central axis. Dierent directions of motion and 

varying magnet speeds allowed Faraday to draw conclusions about the direction 

of the current that ows in the coil and the magnitude of this current. 

◂ Figure 2 When a magnet is moved near a coil, 

an emf is induced in the coil. The direction and 

magnitude of the emf depends on the direction of 

the motion and the rate at which it takes place.

▸ Figure 3 When looking 

into a coil from the outside, the 

direction in which conventional 

charge is owing gives the 

polarity of that end of the coil.
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Several conclusions emerge from these simple experiments: 

• Current is registered by the meter when there is relative motion between 

the coil and the magnet. Moving either the coil or the magnet produces 

the eect. However, when there is no relative movement between coil and 

magnet, no current is observed. 

 Only movement of the wire in the coil relative to the magnet eld gives 

theeect. 

• When the north-seeking pole of the magnet is inserted into the coil, the 

direction of the charge ow leads to a north-seeking pole at the magnet 

end of the coil. This induced pole tries to oppose the motion of the magnet 

byrepulsion. 

 When a south-seeking pole is pushed into the coil, then a south-seeking pole 

appears at the magnet end of the coil. It is as though the system is acting to 

repel the bar magnet and, again, to reduce or prevent its movement. 

• When a magnetic pole is moved away from the solenoid, the pole formed 

by the current in the coil is the opposite of the magnet pole. This attracts 

the magnet and reduces its speed of motion. Again, the solenoid–magnet 

system is trying to prevent change.

The system tries to oppose any change in the magnetic ux. 

• The greater the speed at which the magnet moves, the larger the current. 

Moving the coil at greater speeds relative to the magnet increases the sizes 

of the currents. The eect is at a maximum when the axis of the magnet 

between its poles is perpendicular to the area of cross-section of the coil. 

 The opposition eect is larger when things happen more quickly

Explaining electromagnetic induction

Figure 4(a) shows some free electrons in a metal rod. The rod is moving through 

a uniform, unchanging, magnetic eld. The magnetic eld direction is into the 

page and the rod is moving upwards in the plane of the page. 

The rod carries the free electrons with it so that each moving electron can be 

regarded as a current moving up the page, each small current parallel to every 

other current. A force (according to Topic D.2) acts on each electron (because 

it is being treated as a current moving in a magnetic eld). The direction of this 

force can be worked out. Remember that a free electron moving up the page is 

equivalent to a positive charge moving down. The use of Fleming’s le-hand rule 

with conventional current should convince you that the force on the electron is 

to the right. As you expect from Topic D.2, this direction is perpendicular to both 

the eld and the direction of motion of the rod. 

This dri of the electrons to the right leaves the le-hand end of the rod with a 

decit of electrons. There is no external connection between the le-hand (L) 

and right-hand (R) ends of the rod. End R becomes negatively charged and end 

L becomes positive. There is a potential dierence between L and R, with L being 

at the higher potential. 

Charges accumulate at the ends until the electric eld along the rod is so large 

that further charge movement along it stops. At this point the situation in the rod 

cannot change any more. There is no external circuit outside the rod for charge 

ow. This means that no work will be required to overcome the resistance of the 

metal rod, and no transfer of energy occurs. 

The keys to understanding these 

eects lie in ideas you met in  

Topics B.5 and D.2. 

(a)

(b)

(c)

conventional

current

electron

flow

magnetic field into page 

×

×

×

×

×

×

×

×

×

×

×

×

+ + +

×

×

×

×

×

×

×

×

×

×

×

×

▴ Figure 4 How induced emfs arise in a rod 

when it is moved in a magnetic eld. When 

there is a return path for the charges, there 

will be an induced current too.

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



A
H
L

D. Fields

563

The potential dierence between R and L is an electromotive force that can, in 

principle, drive a current. We use the term induced emf to show that the emf 

arises from an induction eect. (The word “induction” is another term used by 

Faraday and others in the early days of electromagnetic study.)

The magnitude of the induced emf 휀 can be determined. When the charge ow 

has stopped, the forces acting on an electron in the rod are balanced so that the 

electric force towards L is equal and opposite to the magnetic force towards R. 

The magnitude of the electric force Fe is Ee, where E is the electric eld inside the 

rod. When the length of the rod is x then E =
휀

x 
 and therefore

Fe =
휀

x
× e

The magnetic force Fm on the electron when the rod (and the electron) is moving 

at speed v at 90° to a magnetic eld of strength B is evB. It follows that

Fe = Fm = evB = 
휀

x 
× e

which leads to

휀 = vBx

When the circuit is closed externally between L and R (Figure 4(c)), a ow of 

electrons occurs. Inside the rod, the conventional current ows from R to L. The 

electrons ow out of end R of the rod, and this is a conventional current in the 

external circuit from L to R. We say that a current has been induced (or generated) 

in the circuit. 

Lenz’s law 

An important aspect of electromagnetic induction is that the induced emf exists 

in the conductor whether the charge ows in a complete circuit or not. In the case 

shown in Figure 4(b), the circuit is incomplete and electrons collect at one end 

until the electric eld prevents further ow. It is only when the circuit is completed 

that charge can ow continuously: 

• An induced emf is always generated by a magnetic eld and conductor 

moving relative to each other.

• A continuous induced current exists only when there is a complete circuit for 

charge ow. 

When the circuit is closed, the 

system moves the electrons 

through the resistances of the rod 

and the external circuit. Because 

this is a transformation of energy 

into an electric form, the term 

“electromotive force” should 

be used rather than a potential 

dierence. As usual, we can 

identify the amount of energy 

transferred for each coulomb 

of charge that moves around 

thecircuit.

You can see why the term 

“electromotive force” was 

used early in the discovery of 

electromagnetism. Some physicists 

object that no force acts when the 

term emf is applied to electric cells, 

batteries, solar cells and so on. 

Therefore, these physicists say that 

emf is not a good term to use. 

It is true that it is dicult to see how 

the word “force” in its mechanical 

sense can apply in the case of 

an electric cell. But in the case of 

electromagnetic induction, a force 

is clearly acting on the electrons 

in the moving rod of Figure 4, and 

so the term emf continues to be 

used in physics. The fact that we 

oen use the abbreviation emf 

rather than the full expression is a 

reminder to focus on the units of 

emf (volt or J C−1) rather than the 

term “force”.

Models — 

Electromotive force

This links to the expression derived 

from an energy standpoint later in 

this topic on page 565. 

force F

magnetic field magnetic field B

current I
left hand

Fleming’s le-hand 

rule for motor effects

motion of the

conductor

right hand

induced current

Fleming’s right-hand

rule for induction effects

▴ Figure 5 A comparison of Fleming’s le-hand rule for motor eects and the right-hand 

rule for induction eects.
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We also need a direction rule for induced current. Fleming’s le-hand rule 

predicts the force on a current of electrons. Because this electron ow is 

equivalent to a conventional current acting in the opposite direction, you have 

two choices for a direction rule (Figure 5). Either:

• use Fleming’s le-hand rule to work out the force direction from rst 

principles and let this lead you to the conventional current direction (using 

the argument given above), or 

• use another rule (Fleming’s right-hand rule as shown in Figure 5), which uses 

the symmetry between le and right hands to give the relationship between 

the motion of the conductor, the direction of the eld and the direction of the 

induced conventional current. 

Faraday’s experiments showed that the current in the coil always opposes the 

change that the moving magnet is trying to impose on it. A rule to describe this 

was suggested by the German scientist Heinrich Lenz in 1833 and subsequently 

named aer him. This is Lenz’s law:

The direction of the induced current opposes the change that  

created the current.

Check the diagrams in Figure 2 to see whether the results there conrm this rule. 

In fact, Lenz’s law is no more than a statement of conservation of energy. Suppose 

that the induced current in the solenoid were to increase the movement of the 

magnet rather than oppose it. This would imply that when the north-seeking pole 

approached the solenoid, a south-seeking pole would appear at the solenoid. 

There would be an attraction instead of a repulsion between magnet and solenoid. 

The magnet would be pulled into the coil, increasing its speed, and leading to an 

even greater acceleration. The magnet would move faster and faster, gaining kinetic 

energy from nowhere. Conservation of energy tells us that this cannot happen. 

Another way to look at the consequences of Lenz’s law is to realize that you 

cannot do work without having some opposition. The induced current in the coil 

produces an induced magnetic eld that opposes the motion of the magnet. 

When the circuit is open, there is no current, no opposition and no electric energy 

produced. Move a powerful magnet very fast in the presence of a large conducting 

coil connected to a complete circuit and you will feel the force opposing you! 

Electrons had not been discovered in Lenz’s time and we can see how his law 

arises from rst principles. In Topic D.3, when a charge ows within a magnetic 

eld, the current produces a magnetic eld which distorts the original eld 

pattern. The catapult eld (page 542) is an example of this. The result is that a 

force acts on (and can accelerate) the current-carrying conductor. This eect 

leads to the basis of an electric motor.

Energy transfers during induction

Electromagnetic induction occurs when there is a current in a conductor because 

of the conductor’s motion through a magnetic eld. Figure 6 extends the earlier 

example of the moving rod.

The rod is now rolling to the right at a constant speed on a pair of metal rails 

through the magnetic eld. The rails conduct and form part of a complete 

electrical circuit WXYZ. (Rolling means that we do not have to worry about friction 

between the rod and the rails.) Charges, driven by the induced emf across the 

rolling rod, ow around the circuit. They give rise to an induced movement of 

electrons in the direction shown (from X to Y in the rod). 

Not everyone prefers Fleming’s 

le-hand and right-hand rules. 

Another possibility is to use the 

right hand with its thumb in the 

direction of the current and ngers 

in the direction of the magnetic 

eld. Your palm points in the 

direction of the force on a positive 

charge or a conventional current. 

When an electron is the moving 

charge, point the thumb in the 

opposite direction to get the force 

in the opposite direction. This 

convention can also be used to 

get the direction of the magnetic 

eld due a conventional current: 

for example, by curling the ngers 

around a wire with carrying  

a current.

How useful are rules such as this 

in science? Are they a reection 

of scientic truth or a concept, or 

simply devices to help students do 

well in examinations?

An alternative to  

Fleming
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This induced current also interacts with the uniform magnetic eld giving rise to 

the motor-eect force that was discussed in Topic D.3 (page 542). Use Fleming’s 

le-hand rule for this current direction and magnetic eld and you will see that a 

force must act to the le in Figure 6. This is opposite to the direction in which the 

conductor is moving. 

For the rod to move at a constant speed, an external force must be acting on 

it by Newton’s rst law of motion. Whatever is pushing the rod to the right is 

doing work to overcome this motor-eect force to the le. The work done by the 

external agent to keep the conductor moving at a constant speed is transferred to 

electrical energy in the conductor. It is only possible for work to be done because 

of the opposition to the motion provided by the external magnetic eld as it 

produces a magnetic force on the induced current. 

Estimating the induced emf in the rod — An energy 
approach

We can use the physics from Topics B.5 and D.3 to extend these qualitative ideas. 

The magnitude of the magnetic force due to the induced current is BIL where B is 

the magnetic eld strength, I is the induced current in the rod and L is the length 

of the rod (XY in Figure 6). The magnetic force arising from the induced current 

opposes the original force. In other words, the opposing magnetic force is to the 

le in Figure 6 when the original applied force is to the right. The net resultant 

force is zero and the rod moves at constant speed. 

From Newton’s rst law, to keep the rod in Figure 6 moving at a constant velocity, 

a constant force equal to BIL must act to the right on the rod.

The energy we have to transfer in a time Δt, therefore, is force × distance moved,

which is BIL × Δx, where Δx is the distance moved to the right by the rod in Δt

The induced emf is equal to the energy per unit charge supplied to the system. In 

other words,

휀 =
energy supplied in Δt

charge moved in Δt
 = 

BIL × Δx

Q
 = 

BIL × Δx

I × Δt

Of course, 
Δx

Δt
 is the speed of the rod v. Therefore, as with the earlier derivation, 

휀 = BvL

W

Z
Y

X

B  

rod rolling to right

constant

speed v

B

charge flow

motor

effect

motor

effect

force

equal

and

opposite

to

external

force

if v

is to be

constant

▴ Figure 6 When there is an induced 

current in a loop, then there is also a motor 

eect that opposes the original motion that 

led to the induced emf. 

Worked example 1

A metal rod of length L = 0.75 m moves without friction at a constant speed v = 1.5 m s 1 along a pair of parallel 

conducting rails. The rails are electrically connected at the left-hand side and form a complete electric circuit with the 

rod. The system is in a uniform magnetic field of magnitude B = 0.16 T directed out of thepage.

a. Calculate the magnitude of the electromotive force induced in  

the rod.

The rod has a resistance of 4.0 Ω. The resistance of the rails is negligible.

b. Calculate the current in the rod and explain its direction.

c. Explain why an external force must act on the rod to maintain the 

constant speed.

d. Calculate the rate at which the energy is transferred to the system.

L

B

v
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Solutions

a. 휀 = BvL = 0.16 × 1.5 × 0.75 = 0.18 V

b. I = 
휀

R
 = 

0.18

4.0
= 45 mA. The electrons in the rod are moving to the right together with the rod. Hence they will 

experience an upward magnetic force, causing free electrons in the rod to drift upwards. The conventional current 

has the opposite direction to the flow of electrons, and hence is downwards.

c. Using Fleming’s left-hand rule, the magnetic force on the current induced in the rod is to the left, opposite to the 

velocity of the rod. Constant velocity of the rod means that the net force on it is zero, so there must be an external 

force acting on the rod to the right that counters the effect of the magnetic force. 

 Note that the directions of the current and the magnetic force are consistent with Lenz’s law: the current in the circuit 

is induced by the motion of the rod in the magnetic field, and the direction of the induced current is so as to provide 

a force that opposes this motion.

d. The rate of energy transfer can be calculated from two dierent viewpoints:

 i.  As the electrical power dissipated in the circuit, P = 휀I = 0.18 × 0.045 = 8.1 mW.

 ii.  As the power developed by the external force F in moving the rod. The magnitude of the  

force F = BIL = 0.16 × 0.045 × 0.75 = 5.4 mN. P = Fv = 0.0054 × 1.5 = 8.1 mW.

Magnetic flux and magnetic flux density

The equation 휀 = BvL can be developed further. The product v × L is the rate at 

which the rod sweeps out the area between the two conducting rails. To see this, 

v × L can be written as

Δx

Δt
× L = 

L × Δx

Δt

as before. L × Δ is the change of the area swept out by the rod. Thus

휀 = B × 
ΔA

Δt
= B × rate of change of area

In words: 

induced emf = magnetic ux density × rate of change of area

This introduces you to an alternative term in magnetism for magnetic eld 

strength — magnetic ux density

Magnetic eld strength is numerically equivalent to magnetic ux density.

Flux is an old English word that has 

the meaning of “ow” and one way 

to think about ux is to imagine 

a windsock used to show the 

direction and speed of wind at an 

aireld. When the wind is strong, 

then the ux density is high. The 

ux is the number of streamlines 

going through the sock. When 

the wind has the same speed for 

two windsocks of dierent sizes, 

then the windsock with the larger 

opening will have a larger ux, 

even though the ux density is the 

same for both windsocks. 

Patterns and 

trends — Flux or ow

Practice questions

1. The external force acting on the rod in Worked example 

1 above is increased to 1.2 × 10−2 N. The speed of the 

rod quickly increases to a new, constant value.

a. Calculate the current in the rod after the change.

b. Hence, determine:

i. the emf induced between the ends of the rod

ii the speed of the rod

iii the power transferred to the system.

2. An aircra with a wingspan of 35 m moves at a 

constant horizontal velocity of 800 km h−1. At the 

location of the aircra, the vertical component of 

Earth’s magnetic eld is 2.5 × 10−5 T. Calculate the emf 

induced between the wingtips of the aircra.
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In Topics D.2 and D.3, the term “magnetic eld strength” was used because 

there we were concerned with basic ideas of eld. In both electrostatics and 

gravity, the term eld strength has a meaning of 
force

charge
 or 

force

mass
 depending on 

the context. We dened magnetic eld strength as 
force

current × length
. However, 

this denition does not take account of the old, but helpful, view of a magnetic 

eld being represented by lines directed from a north-seeking pole to a south-

seeking pole. The density of the lines is a measure of the strength of the eld. It 

is this visualization of a eld in terms of lines that link magnetic eld strength to 

magnetic ux density. You can use either term interchangeably. 

Field lines are close together when the magnetic eld strength is large. There 

will be many lines through a given area, so they are densely packed. We say that 

“the magnetic ux density is large”. The total number of lines through one square 

metre is a measure of the magnetic ux density and therefore the total number of 

lines in a given area is a measure of the magnetic ux in the area.

Magnetic ux density can be thought of as being the number of eld 

lines (lines of ux) passing through a unitarea.

However, eld lines are not real. They are a visualization of the 

magnetic eld introduced by Faraday. Strictly, there are an innite 

number of eld lines for a magnetic eld, although we only draw a 

small number of them to illustrate a situation.

Although there are an innite number of eld lines in a given area for 

any particular eld strength, dierent ux densities lead to dierent 

numbers of eld lines over the same area. Innities can be larger or 

smaller than eachother!

Are eld lines a helpful model?

Field lines

Magnetic ux density B is the number of ux lines per unit area, and therefore 

magnetic ux Φ must be equivalent to ux density × area A: in symbols,

Φ = B × A

This equation assumes that B and A are at right angles to each other. 

Figure 8 shows what happens when area and magnetic ux density are not 

perpendicular. The component of the eld normal to the plane of the area is 

now the important quantity. When the normal to the area makes an angle θ with 

the lines of ux, then Φ = B cos  × A. For  = 0 (B normal to area) Φ = B × A, 

whereas for  = 90° (B parallel to area) the magnetic ux through the area is zero.

• Magnetic ux density B is related to the number of eld lines per unit area. It 

is a vector quantity. 

• Magnetic ux Φ is equal to B × A. It is a scalar quantity. 

• The equation Φ = BA cos  is used when the area is not at right  

angles to the lines. 

B, magnetic flux density
normal to

area

area, A

θ

Φ = BA cos θ

▴ Figure 8 The ux that links an area is 

the magnetic ux density × the area. When 

the eld direction is not at right angles to 

the area, then cos θ must be used where θ

is the angle between the area normal and 

theeld.

▴ Figure 7 A magnetic liquid forms shapes which  

seem to show eld lines.
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The unit of ux is the weber (Wb) and is dened in terms of the emf induced 

when a magnetic eld changes. The equation 휀 = B × 
ΔA

Δt
can be rewritten as

휀 =
Δ(BA)

Δt
In words, this is

휀 =
change in ux

time taken for change

This equation links induced emf and the rate of change of ux, so that a 

denition of the weber is as follows.

A rate of change of ux of one weber per second induces an emf of one volt 

across a conductor.

A knowledge of the magnetic ux due to a magnetic eld and the rate at which 

the ux changes, allows a direct calculation of the magnitude of the emf that 

will be induced in a conductor. 

There is a direct link between magnetic ux density and magnetic eld strength.

Magnetic ux density ( ux

area over which ux acts
in weber metre−2) is 

numerically equal to magnetic eld strength ( force

current × length
in tesla)

One tesla (T) ≡ one weber per square metre (Wb m−2).

We therefore also have a link between changes in the magnetic eld strength 

and the induced emf.

Worked example 2

A square loop of side length 15 cm is perpendicular to a uniform magnetic field of magnitude  

B = 0.36 T, directed out of the plane of the paper.

a. Calculate the magnetic flux through the loop.

The direction of the magnetic field is reversed in a time of 0.50 s. 

b. Calculate the average emf induced in the loop.

c. Explain the direction of the current induced in the loop.

d. The resistance of the loop is 1.0 × 10−3 Ω. Determine the total energy transferred to the loop.

Solutions

a. Φ = BA cos 0° = 0.36 × 0.152 = 8.1 × 10−3 Wb.

b. After the field has been reversed, the magnetic flux becomes −8.1 × 10−3 Wb (Think of the angle between the 

normal to the loop and the field becoming 180°, and cos 180° = −1.) The magnitude of the change in the flux is 

therefore ΔΦ = 2 × 8.1 × 10−3 = 1.62 × 10−2 Wb. The average induced emf is 휀 =
ΔΦ

Δt
 = 

1.62 × 10−2

0.50
= 32 mV.

c. The magnetic field is originally out of the plane of the paper and decreases. From Lenz’s law, the induced current 

must oppose this change. Hence the magnetic field produced by the current in the loop must have its north-seeking 

pole pointing out of the plane of the paper. From Figure 3 the induced current is anticlockwise.

d. The average electric power developed in the loop is  

P =
휀2

R
 =

0.0322

1.0 × 10−3
= 1.02 W. The energy transferred is E = Pt = 1.02 × 0.50 = 0.51 W.

B

It might seem unnecessary to distinguish 

between magnetic ux density and 

magnetic eld strength.

The theory behind much of the physics 

in this topic was condensed into a set 

of equations by James Clerk Maxwell. 

Maxwell’s equations, as they are known, 

deal with two dierent types of magnetic 

eld: B, the magnetic ux density, and H, 

the magnetic eld strength. In the majority 

of cases, B and H are proportional to each 

other, and so distinguishing between 

the two is unnecessary. The distinction 

becomes important when dealing 

with magnetic elds interacting with 

magnetized materials. Since this situation 

is beyond the scope of this course, 

magnetic eld strength is sometimes 

used here even though the correct term is 

magnetic ux density.

Is it unnecessarily pedantic to use 

precise terminology when such specic 

language is rarely required?

Communication skills ATL
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Magnetic ux linkage 

There is one more quantity required. The derivation of 휀 =
Δ(BA)

Δt
 above used 

a single rod rolling along two rails. Another way to imagine this is as a single 

rectangular coil of wire that is gradually increasing in area. The single turn 

gradually includes more and more eld lines as the rolling rod moves to the right. 

As before, the emf across the ends of the coil will be equal to the rate of change 

of area multiplied by the magnetic ux density. When there are N turns of wire 

in the coil rather than a single turn, then the induced emf will be N times greater 

sothat

휀 = N
Δ(BA)

Δt
= 

Δ(NΦ)

Δt

NΦ is known as the magnetic ux linkage. 

You may sometimes see the unit of ux linkage written as weber-turns. This is 

equivalent to writing weber because the number of turns is simply a number and 

you can use weber by itself if you prefer.

The relationships between these interlinked quantities are shown inFigure 9.

magnetic flux linkage,

measured in Wb-turns
NΦ

magnetic flux measured

in Wb
Φ = BA

magnetic flux density

measured in Wb m–2

magnetic field strength

measured in T
B ◂ Figure 9 The inter-relationships 

between ux density and eld strength.

Magnetic induction as a whole is summed up in the following law devised by 

Faraday himself. It is known as Faraday’s law. 

The induced emf in a circuit is equal to the rate of change of magnetic  

ux linkage through the circuit.

In our usual notation, this is written algebraically as

휀 = –N
ΔΦ

Δt

The negative sign is added to include Lenz’s law. (In its full mathematical form 

with the negative sign, the equation is also known as Neumann’s equation.)

The equation combines Faraday’s and Lenz’s ideas. It reminds us that magnetic 

ux can be changed in three dierent ways: 

• by changing the area of cross-section with time (ΔA

Δt )
• by changing , the angle between B and A, with time (Δ cos θ

Δt )
• by changing magnetic ux density with time ( ΔB

Δt ).
Each of these leads to the generation of an induced emf.
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Faraday rst introduced the 

eld-line model. However, his 

interpretation of a magnetic eld is 

not quite the same as the modern 

view. He considered the lines of 

force to be at the edges of “tubes 

of force”, like elongated elastic 

bands. At the time, it was thought 

that an invisible “aether”, having 

elastic properties, lled space, 

including a vacuum. Later, Faraday 

and others took the concept of the 

eld line further by suggesting that 

it was the action of the conductor 

“cutting” the tubes of force that 

led to an induced emf. This is a 

helpful way to think of the process, 

although it conceals the link 

between a charge being moved in 

a magnetic eld and the magnetic 

force that acts on the charge as a 

result. But we need to remember 

that Faraday and the others did 

not know of the existence of the 

electron, and that they were very 

familiar with the ideas of eld lines. 

In the 19th century, Maxwell rened 

these models by including both 

electrostatic and magnetic forces 

into one set of electromagnetic 

equations. 

This illustrates two things about 

science: the way in which scientists 

allow a discovery to illuminate 

prior knowledge in a dierent 

way, and the power of the visual 

image to help us to understand a 

phenomenon.

Can you identify other powerful 

visualizations that you have come 

across in science? How do they 

help understanding?

Cutting lines of force
Changing fields and moving coils 

An emf can be induced in a conductor through magnetic ux changes in several 

ways that appear, at rst sight, dierent from each other.

• A wire or coil can move in an unchanging magnetic eld (the example of the 

rolling rod above). 

• The magnetic eld can change in strength while the conductor does not 

move or change its shape. 

• A coil can change its size or orientation in an unchanging magnetic eld. 

Combinations of these changes can occur. 

We will look at these cases in the context of a rectangular coil interacting with a 

magnetic eld that is uniform across the coil (but may change in magnitude). 

area, A

zero field

(a) (b)

flipped though 180°

B, field out of page

ΔΦ = BA ΔΦ = 2BA

X Y

X
Y

X Y

(c)

G

▴ Figure 10 Three ways to generate an induced emf.

Case 1: Straight wire moving in a uniform eld 

This is the case of the rod rolling on parallel rails above. The change in area per 

second is L × v, the product of the length L of the rod and the speed v of the 

rod. The induced emf is therefore 휀 = BvL when the wire moves at 90° to the 

eld lines. When the wire motion is not at 90° to the eld, then, as usual, the 

component of eld at 90° to the direction of motion should be used. 

Case 2: Coil moving 

The coil can move as shown in Figure 10(a) from one position in a magnetic eld 

to another position where the eld is dierent. When the coil begins and ends in 

positions inside the same uniform eld, then there is no change in the ux linkage 

and there is no induced emf. Although the coil is cutting lines, the same number 

of lines are being cut on opposite sides of the coil. Two emfs are induced, but 

they are in opposite directions and therefore cancel out. 
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When the coil with N turns moves from a position where the ux is Φ to a position 

where the ux is zero, the change in ux linkage is (NΦ−0) and the induced  

emf휀 is

휀 =
NΦ

time taken for change to occur

An interesting variant of this occurs where a coil in a eld is ipped through 180° 

(Figure 10(b)). To visualize this, look at the system from the point of view of the 

coil. The eld lines appear to reverse their direction through the coil, and so the 

change in ux is Φ –(–Φ), in other words, 2Φ. The emf induced will be equal to

2NΦ

time taken for change to occur

When a coil rotates in a eld, the emf produced instantaneously depends on the 

rate of change of the ux linkage, and this, in turn, depends on the angle the coil 

makes instantaneously with the eld. When the coil rotates at a constant angular 

speed, then the emf output varies in a sinusoidal way. This is the basis of an 

alternating current generator as you will see later in this topic. 

Case 3: Magnetic eld changes 

Sometimes a stationary coil is immersed in a magnetic eld that changes from 

one value to another. The eld gets stronger or weaker. The act of cutting eld 

lines is not so obvious here. 

Suppose the eld is being turned on from zero. Initially, there are no eld lines 

inside the coil. You can think of the lines as moving from outside into the area 

bounded by the coil. The ux change stops when the ux density is at its nal, 

unchanging, value. In moving into the coil, the magnetic eld lines must have cut 

through the stationary coil.

Now 휀 = −N
ΔΦ

Δt
becomes

휀 = −NA
ΔB

Δt

because only B is changing. You need to know the rate at which the eld is 

changing with time (or the total change of magnetic ux density and the total 

time over which it happens). 

Another example is the case of two coils face-to-face as in Figure 10(c). One coil 

is connected to a galvanometer alone. The other coil is connected to a circuit 

with a cell, a variable resistor and a switch. In what way will you expect the 

galvanometer reading to change when the switch is closed and remains closed? 

Or when the switch is opened? Or when the switch is closed and the resistance 

in the circuit is varied? 

The general case here is that the induced emf is always the rate of change of  

ux with respect to time. When you have a graph that shows the variation of  

ux linkage with time, then the induced emf will be the gradient of the graph 

(Figure 11). When the ux linkage is not changing, then there is a zero  

induced emf.

magnetic

flux linkage

induced

emf

time

time

▴ Figure 11 The gradient of the graph of 

ux linkage versus time is the induced emf 

in the coil.
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Worked example 3

The graph shows the variation of magnetic flux with time through a 

coil of 500 turns. 

Calculate the magnitude of the emf induced in the coil.

Solution

The change in flux is 2 × 10–3 Wb and this occurs in a time of 4.0 ms. 

The rate of change of flux is the gradient of this graph (as always). As 

the flux is proportional to the time, we can use any corresponding 

values of Φ and t

ΔΦ

Δt
 = 

2 mWb

4 ms
= 0.5 V

Thus the induced emf = 500 × 0.5 V = 250 V.

0 1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

0.0

Φ
/
10

3
W
b

t/10
3
s

Worked example 4

A small cylindrical magnet and an aluminium cylinder (which is non-magnetic)  

of similar shape and mass are dropped from rest down a vertical copper tube of length 1.5 m.

a. Show that the aluminium cylinder will take about 0.5 s to reach the bottom of the tube.

b. The magnet takes 5 s to reach the bottom of the tube. Explain why the objects take  

different times to reach the bottom.

Solutions

a. Use a kinematic equation, e.g. s = ut + 1

2
at

2.   

1.5 = 1

2
× 9.8 × t

2, which gives t = 0.55 s.

b. As the magnet falls, the copper tube experiences a changing magnetic flux, and,  

as a result, an emf is induced in the walls of the tube. This emf results in a current  

in the tube. The current leads to another magnetic field that opposes the motion  

of the magnet by Lenz’s law. There is an upward force on the magnet, so that its  

acceleration is less than the value for free fall. In the case of the aluminium cylinder,  

no current arises and it falls with the usual acceleration.
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Practice questions

3. A conducting ring of radius 3.0 cm is perpendicular to 

a uniform magnetic eld. The magnetic eld strength 

increases from 0.5 T to 2.0 T in a time of 0.25 s. 

a. Calculate the initial magnetic flux through the ring.

b. Calculate the emf induced in the ring.

c. The resistance of the ring is 10 mΩ. Determine the 

total energy transferred to the ring.

4. A square coil of side length 8.0 cm and 250 turns 

moving at a constant velocity v enters a region of 

uniform magnetic eld B perpendicular to the coil.

B

v

The graph shows how the magnetic ux linkage NΦ

through the loop changes with time.

0.9

0.6

N
Φ

/
 W

b

0.3

1.2

1.5

0
0

time/s

0.5 1.50.25 1.25 20.75 1.751

a. Determine the magnitude of the magnetic field B

b. Draw a graph to show the variation of the emf 

induced in the coil with time.

c. Calculate the speed v of the coil.

 The coil makes a complete electric circuit of  

resistance 0.50Ω

d. State the direction of the current induced in the coil:

i. between 0 and 0.25 s 

ii. between 1.75 s and 2.0 s.

e. Determine the total energy transferred to the coil 

between 0 and 2.0 s.

5. A bar magnet falls through a stationary horizontal 

conducting ring. The graph shows how the 

electromotive force (emf) induced in the ring varies 

with time.

0

e
m

f

time /ms

At what time does the magnetic ux through the ring 

have a maximum absolute value?

A 4.0 ms   B   5.0 ms  C   6.0 ms  D   8.0 ms

6. A bar magnet is moved towards a circular coil, with 

its north-seeking pole facing the coil. Seen from the 

le, a clockwise current in the coil is positive and an 

anticlockwise current is negative.

NS

As the magnet approaches the coil, what is the sign 

of the induced current and the nature of the magnetic 

force between the magnet and the coil?

Current in the coil Magnetic force

A. positive attractive

B. positive repulsive

C. negative attractive

D. negative repulsive
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 Global impact of science — Applications of electromagnetic induction

There are many applications of electromagnetic 

induction. They include: 

• the generation of electrical energy

• electromagnetic braking, which is used in large 

commercial road vehicles

• the use of an induction coil to generate the large 

voltages required to provide the spark that ignites the 

fuel–air mixture in a car engine

• the generation of the signal in geophones and metal 

detectors.

In each of these examples, a changing magnetic eld 

leads to the generation of an emf and demonstrates the 

physics developed in this topic.

Alternating current (ac) generators 

From the 1830s onwards, scientists gured out various practical ways of 

generating electricity, rstly for direct current and then for alternating current. 

Alternating current (ac) generators are most commonly used. They consist of 

a coil with many turns; the coil rotates relative to a magnetic eld.

For the moment, imagine that there is a xed coil placed between the poles 

of a U-shaped magnet that stands on a rotating turntable (Figure 12(a)). 

The turntable can turn at dierent angular speeds and the coil can have 

dierent numbers of turns and cross-sectional areas. Only one possibility is 

shown on the diagram. The static coil is connected to a galvanometer or to a 

data logger that registers the emf across the coil. 

The magnetic eld lines are to the right, from N to S, in the diagram. In the 

position shown there is no ux linked to the coil because the plane of the coil 

and the eld line direction are parallel. When the magnet is turned through 

90° (or 270°) from this position, then the eld lines and the coil plane are at 

right angles; now the magnetic ux in the coil is maximum. The emf induced 

(and therefore current) is minimum (0) and vice-versa. 

When the turntable and the magnet are made to turn continuously, then 

the coil moves from a zero ux to a maximum ux position twice in every 

cycle. The maximum ux is reversing in direction relative to the coil as the 

magnetrotates.

Figure 12(b) shows the changes in ux linkage during one cycle when the 

turntable rotates at a constant angular speed. The ux linkage graph is a sine 

curve. The emf induced in the coil is equal to the negative rate of change 

of ux linkage. This is proportional to the gradient of the ux linkage–time 

graph. When the ux linkage varies most rapidly (near the zero positions), 

the magnitude of the emf is at its greatest. When the ux linkage is at its 

maximum value (but the gradient of the graph is zero), the emf is zero. The 

induced emf graph is a negative cosinecurve.

Changing the speed of the turntable changes both the frequency and the 

amplitude of the emf. Increasing the number of turns or increasing the area 

of the coil increases the amplitude of the emf but leaves the frequency 

unchanged because the turntable speed has not changed. 

However, while some ac generators have a rotating magnetic eld, others 

have xed magnets and a rotating coil (Figure 13). The principle is the same: 

the direction in which charge ows in the coil varies with the ux linking it 

and therefore with its instantaneous orientation relative to the magnetic eld.

(a)

(b)

induced
emf

time

flux

linkage θ  or time

magnet

fixed coil

G

▴ Figure 12 (a) The coil is stationary and the 

eld rotates around it in this simple ac generator. 

(b) The relationships between ux linkage and 

time, and induced emf and time for the generator.

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



A
H
L

D. Fields

575

ac generator

slip rings

brush

V

(a)

(b)

(c)

(d)

▴ Figure 13 This time the coil rotates in the 

static magnetic eld. A slip-ring arrangement 

is required to allow charge to leave the coil.

Figure 13 (a) shows a rotating coil with a xed magnet. One half of the single-turn 

coil is drawn with a heavier line than the other half to emphasize the coil rotation. 

The magnetic eld direction is always from le to right. 

When the le-hand side of the coil is moving upwards as shown in Figure 13(b), 

the direction of conventional current in this wire is away from you towards the 

back of the coil. The right-hand wire is moving downwards at the same instant 

and the current in this wire is towards you. Charge ows clockwise (looking from 

above) in the coil and out into the external circuit. 

One quarter of a cycle later (Figure 13(c)) and the coil is vertical with both sides 

moving parallel to the eld lines for an instant. In this position, there is no emf 

because there is zero rate of change of ux linkage.

A further quarter cycle later (Figure 13(d)) the sides of the coil have now 

exchanged positions compared with Figure 13(b). The way the coil is drawn 

reminds you of this. Conventional current is clockwise as far as we are concerned, 

but from the point of view of the coil, the current in it is in the opposite direction. 

If wires were to be permanently connected between the coil and the meter in 

Figure 13(a), they would quickly become twisted. Energy needs to be extracted 

from the generator without this happening. So slip rings are used. The ends of the 

coil terminate in two rings of metal that rotate with the coil about the same axis. 

Two stationary brushes, connected to the external part of the circuit, press onto 

the rotating rings and charge ows out into the circuit through these connections.

The essential requirements for an ac generator are therefore: 

• a rotating coil 

• a magnetic eld 

• relative movement between the coil and the magnetic eld 

• a suitable connection to the static circuit outside the generator.

The phrase “rate of change” is one that occurs throughout 

physics. It is short for “rate of change with respect to time” 

because the word “rate” has the implication of “per unit 

time” in its meaning. The phrase has physical meanings in 

conceptual, graphical and mathematical terms. 

The idea of rate of change occurs early — and 

extensively — in Theme A of this course where the link 

between displacement, velocity and acceleration is in 

terms of rates of change. For example, velocity is the rate 

of change of displacement, or, in mathematical terms,  

v = 
Δx

Δt
. Similarly, acceleration is “rate of the rate of 

change” of displacement:

a = 
Δv

Δt
 = 

Δ

Δt
(Δx

Δt
)

You may recognize this as either the expression 
d2

x

dt
2

 or as 

the gradient of a velocity–time graph.

Theme E also contains an important rate of change where 

we will consider the activity of radioactive material. This 

is the rate of decay of nuclei and turns out also to be 

proportional to the number of undecayed nuclei. Finally, 

there is the link between power and energy where power 

is the rate of energy transfer per unit time.

What other rates of change can you identify in science?

Faraday’s law of induction includes a rate of change. Which other areas of physics relate to 
rates of change? (NOS)
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Commercial electrical generators are more sophisticated than 

our simple model and an internet search will allow you to see 

the variety of dierent types of ac generator. Figure 14 shows a 

generator of induced emf for the lamp on a bicycle (a dynamo). 

This resembles our original rotating-magnet arrangement. 

The electrical power taken from a generator must be equal to 

the mechanical power that is given to it, ignoring friction and 

electrical resistance losses in the generator. Returning to the 

simple rod (on page 562) of length L moving at constant speed 

v through a magnetic eld B, we know the induced emf 휀 = vLB

(the rod acting as a generator) and the force acting on the rod 

F = BIL (the rod acting as a motor). When the ends of the rod 

are not connected to a complete circuit, then there will be an 

induced emf but no induced current. Without this current there 

is no motor eect, and no work needs to be done to overcome 

the force acting on therod. 

F cannot be zero; otherwise the generation of energy 

contravenes conservation of energy.

This is easily demonstrated using a bicycle dynamo like 

the one in Figure 14. Here a permanent magnet rotates 

in the gap inside a coil. The magnet is driven by a spindle 

connected to a wheel that is turned by the bicycle tyre 

as the two are pressed together. When the lamp is 

switched o so that no induced current is produced, the 

dynamo is relatively easy to turn. (remember that there will 

still be an induced emf across the terminals of the coil.) 

When the dynamo supplies current and lights the lamp, 

more eort is required to rotate the dynamo at the same 

speed since an opposing magnetic force will acts on the 

current in the coil. This is Lenz’s law in action.

Global impact of science — Generators in real life

coil

rotating magnet

iron core

to bicycle lamp

S N

▴ Figure 14 A bicycle dynamo. 

Faraday’s law can be used to model a simple ac generator. Any 

current in the generator coils is ignored.

The coil has an average length l and an average width of m with N

turns. The average area of the coil A is ml

When the normal to the coil plane is at an angle  to the eld, the 

ux linkage through the coil is N × BAcos . The coil spins at a 

constant angular speed 휔. In time t the angle rotated by the coil is 

( = 휔t). The graph of variation of ux linkage with time has a cosine 

shape with a maximum value of +NBA at t = 0 and a minimum value 

of –NBA when the coil is halfway through one cycle. 

The value of the induced emf at any instant is the negative rate of 

change of the ux linkage and is the negative gradient of the ux 

linkage–time graph. The induced emf is 휀 = NBA휔sin 휔t, which has 

maximum and minimum values for the emf of: 휀 = ±NBA휔.

A supply in which the current and voltage vary as a sine wave is an 

alternating supply. For everyday purposes we use the frequency f 

rather than 휔, where f = 
휔

2π

, the same as in Topic C.1.

Modelling an alternating current (ac) generator

(a)

θ
B

l

m

ω

(b)

ra
te
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Φ

time

▸ Figure 15 The arrangement for the 

proof of the ac generator equation.
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Worked example 6 shows the eect on the emf of changing the angular speed of 

the coil (without changing any other feature of the coil or eld). When the angular 

speed of the coil is increased (this is 휔 in the equations), then: 

• the coil will take a shorter time to complete one cycle; there will be more 

cycles every second and hence the frequency increases

• the time between maximum and minimum ux linkage will decrease and 

therefore (as the ux linkage is constant) the rate of change increases and 

hence the peak emf increases. 

Other ways to increase the output of the emf, but without changing angular 

speed and frequency, include: increasing the magnetic ux density, increasing 

the number of turns on the rotating coil, or increasing the coil area.

Worked example 5

A rectangular coil of area 6.0 × 10−2 m2 and 500 turns is 

placed in a uniform magnetic field of magnitude 53 mT. The 

coil rotates at a constant angular speed with a period of 

0.04 s. At t = 0, the coil is perpendicular to the field.

a. Calculate the average emf induced in the coil between  

t = 0 and t = 0.02 s.

The maximum instantaneous emf induced in the coil is 250 V.

b. Draw a graph to show how the induced emf varies with time during the first complete rotation of the coil.

Solutions

a. In a time of 0.02 s the coil makes one half of a complete revolution, and the flux through the coil changes from + BA

to −BA  ΔΦ = −BA − (+BA) = −2BA  Hence the average emf is  

휀 = −
NΔΦ

Δt
 = − 

−500 × 2 × 53 × 10−3 × 6.0 × 10−2

0.020
= 160 V.

b. At t = 0, the flux linkage through the coil is a maximum and hence the 

induced emf is zero. The emf will be a maximum at t = 0.01 s, when the 

coil is parallel to the magnetic field, and a minimum at t = 0.03 s
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Worked example 6

A coil rotates at a constant rate in a uniform magnetic field. The 

variation of the emf E with angle θ between the coil and the field 

direction is shown.

Copy the graph below and, on the same axes, add the emf that will  

be produced when the rate of rotation of the coil is doubled. Explain 

your answer.

Solution

The rate of change of the flux linkage will double, so the magnitude of 

the peak emf will also double.

This is because Faraday’s law states that the induced emf is 

proportional to the rate of change of flux linkage. However, the coil 

now rotates in half the time, so the time for one cycle will be halved. 

The new graph is drawn using the same scale.

θ/degree
0

0

E
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0
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Electricity generation oen involves a chain of energy 

transfers. Wind turbines transfer the kinetic energy of the 

wind mass to rotational kinetic energy in the turbine and 

then to electrical energy. Nuclear power stations have 

a complex chain involving mass–energy conversions 

leading to thermal energy in steam followed by turbine 

and generator stages. The nal electrical energy oen 

undergoes transformation from one alternating voltage to 

another. 

All these steps involve ineciency. The balance of input 

energy to output energy was shown visually using the 

Sankey diagrams of Topic A.3. The meaning of eciency 

is mentioned several times in this course. Thermodynamic 

eciency (Topic B.4) also has a part to play in the 

transformations.

Select a couple of generation methods and research the 

eciency of the various stages and the overall eciency 

of eachmethod. Present your ndings using Sankey 

diagrams (page 126).

How is the efficiency of electricity generation dependent on the source of energy?

The current and voltage of an alternating supply change 

constantly throughout one cycle. Measuring these 

quantities is not straightforward because, with positive 

and negative half-cycles, the average values for current or 

voltage over one cycle are zero. 

One way around this problem is to use the power 

supplied to a resistance R connected to the generator. 

The instantaneous power dissipated in the resistance is 

I2R, where I is the instantaneous current. 

Figure 16 shows both the current–time graph and the 

power–time graph with the same time axes for the 

alternating current and power dissipated in aresistor.

Notice the dierence between the two: 

• The power–time graph is always positive (which we 

would expect because the power is I2R and a number 

squared is always positive). 

• The power graph cycles at twice the frequency of 

thecurrent. 

To see why the power cycles twice in one cycle of the 

current, suppose that the time period of the ac generator 

is very large, taking 10 s to turn once through one cycle. 

Watch a lament lamp supplied with an ac supply of such 

a low frequency and you will see the lamp ash on and o 

twice in each cycle. The lamp is on when the emf is near 

its maximum (positive) and minimum (negative) values. 

When we look at a lament lamp powered by the ac 

mains, persistence of vision prevents us seeing its ashing 

like this because it is switched on and o at 100 or 120 

times per second (twice the normal mains frequency of 

50 or 60 Hz). Additionally, the time between “ashes” is 

so short that the lament does not have sucient time to 

cool down and is emitting light for a substantial part of 

thecycle.

Models — Measuring alternating currents and voltages
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▴ Figure 16 The relationships between current and 

power with time for an alternating current.
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Alternating values are measured using the equivalent direct current that 

delivers the same power as the alternating current over one cycle.

A lamp supplied from a dc supply would have the same brightness as the average 

brightness of our ac lamp ashing on and o twice a cycle. This equivalent dc 

current gives the average value of the power in the power–time graph. Because 

the average value of a sin2 graph is halfway between the peak and zero values 

and the curve is symmetrical about this line (shown on Figure 16(b)), the areas 

above and below the average line are the same.

The mean power that an ac circuit supplies is 
1

2
Ip
2 R, where Ip is the peak value of 

the current. The dc current required to give this power is  1
2

Ip
2 , which is

√√2

2
Ip

This value is known as the root mean square (rms) current: Irms =

Ip

√√2
= 

Ip

1.414...

In a similar way, Vrms =

Vp

√√2

The mean power P dissipated in a resistance is Irms Vrms =

Ip

√√ 2
×

Vp

√√ 2
=

Ip Vp

2

with the usual equivalents: P = IrmsVrms = I 2
rmsR = 

V 2
rms

R
Many countries use alternating current for their electrical supply to homes and 

industry. Dierent countries have made diering decisions about the potential 

dierences and frequencies at which they transmit and use electrical energy. 

Thus, in some parts of the world, the supply voltage is about 100 V; in others it is 

roughly 250 V. Likewise, frequencies are usually either 50 Hz or 60 Hz.

The frequency at which the 

power cycles being double that 

of the current is analogous to the 

comparison between energy and 

displacement variation in simple 

harmonic motion. In Topic C.1 you 

saw that the time for one energy 

cycle (kinetic or potential) was half 

that of the shm time period itself.

Worked example 7

The diagram below shows the variation with time t of  

the emf E generated in a rotating coil.

Calculate:

a. the rms value of the emf

b. the frequency of rotation of the coil.

Solutions

a. The peak value of the emf is 360 V, so the rms value is
360

√√2
= 255 V.

b. f =
1 

T
 = 

1 

0.02
= 50 Hz

t/ms
0

360

360

0

E/V

10 30

Worked example 8

A resistor is connected in series with an alternating current supply of negligible internal  

resistance. The peak value of the supply voltage is 140 V and the peak value of the  

current in the resistor is 9.5 A. Calculate the average power dissipation in the resistor.

Solution

The average power =
peak current × peak pd

2
=

1

2
× 140 × 9.5 = 670 W
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Mutual induction

There is an alternative way to induce an 

emf –  by changing the magnetic ux 

density near a conductor. This changes 

the ux linkage.

When the current in A (Figure 17) is 

switched on or the variable resistance 

is changed, the magnetic ux density 

due to solenoid A takes time to reach 

a steady value. Field lines link the B 

solenoid, giving a changing ux in B 

during this time. An emf is induced 

in solenoid B giving a current and a 

magnetic eld that opposes the eld increase in A. This is mutual induction and 

occurs when an emf is induced in one conductor due to variations in ux linkage 

in another.

When the current in A is steady, the ux linkage to B is constant and the emf in 

B is zero. 

When the current in A is switched o, the reverse occurs. Circuit B attempts to 

support the A eld. This time the eld due to solenoid B must be in the same 

direction as the (collapsing) eld of solenoid A.

Self-induction

Induced emfs can arise in single conductors, including any wire, coil or solenoid 

which links its own ux; the eect is known as self-induction. Again, this is easiest 

to see in a coil arrangement (Figure 20).

When the current in the coil is changing, then the ux linked inside the coil is also 

changing. As 휀 = −N
ΔΦ

Δt
, an additional induced emf appears in the conductor. 

The negative sign is important here. The induced emf (by Lenz’s law) will attempt 

to prevent the change of current. Therefore, when the current supplied to the coil 

is increasing, the induced current will oppose the change by trying to reduce the 

current. When the current supplied is decreasing, the induced current attempts 

to increase it. When the supplied current is constant, no induced emf occurs. The 

induced emf is a back emf because it is in the reverse direction to the forward 

imposed pd across the conductor.

Practice questions

7. A resistor dissipates a power of 3.6 W when the direct 

current in it is 0.30 A. The resistor is connected in 

an alternating current (ac) circuit and the root mean 

square potential dierence across it is 6.0 V. 

 For the resistor in the ac circuit, determine:

a. the average power dissipated

b. the rms current

c. the peak current.

8. The peak current in a 10Ω resistor connected to an ac 

power supply is 2.5 A. Calculate:

a. the average power dissipated in the resistor

b. the rms voltage across the resistor.

9. A bicycle dynamo (see Figure 14) drives a load of a 

constant resistance. The dynamo outputs a power of 

3.0 W at a particular bicycle speed. What is the power 

output of the dynamo when the speed of the bicycle 

is doubled?

A 3.0 W   B   6.0 W  C   12 W  D   24 W

▴ Figure 18 A metal detector works by 

having two sets of coils, a transmitter and 

a receiver. Nearby metal objects aect the 

mutual inductance between the coils.

▴ Figure 19 Wireless charging is an 

application of mutual induction. When 

objects are charged wirelessly, there is 

a circuit with a coil in the charging pad 

(equivalent to circuit A in Figure 17) and a 

second circuit with a coil in the device that is 

being charged (circuit B).

▴ Figure 20 A coil links its own ux and so 

there is a self-induction eect.

G

BA

▴ Figure 17 Mutual induction between 

two coils. The le-hand circuit has a 

variable resistor, a cell and a switch. The 

right-hand circuit has only a sensitive 

ammeter G.
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signal
generator

1.0 kΩ

VC VR

▴ Figure 21 A circuit to investigate self-inductance.

A coil and a resistor were connected in series to a signal 

generator. An oscilloscope was used to measure the 

peak-to-peak voltage across the coil and the resistor. 

The oscilloscope also provided a measurement of the 

frequency of the signal generator.

The data are shown in the table.

The voltage across the resistor can be used to determine 

the peak-to-peak current in the circuit:

Ip = 
V R

1000

The “eective resistance” of the coil can then be found 

using

R = 
V C

Ipk

 = 1000 
V C

V R

This eective resistance should increase with frequency 

due to the eects of self-inductance. (The technical term 

for this eective resistance is “reactance”.)

• Tabulate values of 
V C

V R

• Calculate values of the uncertainty in your values  

of
V C

V R

• Plot a graph of 
V C

V R

 against f. Include error bars on 

your graph.

• Find the gradient of your graph.

• Using maximum and minimum gradients, nd the 

uncertainty in your values of the gradient. Express this 

as a percentage uncertainty.

f / kHz
VR / V

(±0.004 V)

Vc  / V

(±0.04 V)

12.72 0.112 0.83

23.36 0.086 1.08

31.42 0.080 1.32

43.99 0.076 1.78

52.44 0.076 2.04

62.85 0.072 2.44

73.22 0.068 2.72

83.10 0.068 3.04

91.34 0.066 3.24

103.3 0.064 3.56

112.7 0.062 3.68

128.6 0.060 4.04

Data-based questions

Worked example 9

Two stationary coils X and Y are parallel to each other and have a common axis. 

There is a decreasing current in coil X.

a. Explain the direction of the current induced in Y relative to that in X. 

b. Explain the nature of the magnetic force between the coils.

Solutions
a. There is a magnetic flux through coil Y caused by the current in X. This flux is  

decreasing, so by Lenz’s law, the current induced in Y will have a direction so  

as to oppose this change and produce a magnetic field with the same direction  

as that of coil X. Therefore, the current in Y has the same direction as the current in X.

b. Magnetic fields from X and Y can be modelled as a pair of parallel bar magnets with  

opposite poles facing each other. The force is therefore attractive.

X Y
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Devices called transformers are used to change 

alternating supplies from one pd to another. Some 

transformers can convert voltages at powers of many 

megawatts. Others are small devices used to power 

domestic devices that need a low-voltage supply. 

The transformer is an example of induction in action.

A transformer consists of three parts: 

• an input (or primary) coil 

• an output (or secondary) coil 

• an iron core on which both coils are wound. 

Figure 22 shows a schematic diagram of a transformer (a) 

and a real-life transformer (b). 

In a transformer:

• Alternating current is supplied to the primary coil. 

• A magnetic eld, produced by the current in the 

primary coil, links around a core made from a 

magnetic material, usually so iron.

• Because the primary current is alternating, the 

magnetic eld in the core also reverses its direction. 

It goes rst in one direction around the core for half a 

cycle and then reverses its direction for the remainder 

of the cycle. The ux in the core is constantly changing.

• This changing ux also links the secondary coil. 

• Because the secondary coil has a changing eld 

inside it, an induced alternating emf appears at its 

terminals. When the coil is connected to an external 

load, charge ows in the secondary circuit. 

• Energy transfers from the primary to the secondary  

circuit through the magnetic eld.

An alternating pd with a peak value of Vp is applied to 

the primary coil leading to a ux of Φ in the core. The ux 

linked to the secondary coil of Ns turns is therefore Ns × Φ

and the induced emf in the secondary coil is

Vs = −Ns × 
ΔΦ

Δt

The ux produced by the primary coil links itself through 

self-induction. This gives rise to an emf:

휀p = −Np × 
ΔΦ

Δt

Worked example 10

A coil and a resistor are connected in series. The coil is made 

of wire of negligible resistance. There is a common current 

I through the coil and the resistor. The potential difference 

across the resistor is VR and the potential difference across the 

entire connection is Vtot

Compare Vtot and VR when the current I is:

a. constant

b. increasing

c. decreasing.

Global impact of science — The transformer as an example of induction

VR

Vtot

I

Solutions

a. The magnetic field due to the current in the coil is 

constant and so is the magnetic flux linked by the coil. 

There is no emf induced in the coil and therefore no 

potential difference appears across it. Vtot = VR.

b. The coil links its own increasing flux, so, by Faraday’s 

law, there will be a self-induced emf in the coil, 

directed so as to oppose the increase in the current. 

The coil’s emf results in a decrease of the potential as 

we move across the coil in the direction of the current.  

The potential decreases once again in the resistor, and  

since both changes have the same direction,  

we have Vtot > VR.

c. The situation is reversed compared with b. The 

direction of the self-induced emf is such that it 

opposes the decrease in the current, so we encounter 

a positive change (increase) in the potential across 

the coil and, later on, a decrease in the resistor. The 

coil’s potential difference has the opposite sign to the 

resistor’s potential difference, so Vtot < VR.
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where 휀p and Np are the induced emf and the number 

of turns in the primary coil. A simple theory leads to the 

equation
Vp

Vs

 = 
Np

Ns

where Vp is the pd across the primary coil.

This transformer rule relates the ratio of the number of 

coil turns to the ratio of the input and output voltages: 

• When Ns > Np, Vs > Vp. This is known as a step-up 

transformer. 

• When Ns < Np, Vs < Vp. This is known as a step-down 

transformer.

• The terms “step-up” and “step-down” refer to 

changes in the alternating voltages.

This theory, assuming no energy loss in the transformer, 

suggests that the energy entering the primary is equal 

to the energy leaving the secondary, so Ip × Vp = Is ×

Vs where Ip and Is are the currents in the primary and 

secondary circuits, respectively. 

Many transformers have an eciency that is close to 

100% as energy losses can be reduced by good design. 

The eciency of a transformer is equal to

energy supplied by the secondary coil

energy supplied to the primary coil
 × 100%

voltage Vs

secondary

current

secondary

winding

Ns turns

laminations
primary

winding

Np turns

primary

Vp

Ip

ls

primary

current

core

magnetic flux, Φ

(a) (b)

▴ Figure 22 The ac transformer.

High transmission voltages lead to better eciency 

because the energy loss in a transmission cable is 

equal to I2R and halving the current means a four-fold 

reduction in resistive losses. This argument is valid for 

ac and dc. However, historically, the transformation 

between voltages was easier using ac. As the physics 

and engineering of electrical transmission improve, 

it becomes advantageous to use high-voltage direct-

current transmission (HVDC). The Baltic Cable, which runs 

between Germany and Sweden, operates at a voltage 

of 450 kV. Since this voltage is almost 2000 times higher 

than the 230 V mains voltage in those countries, the 

energy loss is reduced by almost 4 million times when the 

cable is operated at 450 kV compared with 230 V.

Although the cost of the equipment to convert between 

two dc voltages is greater than the cost of a transformer, 

there are other factors in the equation. Countries use 

dierent supply frequencies, and this is a major problem 

when feeding electricity from one country into the grid of 

another. Using undersea cables over long distances with 

ac also involves larger currents than might be expected as 

the cables have self-induction eects. Additional currents 

are required to move the charge every cycle. 

Governments work together to maintain electricity 

supplies. There are many examples of electrical links 

between countries so that one nation can supply energy 

to another during times of shortage. There are short-term 

uctuations in the demand for electricity, and energy is fed 

from one country to another at one time of day and then 

fed back again later. Examples include electrical links from 

the Netherlands to the UK and the HVDC link between 

Italy and Greece. 

HVDC and international collaboration

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



584

Theme D      End-of-theme questions

Theme D — End-of-theme questions
1. A planet is in a circular orbit around a star. The speed of 

the planet is constant. The following data are given:

 Mass of planet = 8.0 × 1024 kg 

 Mass of star = 3.2 × 1030 kg 

 Distance from the star to the planet = 4.4 × 1010 m

a. Explain why a centripetal force is needed for the 

planet to be in a circular orbit.

b. Calculate the value of the centripetal force.

c. A spacecra is to be launched from the surface 

of the planet to escape from the star system. The 

radius of the planet is 9.1 × 103 km.

 i. Show that the gravitational potential due to the 

planet and the star at the surface of the planet is 

about −5 × 109 J kg−1

 ii. Estimate the escape speed of the spacecra 

from the planet–star system.

2. a.     The moon Phobos moves around the planet Mars in 

a circular orbit.

 i. Outline the origin of the force that acts 

on Phobos.

 ii. Outline why this force does no work 

on Phobos.

b. The orbital period T of a moon orbiting a planet of 

mass M is given by 
R

3

T
2  = kM, where R is the average 

distance between the centre of the planet and the 

centre of the moon.

 i. Show that k = 
G

4 π
2

 ii. The following data for the Mars–Phobos system 

and the Earth–Moon system are available:

    Mass of Earth = 5.97 × 1024 kg

     The Earth–Moon distance is 41 times the 

Mars–Phobos distance.

     The orbital period of the Moon is 86 times 

the orbital period of Phobos.

  Calculate, in kg, the mass of Mars.

c. The graph shows the variation of the gravitational 

potential between Earth and the Moon with 

distance from the centre of Earth. The distance 

from the Earth is expressed as a fraction of the 

total distance between the centre of Earth and the 

centre of the Moon.

0 0.2 0.4 0.6 0.8 1.0 1.2
0

V
Moon

Earth

 Determine, using the graph, the mass of the Moon.

3. An electron is placed at a distance of 0.40 m from a 

xed point charge of –6.0 mC.

0.40m

electron–6.0mC

a. Show that the electric eld strength due to the 

point charge at the position of the electron is 

3.4 × 108 N C−1

b. i. Calculate the magnitude of the initial 

acceleration of the electron.

 ii. Describe the subsequent motion of the 

electron.
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D. End-of-theme questions
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4. A proton is moving in a region of uniform magnetic 

eld. The magnetic eld is directed into the plane of 

the paper. The arrow shows the velocity of the proton 

at one instant and the dotted circle gives the path 

followed by the proton.

proton

a. Explain why the path of the proton is a circle.

b. The speed of the proton is 2.0 × 106 m s–1 and the 

magnetic eld strength B is 0.35 T.

 i. Show that the radius of the path is about 6 cm.

 ii. Calculate the time for one complete revolution.

c. Explain why the kinetic energy of the proton is 

constant.

5. A square loop of side 5.0 cm enters a region of uniform 

magnetic eld at t = 0. The loop exits the region of 

magnetic eld at t = 3.5 s. The magnetic eld strength 

is 0.94 T and is directed into the plane of the paper. The 

magnetic eld extends over a length 65 cm. The speed 

of the loop is constant.

65 cm

(diagram  not to scale)
t = 0 t = 3.5 s

5.0 cm

a. Show that the speed of the loop is 20 cm s−1

b. Sketch a graph to show the variation with time of:

 i. the magnetic ux linkage Φ in the loop.

 ii. the magnitude of the emf induced in the loop.

c. i. There are 85 turns of wire in the loop. Calculate 

the maximum induced emf in the loop.

 ii. The resistance of the loop is 2.4 Ω. Calculate 

the magnitude of the magnetic force on the 

loop as it enters the region of magnetic eld.

d. i. Show that the energy dissipated in the loop 

from t = 0 to t = 3.5 s is 0.13 J.

 ii. The mass of the wire is 18 g. The specic heat 

capacity of copper is 385 J kg−1 k−1. Estimate the 

increase in temperature of the wire.

6. A conducting sphere has radius 48 cm. The electric 

potential on the surface of the sphere is 3.4 × 105 V.

a. Show that the charge on the surface of the sphere 

is +18 μC.

b. The sphere is connected by a long conducting wire 

to a second conducting sphere of radius 24 cm.  

The second sphere is initially uncharged.

long conductive wire

 i. Describe, in terms of electron ow, how the 

smaller sphere becomes charged.

 ii. Predict the charge on each sphere.

7. A small magnet is dropped from rest above a stationary 

horizontal conducting ring. The south (S) pole of the 

magnet is upwards.

N

magnet

Diagram 1:

side view

Diagram 2: 

view from above

S

S

 While the magnet is moving towards the ring:

a. State why the magnetic ux in the ring is increasing.

b. Sketch, using an arrow on Diagram 2, the direction 

of the induced current in the ring.

c. Deduce the direction of the magnetic force on 

the magnet.
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The scope of Theme E ranges from the smallest 

fundamental nuclear particles to the largest structures 

visible in the night sky. Scientists have been fascinated 

by these largest and smallest objects in the Universe 

throughout history.

All three of the overarching concepts of physics merge 

in Theme E. Nuclear material is in the grip of three 

interactions: strong, electromagnetic, and weak. These 

give rise to the forces that act between fundamental 

particles. When energy is sufficient to overcome the 

attractive forces then nuclear changes can occur. 

Through the centuries, scientists have observed matter 

on earth and the night sky above with greater and greater 

magnifications. Falsification of theories and subsequent 

paradigm shifts have been driven by discoveries about 

atoms and the Universe.

The Greek philosophers Leucippus and Democritus in the 

fifth century BCE were the first atomists to suggest that 

atoms were indivisible. This idea remained in scientific 

thought up until the 19th century. At the turn of the 

20th century, arguments about the nature of matter still 

persisted. Ernst Mach died in 1916 without acknowledging 

the existence of the modern atom; Boltzmann had already 

embraced the idea and had argued the point with him in 

1897 (Topic B.3). But, despite Mach’s reluctance, physics 

was about to change forever (Topics A.5 and E.1) with 

Einstein’s application of mechanics to Brownian motion in 

1905. 

The global impact of the new nuclear physics was immense 

and continues to this day. New sources of energy have 

been discovered and these can be used for good or for 

ill. New methods for medical diagnosis and treatments for 

illness have been developed involving nuclear science. 

Radioactive tracers give us insight into the world of the 

invisible. The pursuit of science has ethical consequences. 

Scientists must assess the risks of their work, weighing these 

risks against benefits. They should aim to do no harm.

Our starting point for this theme is that atoms are 

composed of a nucleus and electrons. The nucleus consists 

of nucleons: protons and neutrons. Protons have positive 

charge and neutrons, as the name suggests, have  no 

charge. Outside the nucleus are the electrons. The charge 

on one proton and the charge on one electron have the 

same magnitude but opposite sign. So, your knowledge of 

the electric forces described in Theme D will be important. 

Early theories of the simplest atoms were based firmly on 

classical physics. Your knowledge of the mechanics of 

Theme A will be important too. Later theories of the atom 

involve wave mechanics which relies heavily on concepts 

from Theme C.
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Our understanding of atomic and nuclear structure has 

come a long way since the work of J J Thomson and 

his discovery of the electron 130 years ago. We now 

understand that the atom consists of a nucleus at the centre 

of a cloud of electrons. Originally one, and then two, types 

of nucleon were thought to exist. These were the proton and 

neutron. Physics now has a Standard Model that describes 

the composition of the proton, neutron and other nuclear 

particles using more fundamental entities. This model was 

developed during the second half of the 20th century by 

many particle physicists building on data from high-energy 

colliders such as those at CERN and Brookhaven. Work still 

continues to refine the features of the model.

The results and methods of early Greek thinkers are in 

strong contrast to those of present-day nuclear scientists. 

What part does evidence play in modern science? This is an 

essential question for you throughout this course. In Theme 

E, you focus on how scientific evidence leads to models of 

the atom and the nucleus. Atoms are invisible to the naked 

eye. We need powerful instruments to image the electron 

distributions that exist outside the nucleus. Accelerators 

use immense energies to help us infer the properties of the 

nucleus and the forces that act within it.

Early philosophical world views, such as those of the 

Ancient Greeks, came in various perspectives. These 

sometimes focused on the simplest possible explanation. 

Some Greek thinkers, for example, described matter as 

being made up of the “elements” earth, air, fire and water. 

These ideas are a long way from the present list of stable 

and unstable elements that you will meet in Topic E.3. 

We should not dismiss earlier ideas simply because 

they are old. Scientific method changes with time. The 

accepted views of both cosmology and nuclear science 

have altered throughout the past 150 years. Sometimes 

scientists resisted change for reasons that were not 

scientific but were based on dogma and bias. 

Modern research into the nucleus is carried out by large 

teams of scientists, usually drawn from all parts of the 

world. Their work demands large, powerful and expensive 

machines that collect large amounts of data. The analysis of 

these data then requires powerful computers and the results 

of the analysis — usually statistical in nature — allow scientists 

to infer the presence of fundamental particles. These 

conclusions are submitted to critical peer review before 

being accepted into mainstream scientific understanding.

What is the current understanding of the nature of an atom?

In what ways are previous models of the atom still valid despite recent advances in understanding?

What is the role of evidence in the development of models of the atom? 

E.1  Structure of the atom

In this topic, you will learn about: 

A
H

L• the Geiger–Marsden–Rutherford experiment and the 

discovery of the nucleus

• nuclear notation

• emission and absorption spectra and how they 

provide evidence for discrete atomic energy levels

• photons and how they are released during atomic 

transitions

• the relationship between a difference in energy levels 

and photon frequency

• the emission and absorption of photons during 

atomic transitions

• the relationship between the nuclear radius and 

nucleon number 

• deviations from Rutherford scattering at high  

energies

• the distance of closest approach in scattering 

experiments

• the Bohr model for hydrogen 

• quantized energy, quantized angular momentum, 

and orbits in the Bohr model.

▴ Figure 1 In 1989, the company IBM demonstrated new technology 

that enabled them to place individual atoms for the rst time. This 

picture shows 35 xenon atoms spelling the name of the company.
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Introduction 
In 1858, the German physicist Julius Plücker found that electric discharges 

through a low-pressure gas caused a fluorescent glow on the walls of the 

glass container that held the gas. He was able to make the glowing area move 

using an electromagnet. By 1869, Johann Hittorf, one of Plücker’s co-workers 

had identified “cathode rays”. These were produced when electric charge 

flowed through a low-pressure gas. Eight years later, Joseph J Thomson, a British 

scientist, found that these cathode rays were deflected by both electric and 

magnetic fields, and must therefore be charged.

Thomson eventually concluded that the cathode rays were beams of negatively 

charged particles coming from atoms. Atoms have no overall charge, so this 

meant that some other part of the atom must be positive. 

Figure 2 shows the model that Thomson suggested. It is called the “plum 

pudding” or “current bun” model of the atom. The electrons were thought to be 

buried in a diffuse cloud of positive charge. 

Thomson’s model was the first suggestion that atoms have an internal structure. 

He had shown that objects smaller than an atom make up the most elementary 

building blocks of matter. His research prompted work by others. Since then, the 

attempts to discover these building blocks at ever-decreasing scales have been 

an important part of physics research.

It is easy to dismiss the early ideas of the elements being 

earth, air, fire and water. These ideas explained why 

rain falls (so it could reach its natural place in the rivers 

and seas) and why a stone would fall and sink (because 

its natural place was with Earth). Fire on the other hand 

rose upwards. Burning wood released fire and left ash 

behind — wood must therefore be made of the elements 

earth and fire.

Today, the purposes of science remain the same — to 

provide explanations of the world. However, the tests of 

knowledge have changed. The ancient Greeks valued 

deductive logic; modern scientists value experimental 

evidence.

How can we determine the relative merits of these ways of 

justifying knowledge?

Deductive logic vs experimental evidence

▴ Figure 2 Thomson’s plum-pudding 

model.

spherical cloud of

positive charge

+
+

++

+

+

+ +

+

+

+

electron

Rutherford’s and Bohr’s models of the atom are described 

in this Topic. Scientists use models to describe or explain 

things because a full explanation or description can be 

too complicated. The topic of atomic structure could 

easily ll this entire book and, even then, be incomplete 

and approximate.

It can be tempting to dismiss a model as being wrong 

or simplistic. The value of a model is whether it provides 

a useful way of thinking about a subject. The ancient 

Greeks’ model of the atom as an indivisible blob works 

well when considering particles of gas bouncing o walls 

(see Topic B.3) and it was sucient to enable chemists to 

develop the periodic table.

Models

▴ Figure 3 A ight simulator models ying. Despite its 

limitations, it is a useful tool for pilots to practise their ying.
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Nuclear notation 

An atom is composed of a nucleus and electrons. The nucleus consists of 

nucleons, that is: protons and neutrons. A proton has a positive charge. A 

neutron, as its name suggests, has no charge. Outside the nucleus are the 

electrons. The charge on one proton and the charge on one electron are known 

to have the same magnitude but with opposite signs of electric charge. So, the 

numbers of protons and electrons in an uncharged atom must be equal to give an 

overall neutral charge. 

A hydrogen atom — the simplest atom of all — consists of one electron and one 

proton. The proton is the nucleus of the atom; the electron is outside the nucleus. 

All atoms have a series of energy states determined by a probability wave that 

instantaneously describes the electron (and therefore the atom as a whole).

The nucleus of every other atom contains an additional particle: the neutron. 

Named for its charge-neutral properties, the neutron is a form of nuclear 

packing that allows protons to co-exist with each other in the confined volume 

of the nucleus. 

The numbers of protons, electrons and neutrons in a particular atom are 

important for the properties of the nucleus. The terms used are:

• Proton number Z — this is the number of protons in a nucleus. It is unique 

to the chemical element that the atom represents. It is also the number 

of electrons in a neutral, uncharged atom of the element. Historically, the 

proton number was called the atomic number. The proton number is also the 

number of a chemical element on the periodic table.

• Nucleon number A — this is the total number of protons plus neutrons in the 

nucleus. Historically, this was called the mass number.

• Neutron number N — this is less frequently used than A and Z but its name 

speaks for itself as the number of neutrons in the nucleus.

Algebraically: A = Z + N 

There is a shorthand notation to indicate the ingredients of a particular atom:

The physics of these protons co-

existing is explained in Topic E.3.

nucleon

number

= p + n

proton

number

= p (or e )

chemical

symbol

for element

A

ZX

charge

state,

e.g. 2+
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This notation is used when writing nuclear equations later.

Examples of this notation are:

helium-4 →
2

4He; 2 protons + 2 neutrons — 4 nucleons in total

oxygen-16 →
8

16O; 8 protons + 8 neutrons — 16 nucleons in total 

oxygen-17 →
8

17O; 8 protons + 9 neutrons — 17 nucleons in total

proton →
1

1p  

neutron →
0

1n  

electron →
1

0e

The Geiger–Marsden–Rutherford experiment 

In 1909, Ernest Rutherford, from New Zealand, was supervising the research 

of two students at the University of Manchester in England. One of these was a 

German researcher, Johannes Geiger; the other was an undergraduate, Ernest 

Marsden. They were studying the scattering when alpha particles were incident 

on a very thin gold foil in a vacuum. 

Figure 4 shows the basic experiment. When alpha particles collide with a 

fluorescent screen, light is emitted from the screen. A microscope detects these 

flashes of light. 

Geiger and Marsden expected their alpha particles to be deflected only through 

small angles as a result of electrostatic deflection by the diffuse atomic charge 

(assuming that Thomson’s plum-pudding model was correct). Rutherford 

suggested, however, that they should look on the same side of the foil as the 

alpha source. All three scientists were astonished to find that about one alpha 

particle in 8000 was reflected (or “back-scattered”) by the thin foil back in the 

direction from which it had come. This could not have been a reflection from the 

diffuse positive charge of Thomson’s plum-pudding as the alpha particles were 

travelling too fast for this. 

Figure 5 shows the paths of alpha particles coming in from the left. Two of these 

alpha particles have head-on paths and are then deflected through angles close 

to 180°. Other alpha particles have initial paths that lie further from the nuclei and 

so are deflected much less.

Worked example 1

State the number of protons and neutrons in a nucleus of a. 235
U92

b. 24
Na11

Solutions

a.  There are 92 protons from the proton number in A
Z
X and so the number  

of neutrons must be 235  92 = 143.

b.  There are 11 protons and 13 neutrons in this nucleus of sodium. 

scattered
particles

most particles

are undeflected

source of
α particles

circular
fluorescent
screen

thin gold
foil

beam of
particles

▴ Figure 4 A schematic diagram of the 

Geiger–Marsden–Rutherford experiment. 

The apparatus itself was small — a few cm 

across.

See Topic E.3 for why the electron 

is given a proton number of 1.

You will be introduced to the properties of the alpha particle in Topic E.3. For 

now, you need to know that an alpha particle is apositively charged helium 

nucleus, 4
He

2+
2

. 

electron

cloudnucleus

alpha particles

▴ Figure 5 Alpha particles deected by 

nuclei in the Rutherford model.
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The alpha particles have a positive charge with a magnitude twice that of an 

electron. Rutherford suggested that back-scattering occurs because the atom 

consists of a small, very dense, positive nucleus with electrons outside the 

nucleus. His calculations indicated that the diameter of the nucleus was of the 

order of 10 15 m while the diameter of the entire atom was known to be about 

10 10 m. The atom, taken as a whole, is almost entirely empty space. 

Figure 5 is not to scale because the nuclei spacings shown are drawn far too 

small. The nuclei in the diagram on the page are about 2 mm across. Nuclei at this 

scale should be separated by 2 × 105 mm, about one-fifth of a kilometre!

The main results of this important experiment are that:

• most alpha particles passed through the gold leaf undeected or with very 

small deections

• a very few alpha particles were deected through very large angles but, 

occasionally, alpha particles rebounded in the opposite direction. 

These results mean that:

• most of the atom is in a small dense region

• the atom contains small dense regions of electric charge

• this small dense region contains all the atom’s positive charge. 

Often, scientific research requires patience and discipline. It is tempting 

to think that the Geiger–Marsden–Rutherford experiment was based on a 

single observation — certainly Rutherford's response suggests a reaction to a 

single event. When Geiger published the data, he stated that over 100 000 

scintillations were observed during the course of the measurements.

Geiger or Marsden had to sit in a darkened room and look for a tiny flash 

of light to record one scintillation. It took about 30 minutes for their eyes to 

adjust to the dark and be sensitive enough to detect these flashes. Counting 

the 100 000 flashes of light took weeks of effort.

Rutherford wrote in a letter: “Geiger is a demon at the work of counting 

scintillations and could count at intervals for a whole night … I […] retired after 

two minutes.”

It is unsurprising that Geiger developed a device for detecting radiation — the 

Geiger counter.

▴ Figure 6 A Geiger–Müller counter.

Managing data ATL

▴ Figure 7 Enlarge an atom to the 

diameter of the meteor crater in Arizona 

(1200 m across) and the nucleus would be 

the size of a marble (approximately 1 cm).

On reflecting on the results of the 

gold foil experiment, Rutherford 

later wrote that this was …

“... the most incredible event that has 

ever happened to me in my life. It was 

almost as incredible as if you fired a 

15-inch shell [from a large gun on a 

warship] at a piece of tissue paper 

and it came back and hit you. … I 

realized that this scattering backward 

must be the result of a single collision, 

and when I made calculations, I saw 

that it was impossible to get anything 

of that order of magnitude unless you 

took a system in which the greater 

part of the mass of the atom was 

concentrated in a minute [he meant 

“very small”] nucleus. It was then 

that I had the idea of an atom with a 

minute massive centre, carrying 

a charge. …” 

Experiments
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• Inquiry 1: Demonstrate creativity in the designing, 

implementation or presentation of the investigation.

• Inquiry 1: Develop investigations that involve hands-

on laboratory experiments, databases, simulations 

and modelling.

• Inquiry 3: Interpret processed data and analysis to 

draw and justify conclusions.

• Inquiry 3: Evaluate the implications of methodological 

weaknesses, limitations and assumptions on 

conclusions.

Alpha-particle scattering can be simulated using a 

specially shaped hill and a ramp (Figure 8(a)).

The hill is made so that its height h above the 

surroundings is inversely proportional to the distance r

from the centre of the hill (Figure 8(b)). This means that it 

simulates, using gravity, the electric potential due to the 

positively charged nucleus (Topic D.2). 

h

r

▴ Figure 8 (a) The apparatus itself. (b) The h ∝ 
1

r
 shape of  

the hill.

• Metal spheres (ball bearings) are rolled down the  

ramp. The starting height of the sphere determines  

the sphere’s speed as it leaves the ramp — and 

therefore its kinetic energy.

• Design an experiment that either varies the initial 

energy of the sphere or the distance between the 

initial direction of the sphere and the centre of the hill 

(this is called the “oset”). The meaning of the oset is 

shown in the plan view of Figure 9.

• You can use the apparatus qualitatively to nd out  

how dierent initial kinetic energies or dierent  

osets aect the deection angle. 

• Or you can devise a quantitative experiment  

to check elements of Rutherford’s equation.  

The equation from the data-based question  

(N ∝ 
1

sin4 (휙2 )
) is a good place to start. 

• You might then investigate how the number scattered 

at a particular angle varies with the initial kinetic energy.

• Think carefully about the statistics of the experiment 

and how you will treat the experimental errors.

An analogue of alpha-particle scattering

hill

sphere on ramp

offset

ϕ

▴ Figure 9 The apparatus seen from above. The oset is the distance from the centre of the circle to the line along which the sphere 

was rolling before it met the hill.

(a)

(b)
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If you have already studied Themes A and D, you may 

recognize some of the terms in Rutherford’s equation. His 

full equation is

fraction of the alpha particles detected at an angle 휙

= ( kq
α
Qgold

R
)

2

× nt ×
1

( 1

2
mu2)

2 ×

detector area

(2 sin (휙2 ))
4

where q
α

= charge on the alpha particle, Q
gold

= charge 

on the nucleus, n = number of nuclei per unit volume,  

t = foil thickness, m = mass of an alpha particle, u = initial 

speed of alpha particle and R = distance between the foil 

and the detector.

The terms in the equation have been grouped to help you 

to recognize the factors that determine the deflection of 

the alpha particles: 

• The rst term you should recognize as containing 

elements of the electric-potential equation.

• The second is related to the density of the nuclei.

• The third contains the reciprocal of the initial kinetic 

energy of the alpha particles. 

• The fourth is a term relating to the geometry of  

the apparatus.

You can see this whole equation in action in a number of 

simulations available on the internet. Try searching using 

“alpha particle scattering simulation” or “Rutherford 

scattering”. 

Alternatively, you can construct your own model of the 

scattering system.

Theories

Rutherford’s equation predicted that the number N of scattered alpha particles in a 

given time would vary with angle 휙 according to the relationship N ∝ 
1

sin4 (휙2 )
Geiger and Marsden’s data [H. Geiger and E. Marsden, “The Laws of Deflexion of α

Particles Through Large Angles”, Philosophical Magazine, 25, 604–623 (1913)] are 

given in the table.

N, the number of alpha particles observed in a given time, is a discrete quantity.

•  Suggest one way in which it is possible to have experimental data which have 

fractional values for discrete data.

•  Make a copy of this table and add columns for sin 
휙

2
, log (sin 

휙

2
) and log N. 

Calculate these values and record them in your table.

•  Plot a graph of log N against log (sin 
휙

2
).

•  Explain which features of this graph support the relationship N ∝ 

1

sin4 (휙2 )
See page 356 for more on the interpretation of log–log graphs. If you are less  

confident with the use of logs, try plotting a graph of N against 
1

sin4 (휙)
 and  

assess whether the resulting graph has a straight line of best fit.

Data-based questions

Angle (ϕ) N

150     33.1

135     43.0

120       51.9

105     69.5

   75   211

  60     477

   45   1435

   37.5  3300

   30  7800

   22.5    27 300

   15 132 000
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initial

kinetic energy

Eα

maximum

electrical

potential

energy

rc

Aupath of alpha particle

▴ Figure 10 An alpha particle on a head-on collision course with a gold nucleus. The incident and return paths are shown at small 

angles for clarity.

How is the distance of closest approach calculated using conservation of energy?

The data from the Geiger–Marsden–Rutherford  

experiment can give an estimate for the diameter of a  

gold nucleus. Figure 10 shows what happens when an 

alpha particle is scattered and exactly reverses its path. It 

must originally have been heading straight for the gold 

nucleus (in other words, on a head-on collision course). 

As the alpha particle approaches the nucleus, the initial 

kinetic energy E
α
 gradually transfers to electrical potential 

energy. When the alpha particle is at its closest point 

to the nucleus, it stops moving just for an instant. Its 

kinetic energy is zero here. This is the distance of closest 

approach r
c
 and we take r

c
 as the estimate of the upper 

limit of the nuclear diameter. The positive alpha particle 

is then repelled by the positive nucleus and reverses its 

direction.

When the alpha particle has come to rest, all of its initial 

energy E
α
 has been transferred to electric potential energy 

and therefore

E
α

=
1

2
m

α
v 2

α
= k

q
α
Qgold

r
c

where r
c
 is the closest approach between alpha particle 

and nucleus.

When E
α
 of the alpha particle is equated to the electric 

potential energy at r
c
,

E
α

=
kZe × 2e

r
c

where k is the Coulomb constant, Z is the number of 

protons in the gold nucleus (so that the positive charge of 

the nucleus is Ze) and 2e is the charge of the alpha particle. 

You should be able to recognize the origin of this equation 

from Topic D.2. When the equation is rearranged to make 

r
c
 the subject,

rc =
2kZe2

E
α

The data for the Geiger–Marsden–Rutherford experiment 

are E
α

= 7.68 MeV and Z = 79. 

So rc = 
2 × 9.0 × 109

× 79 × (1.6 × 10 19)2

(7.68 × 106
× 1.6 × 10 19)

, which leads  to  

r
c
= 3.0 × 10 14 m.

Rutherford’s theory makes several approximations, which 

means that it can only ever be a rough estimate of r
c

• The gold nucleus is regarded as a point mass that 

does not move (in fact, it must be repelled by the 

approaching alpha particle — this is called “recoil”). 

• We assume that the alpha particle does not penetrate 

the nucleus. At small values of r
c
 an alpha particle is 

inuenced by other nuclear forces not just electrostatic 

repulsion. Research since Rutherford’s time shows that 

an attractive strong nuclear interaction operates at 

small distance within the nucleus. This complicates the 

analysis. Because this strong nuclear force is attractive, 

it reduces the eect of the electrostatic repulsion. 

There is more detail about the strong nuclear 

interaction in Topic E.3. 
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Deviations from Rutherford scattering

At high initial kinetic energies E
α
 of the alpha particle, the closest approach 

distance r
c
 becomes small. A large E

α
 will lead to an impossibly small nuclear 

diameter. However, when very energetic alpha particles approach the nucleus, 

there comes a point where the scattering no longer obeys the assumptions 

Rutherford made. The observations of this behaviour were made in 1961 by 

Eisberg and Porter who used a lead-208 target. They showed that, for alpha 

particles of initial energy greater than about 28 MeV, the predictions of the 

Rutherford equation were no longer maintained.

You should think of E
α
 as being the largest energy for which the scattering still 

obeys the Rutherford model. Then the estimate gives the smallest r
c
 at which 

other nuclear forces do not operate. This is the effective size of a nucleus.in
te
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▴ Figure 11 Rutherford scattering breaks 

down at initial alpha energies greater 

than 28 MeV. The alpha particles are now 

inuenced by the strong nuclear interaction.
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▴ Figure 12 The double star system X-7 

contains a neutron star thought to have a 

mass that is 1.4 times the mass of the Sun 

(1.4 M
⊙

) and a radius of 11 km. This large 

density is the result of the gravitational 

collapse of a massive star. An apple made of 

nuclear matter would have a mass of about 

1014 kg. This is about 1000 times larger than 

the total mass of all the humans alive today.

Nuclear density

We now know that the total number of nucleons inside the nucleus includes 

protons and neutrons. Rutherford and his co-workers knew about protons, but 

it was not until 1932 that the neutron was finally identified. This took many years 

because the neutron is uncharged and most research techniques early in the 

20th century relied on the effects of charge and the ionization it causes to make 

measurements.

It is possible to arrive at a simple equation that relates the radius R of a nucleus to 

the total number A of nucleons inside it, the nucleon number. The nuclear volume V 

must be proportional to the total number of nucleons inside it:

V ∝ A

When we assume that the nucleus is spherical, then V =
4

3
πR3 as usual and R3

∝ A. 

This is more usually given as R ∝ A

1

3 and it leads to the equation

R = R
0
A

1

3

R
0
 is called the Fermi radius and it must be measured experimentally. Its value is  

R
0

≈ 1.2 × 10 15 m.

This analysis can go one step further because the earlier equation for the nuclear 

volume V can be rewritten as V =
4

3
πR3

=
4

3
πAR

0
3. This leads to an estimate of 

the density of the nucleus:

ρ
n
=

mass of the nucleus

volume of the nucleus
=

A × u

4

3
πAR

0
3

=
3u

4πR
0

3

The quantity u in this equation is known as the unified atomic mass unit and is 

roughly equal to the mass of a neutron or a proton. (They are not quite the same.) 

1 u is equivalent to 1.661 × 10 27 kg.

These data give an estimate for nuclear density of ρ
n
=

3 × 1.7 × 10–27

4π × (1.2 × 10–15)3 which 

equals 2.4 × 1017 kg m−3. This density is the same for all nuclides since this was 

the original assumption. The interactions between nucleons are repulsive at short 

distances so that the nucleons cannot penetrate each other. 
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Worked example 2

A nucleus of silver-107 (107
Ag47 ) has a charge of +47e

a. Estimate the nuclear radius of Ag-107.

A beam of alpha particles is directed at an Ag-107 target. The number of alpha 

particles scattered at very large angles deviates from the Rutherford model at 

initial energies greater than E
α
. The radius of an alpha particle is approximately 1.9 fm.

b. Estimate E
α

Solutions

a.  R = R
0
A

1

3
= 1.2 × 10 15

× 107
1

3
= 5.7 fm

b.  The strong nuclear force aects the results of the scattering when the distance between  

the particles becomes about equal to the sum of their radii, 5.7 + 1.9 = 7.6 fm. Assuming 

head-on approach, the initial kinetic energy of an alpha particle must be equal or greater  

than the electric potential energy of the particles at a 7.6 fm separation; hence  

E
α

=

8.99 × 109
× 2 × 47 × (1.60 × 10 19)2

7.6 × 10 15 = 2.8 × 10 12 J. This is equivalent to 18 MeV.

Practice questions

1.  The diameter of a nucleus of nucleon number 16 is 

D. Estimate the nucleon number of a nucleus whose 

diameter is 2D

2.  Alpha particles are scattered by bismuth-209 ( 209
Bi83 ) 

nuclei. 

a. Calculate the distance of closest approach between 

an alpha particle of initial kinetic energy of 20 MeV 

and a bismuth nucleus.

b. Estimate the minimum initial energy of alpha 

particles so that the distribution of scattered 

particles deviates from the Rutherford model.

• Tool 3: Carry out calculations involving  exponents.

• Tool 3: Construct and interpret tables and graphs for 

raw and processed data including scatter graphs and 

line and curve graphs.

• Tool 3: Draw and interpret uncertainty bars.

• Inquiry 3: Relate the outcomes of an investigation to 

the stated research question or hypothesis.

Experiments to estimate nuclear size normally involve 

firing X-rays or neutrons at a sample. You can use a model 

to investigate the relationship R = R
0
A

1

3

You will need some plasticine, a balance with a precision 

of 0.1 g and some callipers.

•  Make about ten small plasticine balls, each of diameter 

0.5 1 cm. The balls should be approximately the same 

mass. Use the balance to help with this. These balls 

represent the nucleons (protons and neutrons).

•  Mould one plasticine ball into a sphere. Measure the 

diameter of the sphere using the callipers. You should 

repeat your measurement so that you have three 

measurements taken in different orientations since 

your sphere is unlikely to be perfectly spherical. Take 

an average of your readings.

•  Take a second ball and mould it, together with the 

first piece, into a new, larger, sphere. Measure the 

diameter of this sphere as before.

•  Continue adding the balls of plasticine and record 

your results in a table.

•  Convert your measured values of the diameter into a 

radius and find the uncertainty in the radius.

•  Add a column to your table for R3 and the uncertainty 

in that value.

•  Plot a graph of A (number of plasticine balls) against 

R3. Include error bars on the graph.

•  If your data obey the rule R = R
0
A

1

3 , then they should 

give a straight-line graph. Use your graph to obtain a 

value of R
0
. To what extent is this a good model for a 

nucleus?

Modelling the variation in R with A
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Topic E.1 Structure of the atom

Emission and absorption spectra

By the early 19th century, scientists understood that sunlight had a continuous 

spectrum (Figure 13), but the reasons for it were unknown. 

In 1802, William Wollaston observed some strange dark lines in the Sun’s 

spectrum. But it took a further 12 years before Joseph von Fraunhofer invented 

the diffraction grating  and was able to observe these dark lines in detail (see 

Topic C.3 page 432). We now know that his discovery, Fraunhofer lines, is an 

absorption spectrum. We shall see how these lines are formed later.

The technique for observing spectra experimentally is to produce light by passing 

an electric current through a low-pressure gas or by heating a substance so that 

it produces a flame. The atoms then emit electromagnetic radiation. When this 

radiation is incident on a diffraction grating or a prism, it becomes diffracted by 

the grating (or dispersed by the prism) into its separate wavelengths. These leave 

the grating or prism at different angles to the original direction of the radiation. 

They can then be observed using a telescope or by allowing the light to fall on 

ascreen. 

The continuous spectrum of the Sun is caused by the interactions of all the 

atoms in the hot dense gas at the Sun’s visible surface. As the pressure of a 

gas decreases, however, the visual appearance of the spectrum changes 

dramatically. The individual atoms interact less and less as the pressure falls, until 

at low pressures (close to a vacuum) the spectrum for a single element becomes a 

series of separate (discrete) lines. 

This low-pressure spectrum is known as an emission line spectrum and is 

characteristic of the element that is producing it. Figure 14 shows the line 

spectrum for three different elements. The colours and arrangements of the lines 

are different and unique for each element.

The line spectra extend beyond the ranges of visible light. For hydrogen, an atom 

that consists of one nuclear proton and a single electron outside the nucleus, 

there are six series of lines that have been extensively studied, including one in 

the ultraviolet, one in the visible region and two in the infrared.

We now know that the emission spectra are produced by atoms that emit 

photons of light during energy changes when one excited atom moves to a lower 

energy state. This electromagnetic radiation arrives as a discrete energy packet 

(properly called a quantum of energy, the plural is quanta). The energy packet 

itself is now called a photon. 

The energy E of the photon is linked to its frequency f by

E = hf

This energy is also equal to the difference in energy level between the two atomic 

energy states before and after the atomic transition. The exact energy difference 

in atomic energy states appears as the energy of the photon.

The constant h is the Planck constant which “converts” frequencies and 

wavelengths into their energy equivalent. Planck had already shown that h has 

the value 6.63 × 10−34 J s.

The equation can also be written in terms of wavelength (using the equation  

c = fλ, where c is the speed of electromagnetic waves in a vacuum) as

E =
hc

λ

▴ Figure 13 The bottom spectrum is the 

continuous spectrum of the Sun crossed by 

three dark absorption lines (an absorption 

spectrum). The position of these lines 

corresponds to bright lines in the hydrogen 

emission spectrum (above).

598

▴ Figure 14 The line spectra for hydrogen 

(H), helium (He) and mercury (Hg).
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Observations of atomic spectra 

began well before the  

19th century. A knowledge of 

optics had existed since Roman 

times without any break in Middle 

Eastern countries. However, it was 

rediscovered in Western Europe 

around the 16th century. This 

allowed Europeans of the time to 

study the light emitted from hot or 

glowing objects. 

Scientists used an optical device, 

usually a glass prism for these 

early experiments, to spread 

white light from the Sun from the 

shortest wavelengths (violet) to the 

longest (red). The same order as 

in a rainbow. Even today, spectra 

are presented in this linear way. 

Spectra in this Topic are displayed 

with the lines coloured correctly 

and with the colours arranged by 

wavelength in their correct place.

Evidence — A history 

of spectra

The atoms in solids, liquids and high-pressure gases are also excited through 

the energies available at suitable temperatures. But the emitted light 

observed under such conditions consists of bands of colours rather than lines. 

In solids, these bands themselves merge to give a continuous spectrum with 

no single colours at all (Figure 16). This is typical of matter in which the atoms 

are closely packed. Each atom is modifying the energy states in nearby atoms. 

For a large group of atoms, the overall energy levels combine to form a series 

of similar “smeared-out” energy values. This gives an energy band rather than 

a set of lines. 

hot low-

pressure gas

hot high-pressure

gas or solid

cold gas
hot 

source

continuous spectrum

emission line spectrum

absorption line spectrum

▴ Figure 16 The formation of continuous, emission-line and absorption spectra.

Absorption spectra form in a similar way. A hot object, whether solid, liquid 

or gas, emits a continuous spectrum. When the hot object is surrounded by a 

cooler gas, the radiation from the hot object must pass through the cooler gas 

to be observed. The original continuous spectrum is now seen to be crossed by 

several dark lines. When a heated tungsten filament is viewed through hydrogen 

gas, the absorption spectrum shown in the bottom diagram of Figure 16 can be 

seen. These black lines occur at the precise positions of the lines of the hydrogen 

emission spectrum. 

The absorption occurs when an atom of the cooler gas absorbs a photon of 

energy identical to the difference between two of its energy levels. This photon 

promotes an electron from the lower to the higher of the two energy states. 

The cooler gas therefore removes photons with this energy difference from the 

continuous range of energies emitted by the light source. 

The absorbing atom is now in a higher energy state; this makes it unstable. 

It reverts to the lower energy level by photon emission. This photon has the 

original absorbed frequency. However, it is emitted in a random direction, not 

necessarily in the direction of the original photon. This reduces the intensity of 

those specific emission-line frequencies in the original direction. The black lines 

that appear in the spectrum contrast with the higher intensity of non-absorbed 

photon frequencies. 

▴ Figure 15 The 1868 solar eclipse. 

Astronomers analysed the spectrum of 

light from the Sun during the eclipse. They 

discovered a bright spectral line at 587.5 nm 

which could not be accounted for from 

the spectral lines of known elements. They 

proposed that it must be a new element and 

called this element helium (aer helios, the 

ancient Greek word for Sun). Fourteen years 

later, helium was discovered on Earth.
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Absorption spectra for sodium can be demonstrated with the same apparatus 

as for emission (Figure 17). A white light source emits light which is incident on 

a diffraction grating on the turntable of a spectrometer. A continuous spectrum 

can be seen through the telescope or displayed on a computer monitor (using a 

sensor and software). When a flame is used to heat a vertical wire that has been 

dipped in sodium chloride, the light from the continuous spectrum is allowed to 

go through the sodium ions in the flame. The sodium absorption lines are seen in 

the yellow region of the continuous spectrum.

The observation of both emission and absorption spectra is an effective way 

to determine the chemical composition of a material. Chemists can quickly 

identify an anonymous white crystal. By placing the crystal on an inert wire such 

as platinum, and then putting the crystal and wire in a flame, the colour of the 

flame gives good indication of the elements in the crystal. For example, brick red 

means cadmium and green means the presence of copper ions.

A more detailed analysis of the lines in the spectrum also gives a definitive answer 

to the question of the composition of a material. Figure 14 shows three sets of 

spectra. You can see that the lines are at completely different wavelengths and in 

completely different arrangements. 

▴ Figure 17 Observing an absorption spectrum.

flame with

table salt added

diffraction

grating

collimator

white light

source

telescope or sensor

linked to computer

spectrometerburner

The photon energies and atomic energy level differences 

are often given in units of electronvolt (1 eV = 1.6 × 10 19 J). 

This is a common unit used in atomicphysics (along with 

the multiplies keV and MeV). It avoids having to use large 

negative powers of ten. You can find a definition of the 

electronvolt on page 519.

The IB Physics Data Booklet contains a unit conversion for 

the product of the Planck constant and the speed of light 

in a vacuum: (h× c) = 1.99 × 10 25 J m = 1.24 × 10 6 eV m. 

You can use this to make the conversion from a change in 

energy level for an atom to the wavelength of the photon 

emitted or absorbed during the change.

The change in energy ΔE is equal to hf, where f is the 

frequency of the photon.

This leads to ΔE = hf = h (c

λ
); ΔE = hc ×

1

λ

When you know the difference between two energy 

levels in an atom you can use the ΔE expression re-

arranged as λ= hc ×
1

ΔE
. For example, when the atom 

undergoes a transition between energy levels that differ 

by 1.88 eV, the wavelength of the emitted photon is  

λ= 1.24 × 10 6 ×
1

1.88
= 660 nm.

Measurements — Electronvolts

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



E. Nuclear and quantum physics

601

Our present knowledge of the properties of stars 

would not be possible without observations of stellar 

spectra. They reveal the size and nature of the stars 

themselves (Topic B.1). The peak of the continuous 

spectrum (equivalent to that from a black body to a good 

approximation) gives the temperature of the star. This, 

together with the luminosity of the star (which can be 

deduced from its apparent brightness and distance), 

leads to an estimate of the radius of the star (Topic E.5).

Redshifts in the spectra lead to the speeds of stars and 

galaxies relative to us (Topic C.5) and also rely on precise 

measurements of spectral wavelengths. The fractional 

shift in the wavelength is proportional to the relative 

velocity of a galaxy along the line joining it to Earth.

How can emission spectra allow the properties of stars to be deduced?

How can emission spectra be used to calculate the distances and velocities of celestial bodies?

Worked example 3

a.  Outline, with reference to atomic energy levels, how a discrete emission 

spectrum of a gas is formed.

b.  The emission spectrum of hydrogen contains an infrared line at 1282 nm.

Calculate, in eV, the energy of a photon of wavelength 1282 nm. 

Solutions

a.  Gas atoms in an excited state move to a lower energy state. Because energy levels of  

atoms are discrete, photons emitted by the gas can only have discrete energies, equal  

to dierences between atomic energy levels. The photon wavelength λ is related to energy 

by the formula λ=
hc

E
. Hence wavelengths in the emission spectrum are also discrete.

b.  E =
hc

λ
=

1.24 × 10 6

1282 × 10 9 = 0.967 eV

Practice questions 

3.  The diagram shows some of the energy levels of an atom.

–1.50eV

–2.30eV

–6.30eV

–3.90eV

a. Calculate:

i.  the longest wavelength

ii. the shortest wavelength

of a photon whose absorption by the atom can result 

in a transition between two of these energy levels.

b.  Identify the atomic transition that results in an 

emission of a photon of energy 4.00 eV by this atom.

4.  The emission spectrum of sodium contains two lines of 

similar wavelengths: 588.995 nm and 589.592 nm. The 

lines are emitted in a transition from one of two narrowly 

separated levels E
a
 and E

b
 to another energy level E

c
, as 

shown in the diagram.

Ea
Eb

Ec

a.  Calculate the energy of each of the photons emitted 

by a sodium atom.

b.  Hence, calculate the energy difference between 

levels Ea and Eb
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Taking Rutherford’s model further

The Rutherford model of the atom left physics with a problem: Hydrogen has one 

proton and one electron outside the nucleus. However, 19th-century classical 

physics predicted that this situation was unstable. 

The argument goes like this. The electron is attracted to the proton and orbits 

around it. The electron must therefore have a centripetal acceleration (TopicA.2). 

Charges that are accelerating emit energy in the form of electromagnetic 

radiation, but a constant radiation from hydrogen is not observed. Further, as the 

electron transfers energy, it must spiral into the nucleus (according to classical 

physics) taking a fraction of a second to do so. This means that any hydrogen 

atom can only exist for a fraction of a second. If hydrogen were unstable in this 

way, then the very existence of the universe would be in doubt.

However, six years after the work of Rutherford, Danish physicist Niels Bohr realized 

that the idea of a single electron moving in an unrestricted way around the nucleus 

was not correct. His breakthrough came when he blended the experimental 

evidence from atomic spectra with Rutherford’s theoretical model. Bohr’s thinking 

about an atomic model began with his knowledge of some 19th-century observations 

made by Johan Jakob Balmer and others of the spectra emitted by hot gases.

Remember that an accelerating 

charge is equivalent to a 

changing current (Topic B.5), 

so an accelerating charge must 

radiate. See Topic D.4 for how a 

changing current interacts with its 

own magnetic eld through self-

induction and why Lenz’s law states 

that the charge must lose energy (in 

this case, by radiating photons).

▴ Figure 18 Particle accelerators such as 

this picture of the ALBA synchrotron in Spain 

cause charged particles to move in circles. 

They must be accelerated and therefore 

emit electromagnetic radiation called 

synchrotron radiation.

When a scientist works with patterns of numbers rather than scientific 

observations, the process is sometimes called numerology. However, this 

does not necessarily mean that the process is unscientific. 

Balmer was a numerologist who believed that numbers alone hold the key 

to understanding science. The spectral sequence is named in his honour, 

not because he identified the lines or the reason for them, but because he 

provided a numerical base on which others could build. Nevertheless, it was 

the careful observations of the wavelengths of the spectral lines that was the 

beginning of the search for a model of the atom.

In a similar way, it was observation of the scattered alpha particles by Geiger 

and Marsden that led Rutherford to suggest a replacement model for the 

Thomson atom.

▴ Figure 19 This image is from Harmonices Mundi (Harmony of the Worlds, 

1619) written by Kepler from about 1599 onwards. He makes parallels in the 

book between planetary orbital speeds and music. This is numerology. The 

third part of the book contains Kepler’s third law of orbital motion (Topic D.1).

How have observations led to developments in the model 
of the atom?(NOS)
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Balmer knew of the existence of four lines in the visible region of hydrogen (the 
ones shown at the top of Figure 14). The wavelengths of these lines had been 
measured accurately by Ångström. Ångström’s four wavelength values are given 
in Table 1. They are labelled with the chemical symbol (H) and a Greek letter 
subscript which is used to order the lines in decreasing wavelength.

Balmer eventually found a numerical pattern that connected the four wavelengths 
together. It was

wavelength of the line / m = 3.6456 × 10 7
×

m2

m2
− 22

where m is an integer between 3 and 6. It is important to remember that this 
formula is empirical. It does not arise from a scientific hypothesis. Balmer did not 
attempt to explain the science that underpins his formula. 

By 1888, the Swedish physicist Johannes Rydberg had realised that the Balmer 
formula was a special case of an equation he was investigating. Rydberg’s formula 
was also empirical. He had arrived at it through work on the spectra of alkali 
metals such as sodium and potassium. When Rydberg’s formula is applied to 
hydrogen, it takes the form

1
λ

= R
H ( 1

n
1
2

−
1

n
2
2)

where λ is the wavelength of the spectrum line, n
1
 and n

2
 are integers and R

H
 is 

known as the Rydberg constant, which, for hydrogen, takes the empirical value 
1.097 × 107 m 1. The Balmer and Rydberg formulas give the same answer. 

• For the Balmer formula, when m is 3,  

wavelength of the line = 3.6456 × 10 7
×

32

32
− 22

 = 3.6456 × 10 7
×

9
9 − 4

= 656 nm. 

• For the Rydberg formula, when n
1
= 2 and n

2
= 3,

1
λ

= 1.097 × 107
× ( 1

22
−

1
32) = 1.097 × 107

× ( 1
4

−
1
9 ) = 1.52 × 106 m 1

 This means that λ is 
1

1.52 × 106 = 656 nm. 

However, this gets us no closer to a physical understanding of what the numbers 
m, n

1
 and n

2
 in the formulas mean — nor to the physics that is represented by 

them. This had to wait until the ground-breaking work of Niels Bohr in 1913. His 
insight allowed him to provide a new interpretation of the physics of the atom.

By 1908, more series of line spectra for hydrogen had been discovered, first in 
the infrared (the Paschen series), and then in the ultraviolet (the Lyman series). 
These also obeyed the Rydberg formula but in a way that depends on n

2
 in  

the formula.

For the Lyman series, 
1
λ

= R
H ( 1

12
−

1
n

2
2) and n

2
 must be 2 or greater

For the Balmer series, 
1
λ

= R
H ( 1

22
−

1
n

2
2) and n

2
 must be 3 or greater

For the Paschen series, 
1
λ

= R
H ( 1

32
−

1
n

2
2) and n

2
 must be 4 or greater.

Niels Bohr took these empirical formulas and combined them with earlier work 
by Planck and Einstein that you meet in more detail in Topic E.2.

▴ Table 1 The wavelengths λ and colours 

of dierent lines in the Balmer series.

Balmer line Colour λ / nm

H
α

red 656.3

H
β

blue 486.1

H
γ

violet 434.0

H
δ

violet 410.2
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The Bohr model 
Bohr realized that the Rydberg formula tells us about energies, not just 

wavelengths. He also realized that the similarities between the formulas for 

different sets of lines imply an underlying pattern for the single electron in the 

hydrogen atom. To go further, he had to make four assumptions.

• Electrons can only be in certain discrete, circular orbits. He called these 

stationary states. (“Stationary” here is related to the idea that the electron is 

xed in one energy level, not that it is at rest. We shall see in Topic E.2 that it 

is wrong to think of an electron at an exact position or moving with a precise 

speed. The word “stationary” was used by Bohr in the sense of a stationary 

wave rather than a stationary object.)

• Atoms cannot transfer radiation while in a stationary state.

• Atoms gain or lose energy when they transfer between one stationary state 

and another.

• The angular momentum of an electron in a stationary state is quantized in 

integer values of 
h

2π

We now know that Bohr’s idea of electrons orbiting a nucleus is not correct 

(see Topic E.2), but it is a helpful picture for someone beginning a study of the 

hydrogen atom.

Bohr worked backwards from the results of the line spectra wavelengths (energy 

changes) and discovered that all the Rydberg formulas can be explained using 

a single energy-level diagram for hydrogen (Figure 20). The hydrogen atom 

can exist in any one of these energy states (or levels) and can move between 

the states. It cannot, however, have any energy other than these values. In 

other words, the electron–proton system can have an energy of −13.58 eV or 

−3.39 eV, but it cannot have an energy of −4.52 eV and still be a hydrogen atom.

n = 1

(a)

Lyman series

Balmer series

Paschen

series

Brackett

series

n = 2

n = 3

n = 4

n = 5

n = 6
n = 7

(b)

0
ionization

n = 5

n = 4

n = 3

n = 2

n = 1

secon ecite state

first ecite state

ron state

054 e

05 e

151 e

33 e

135 e

▴ Figure 20 (a) The energy transitions that lead to four of the spectral series in hydrogen. (b) The energy values that 

correspond to the energy states in hydrogen.

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



A
H

L

E. Nuclear and quantum physics

605

The wavelengths of the hydrogen spectrum obey the formula 
1

λ
= R

H ( 1

k2
−

1

n2), where n is the quantum number of the 

upper level, k is the quantum number of the lower level and R
H
= 1.097 × 107 m 1

The table gives the wavelengths of some of the lines in the hydrogen spectrum together with n. 

Upper level n Wavelength / nm

3 656.5

4 486.3

5 434.2

6 410.3

7 397.1

2 121.6

3 102.6

4 97.3

5 95.0

6 93.8

7 93.1

Data-based questions

• Add two columns to a copy of the table to include values of 
1

n2
 and 

1

λ

• Use these to plot a graph of 
1

λ
 (y-axis) against 

1

n2
 (x-axis). 

• You should see that the data form two linear trends with the same 

gradient. Find this gradient.

• What is the signicance of the x-intercept of each linear trend?

• There is also a spectral line which arises from an upper quantum level

n = 7 and has a wavelength of 1005.2 nm. Add a point on your graph 

to represent this spectral line. By assuming that it forms part of a linear 

trend with the same gradient as the other two trends, deduce the 

value of the lower quantum number (k) for this transition.

The lowest energy level (−13.58 eV) is known as the ground state and is the 

lowest energy possible for the hydrogen atom. In this state, the electron is as 

tightly bound to the atom as it is possible for it to be. This is a bound state where 

proton and electron are locked together. 

When the atom has an energy greater than the ground-state value, it is said to 

be excited. The level marked n = 2 is the first excited state, n = 3 is the second 

excited state and so on. 

The energy levels are quantized, which means that they can only take discrete 

and finite values. For hydrogen, the levels can only have the values given in  

Table 2 and Figure 20(b).

Within the atom, electrons can only move between levels when an exact amount 

of energy is transferred to them or away from them. Each line in the spectrum 

indicates one of the possible energy changes for the atom. Figure 20(a) shows 

the possible electron transitions between levels and how these link to the 

various series of spectral lines. (This diagram also includes a further series of lines 

discovered by Brackett in the far infrared.)

The symbol n that labels the energy levels is known as the principal quantum 

number

The level that is marked with zero energy represents the state when the electron 

has left the atom so that the atom is ionized. Here the electron and proton are 

unbound (meaning “not connected”). As the ionization level corresponds to an 

energy value of 0, it follows that every bound state must take a negative energy 

value because atoms in a bound state require energy to be transferred to them to 

become unbound. 

Energy level (n) Energy / eV

1 −13.58

2 −3.39

3 −1.51

4 −0.85

5 −0.54

▴ Table 2 The energy of each energy level.
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Quantifying the Bohr model

The connection between the Bohr model and the historical empirical work on 

emission spectra is clear. The Lyman series is caused by energy transitions in 

which the atom moves to its ground state. The Balmer and Paschen series are 

caused by transitions to lower states n = 2 and n = 3, respectively. The Brackett 

series are transitions to n = 4 from higher n. Look closely at the Rydberg and the 

Balmer formulas and you will see how they link to the Bohr model.

The Bohr approach produces an equation that agrees with the Rydberg equation. 

By considering the total kinetic and electric potential energy of the hydrogen 

atom, Bohr was able to show that the total energy E (measured in electronvolt) for 

an electron in the nth energy level is given by

E = − 
13.6

n2

This equation is derived from electric field theory and quantum mechanics, but it 

agrees very closely with the Rydberg empirical results. 

The fourth assumption made in the Bohr model was that: 

• the angular momentum of an electron in a stationary state is quantized in 

integer values of 
h

2π

You met the concept of angular momentum in Topic A.4. Angular momentum 

is the (vector) product of the moment of inertia I of a particle and the angular 

speed ω of its orbit. For a particle of mass m in a circular orbit without any external 

torque acting, the magnitude of the angular momentum will be constant and 

equal to mr2
ω, which is also equal to mvr (because v = rω).

Work by de Broglie (explained in more detail in Topic E.2) led to the recognition 

that particles have wave-like properties and have a de Broglie wavelength λ

associated with them. The de Broglie equation links λ to the momentum p of the 

particle by λ =
h

p
. Once again, h is the Planck constant. 

This means that for a particle of mass m moving with a speed v, the de Broglie 

wavelength is

λ =
h

mv
 (because p = mv)

The language used to describe the atom is important. The 

energy level relates to the whole atom: the combination 

of proton and electron in the case of hydrogen. It is better 

to write about the energy changes and transitions of the 

atom rather than energy changes of the electron

You meet a number of bound states in the IB Diploma 

Programme physics course. A satellite in orbit around 

a planet in Topic D.1 is in a bound state. Its gravitational 

potential energy and its mechanical energy are negative 

like the energy state of the hydrogen atoms discussed 

here. Binary stars are bound together in the same way. In 

Topic D.2, the zero of electric potential is at infinity so that 

a system consisting of a positive and negative charge has 

a negative electric potential.

Although the term is rarely used in this context, the 

energy state of a nucleus (Topics E.4 and E.5) also 

represents a bound state because energy must be added 

to the nucleus to separate the individual nucleons (to 

infinity). The terms used for this are mass defect and 

binding energy.

It is important to have a clear understanding of the scalar 

nature of energy and what it means for the energy of a 

system to be negative. 

Why are bound states so significant in science?

A
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n = 3
n = 2

▴ Figure 21 The “standing waves” of the 

electron orbitals.
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The implication of the fourth Bohr assumption is that the electron orbit can be 

matched to an integer number of de Broglie wavelengths. Another way to put 

this is that the shape of the de Broglie wave must “join up” when it has gone once 

around the orbital. This is shown in Figure 21 for the n = 2 and n = 3 orbitals. 

Count the wave peaks carefully and you will see that for n = 2 there are two 

complete wavelengths and for n = 3 there are three complete wavelengths.

For n = 2 the wavelength of each wave for the complete orbital must be  

circumference of the orbital

2

and for n = 3 the wavelength is 
circumference of the orbital

3

Given that the circumference of the orbital is 2πr, where r is the orbital radius, 

then for the general (nth) orbital λ =
2πr

n
. Combining the two expressions for λ

gives λ =
h

mv
=

2πr

n

Rearranging the equation leads to

mvr =
nh

2π

where mvr is the angular momentum of the electron.

The Bohr assumption that angular momentum must be quantized: 

• leads to the suggestion that the orbitals must have the nature of standing 

waves, which led scientists to the next development in our understanding of 

matter at the smallest scales

• conrms the quantization of energy for this model (and for those that 

subsequently arose from it).

As a detailed and quantitative example of how this all fits together, look at the 

energy transition from the hydrogen ground state (n = 1) to the first excited 

state(n = 2).

Table 2 showed the difference in energy between n = 1 and n = 2. It is  

(13.58 eV  3.39 eV), which is 10.19 eV. This energy change (using λ =
hc

E

=
6.63 × 10 34

× 3.00 × 108

10.19 × 1.6 × 10 19
= 1.2 × 10 7 m) is equivalent to a wavelength of 

120 nm. This is in the ultraviolet spectrum and was one of the lines measured  

by Lyman.

To sum up, when a photon of wavelength equal to 120 nm (or of frequency  

f =
c

λ
=

3.0 × 108

1.2 × 10 7
= 2.5 × 1015 Hz) interacts with a hydrogen atom, the energy 

state of the atom increases by exactly the right amount to promote the electron 

from the ground state to the n = 2 level. This makes the atom unstable so that it 

quickly returns (within a time of about 1 ns) to the n = 1 (ground) state. To do this, 

the atom must transfer exactly the same amount of energy as it absorbed. It does 

so by emitting a photon. This photon must again have an exact wavelength of 

120 nm, which means that the photon frequency is 2.5 PHz.

▴ Figure 22 Some objects uoresce. 

When blue or ultraviolet light is shone on 

them, they glow with a dierent colour. This 

picture shows uorescent sh and coral in an 

aquarium. Rocks and even some frogs can 

uoresce. Photons in the blue or ultraviolet 

regions have large energies compared 

with red and yellow light. When they are 

absorbed by a uorescent material, the blue 

photons excite orbital electrons up more 

than one level. The atoms fall back to their 

ground states in two or more stages emitting 

a photon for each energy-level change. For 

every blue or ultraviolet absorbed photon, 

two or more longer wavelength photons 

areemitted.
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Topic E.1 Structure of the atom

Bohr’s result that E = − 
13.6

n2
, where E is in electronvolts, 

was not empirical. He had proved it theoretically by 

combining classical mechanics with his four assumptions. 

His theoretical expression matched the empirical results of 

Balmer and Rydberg.

When you have studied Themes A and D, you will 

understand the physics behind Bohr’s result. He began by 

assuming that the electron in the hydrogen atom has an 

energy E that is the sum of its kinetic ( 1

2
m

e
v2) and electric 

potential (−ke2

r
) energies: 

E =
1

2
m

e
v2

− 
ke2

r

where the orbital radius of the electron is r and it has a 

mass m
e
 and a speed v. Remember that the proton and 

electron have charges of magnitude e and opposite signs 

leading to the negative sign in the equation.

Bohr then assumed — as for any orbiting object — that the 

centripetal force 
m

e
v2

r
 is supplied by the force of attraction 

between proton and electron, in this case an electric  

force 
ke2

r 2
:

m
e
v2

r
=

ke2

r2

This produces

r =
(m

e
vr)2

m
e
ke2

and substitution into the energy equation gives

E = 
1

2

ke2

r

ke2

r
= – 

1

2

ke2

r

Using Bohr’s suggestion that the angular momentum of 

the electron is quantized, m
e
vr = 

nh

2π

, means that  

r =
(m

e
vr)2

m
e
ke2

 becomes r =
n2h2

4π
2m

e
ke2

This equation shows that r ∝ n2. The constant of 

proportionality is 
h2

4π
2m

e
ke2

, which has the value  

5.29 × 10 11 m. This constant has the units of distance 

and is given the symbol a
0
. It is the Bohr radius of the 

electron orbit in the ground state of the hydrogen 

atom. For the radius of the nth orbital,

r = a
0

× n2

This can be used for an estimate of the hydrogen atom 

radius. This means that

E = – 
1

2
× k × e2

×
4π

2m
e
ke2

n2h2
= – 

2π
2m

e
k2e4

n2h2

Replacing k with 
1

4πε
0

 leads to

E = – 
2π

2m
e
e4

16π
2
ε

0
2n2h2

= – 
m

e
e4

8ε
0
2n2h2

Bohr hypothesized that energy emission or absorption 

was only possible when the atom moved from one energy 

state to another. These states correspond to different 

values of n. The general case for the energy transferred 

when the state changes from n
1
 to n

2 
is

E = 
2π

2m
e
k2e4

h2 ( 1

n
1
2

−
1

n
2
2)

which you will recognize as a form of the Rydberg 

equation. 

The factor outside the brackets is 

2 × π
2

× (9 × 109)2
× 9.1 × 10 31

×(1.6 × 10 19)4

(6.6 × 10 34)2

= 2.19 × 10 18 J. 

Converting this to eV gives 
2.19 × 10 18

1.6 × 10 19
= 13.6 eV — 

as predicted from theory by Bohr and observed from an 

experiment 20 years earlier by Balmer. 

Theories  − 
13.6

n
2

 — the link between Bohr and Rydberg
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E. Nuclear and quantum physics

Bohr went on to modify his equation so that it could 

accommodate other one-electron systems such as 

ionized helium that has lost one electron (and so is left 

with one electron and two protons) and a lithium ion that 

has lost two of its electrons. The model could not be 

extended to other, more complicated, atomic systems. 

Neither could it explain why certain allowed transitions 

were found to be more likely to occur than others. 

The failure of the Bohr model is an example of falsification 

in science. It gave apparently good results for the simplest 

case of the hydrogen atom. More precise observations 

of the spectra carried out later showed that what were 

thought to be single lines were in fact two very closely 

spaced lines. This is caused by an interaction between 

electron spin (an effect not known to Bohrat the time) and 

the orbital angular momentum of the electron. The spins 

can be in the same direction or opposed. The two cases 

have slightly different energies and therefore correspond 

to different wavelengths in the emission spectrum.

When there are two or more electrons, they interact 

with each other. From a classical-physics standpoint, 

the presence of an additional electron in the helium 

atom gives this interaction. The electrons cannot 

occupy the same energy state and so there must be 

separate energies and separate spectral lines.

Despite these flaws, the Bohr model led to a more 

fundamental approach to the atom, now called quantum 

mechanics (mentioned in more detail in Topic E.2). 

Under what circumstances does the Bohr model fail? (NOS)

A
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Worked example 4

a.  A beam of electrons passes through a gas sample that contains hydrogen atoms in the ground 

state. Calculate the smallest energy that the electrons in the beam must have in order to excite 

hydrogen atoms to their energy level n = 4.

b.  Determine the wavelength of the photon emitted by an atomic transition from energy level n = 4 

to energy level n = 2.

c.  The radius of the electron orbit in the Bohr model is a rough estimate of the radius of the hydrogen 

atom. Compare the volume of the hydrogen atom in the n = 2 state with the volume of its atomic 

nucleus — a single proton. The radius of a proton is approximately 0.84 × 10 15 m.

Solutions

a.  When an electron in the beam interacts with a hydrogen atom, the energy loss of the electron is equal 

to the energy gain of the atom. The electron’s energy must therefore at least be equal to the dierence 

between the energies of the excited state and the ground state of hydrogen. This can be calculated 

using Bohr’s formula for energy levels: −
13.6

42
− (− 

13.6

12 ) = 12.8 eV. Alternatively, the data in Table 2 

allow you to nd the energy dierence correct to two decimal places: −0.85 − (−13.58) = 12.73 eV.

b.  The energy of the photon is −
13.6

42
− (− 

13.6

22 ) = 2.55 eV. Rearranging the equation  

E =
hc

λ
 gives λ =

hc

E
=

1.24 × 10 6

2.55
= 486 nm. This is the blue H

β
 line listed in Table 1,  

and its wavelength can be also calculated using the empirical formulas found by Balmer and Rydberg!

c.  The radius of the electron orbit in the n = 2 state of hydrogen is r = a
0
(2)2

= 2.12 × 10 10 m and so the 

volume of the atom is 
4

3
π (2.12 × 10 10)3

= 4.0 × 10 29 m3.  

The atomic nucleus (a proton) occupies a volume of 
4

3
π (0.84 × 10−15)3

= 2.5 × 10−45 m3. This is about 

1016 times less than the volume of the atom, in agreement with the Rutherford model of the atom.
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Practice questions 

5.  The absorption spectrum of a gas is investigated by 

viewing light emitted by a heated tungsten lament 

through a sample of the gas. Outline how the 

absorption spectrum:

a.  provides evidence for discrete energy levels of the 

atoms of the gas

b.  can be used to deduce the chemical composition of 

the gas.

6.  The diagram shows some of the energy levels of an 

ionized mercury atom.

–2.74

energy / eV

–5.01

–3.76

a.  State how many absorption lines can result from 

atomic transitions between these energy levels.

b.  On a copy of the diagram, draw an arrow to indicate 

the atomic transition that gives rise to the absorption 

line of the shortest wavelength.

c.  Show that the line in part b. has the wavelength  

of about 550 nm.

7.  A helium–neon (He–Ne) laser emits monochromatic light 

of wavelength 633 nm.

a.  Calculate, in J, the dierence between energy levels 

of neon that result in the emission at 633 nm.

b.  The output power of the laser is 2.5 mW. Estimate 

the number of photons that the laser emits in  

one second.

8.  In the Bohr model of the hydrogen atom, the orbital 

radius of the electron in the n = 3 state is 9 times greater 

than the orbital radius of the electron in the ground 

state. 

a.  What is 
speed of the electron in the n = 3 state

speed of the electron in the ground state
?

 A 
1

9
B 

1

3
C 3   D 9

b.  For a hydrogen atom in its second excited state:

i.  state the value of the principal quantum  

number, n

ii. calculate the energy required to ionize the atom

iii.  show that the frequency of the photon emitted 

when the atom returns to the ground state is 

about 3 × 1015 Hz.

c.  The hydrogen atom in the second excited state can 

also absorb a photon of frequency 2.34 × 1014 Hz. 

Determine the principal quantum number of the 

energy state to which the atom is raised.
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In 1887, Heinrich Hertz provided the experimental 

verication that Maxwell’s prediction of electromagnetic 

waves (Topics D.4 and C.2) was correct.

During his experiments, Hertz was using a coil to receive  

what we now recognize as radio waves. When the waves 

were detected, an emf was induced in the coil and a spark 

jumped across an air gap in the circuit. The spark was 

hard to see and so Hertz put the apparatus into a box to 

exclude light. He found to his surprise that the maximum 

length of the spark was less when the apparatus was in 

the box. The spark length was related to the amount of 

ultraviolet radiation falling on the air gap. This was the rst 

observation of the photoelectric eect. 

Hertz had created a current of electrons that were emitted 

in his apparatus. The energy in the light, carried by 

photons, was being transferred to free electrons in the 

metal of his apparatus. However, Hertz could not explain 

how this was happening. Science had to wait 18 years 

for an explanation. Einstein received his Nobel Prize in 

1921 for a 1905 paper that explained the photoelectric 

eect. His citation reads “for his services to Theoretical 

Physics, and especially for his discovery of the law of the 

photoelectric eect”. Einstein never won a Nobel Prize for 

his work on the theories of relativity and the explanation 

of Brownian motion, even though the two papers dealing 

with special relativity and a third on Brownian motion had 

all been published in the same year.

In Theme C, light was regarded as a wave. In Theme E, 

electromagnetic energy is transferred by photons. What 

is the reality? The answer is both. In the 20th century, 

physics struggled with a way to meld the two opposed 

concepts and only found a rationale for a description of 

light aer experiments and philosophical debate. As this 

story unfolds in this Theme, keep this dilemma in your 

mind: is light a wave or is it a particle? And what are the 

implications for matter itself?

How can light be used to create an electric current?

What is meant by wave–particle duality?

E.2  Quantum physics

The Nobel Prizes were established in 1895 and rst 

awarded in 1901. They are oen regarded as the highest 

accolade in their eld. Einstein was nominated for the 

prize in every year from 1912 to 1922 with the exception 

of 1915, oen for his work on relativity. However, the 

Nobel awarding committee was reluctant to award him 

the prize. It has been suggested that this was because 

Einstein’s theories were too dicult to prove at the time, 

even though Arthur Eddington’s observations of an 

eclipse in 1919 supported Einstein’s theory of general 

relativity. It has also been suggested that anti-Semitism 

may have been a factor.

In 1921, the Nobel committee debated whether to award 

the physics prize to Einstein. Max Planck (the winner of 

the 1918 award) and others nominated him for his work 

on relativity, but a report prepared for the committee was 

highly critical of relativity. Carl Wilhelm Oseen proposed 

Einstein for his work on the photoelectric eect, but it was 

felt that this would be too similar to Planck’s 1918 Nobel 

Prize for quantum theory. Eventually, the committee 

decided not to award the prize that year.

In 1922, Einstein was yet again proposed for the prize. 

Oseen repeated his nomination on the basis of Einstein’s 

work on the photoelectric eect and Max Planck 

proposed that the delayed 1921 prize could be awarded 

to Einstein while the 1922 prize should go to Niels Bohr. 

The committee nally agreed.

Many of the physicists who appear in this topic also won 

the Nobel Prize for their work in quantum physics.

Social skills — Resolving conicts ATL

In this additional higher level topic, you will learn about:

A
H

L

A
H

L

• the photoelectric effect and the evidence it provides 

• the photoelectric threshold frequency

• Einstein’s explanation of the photoelectric effect

• particle diffraction and wave–particle duality

• the de Broglie wavelength 

• Compton scattering and the shift in photon 

wavelength following the scattering.
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Introduction
By the end of the 19th century, physicists were struggling to explain practical 

evidence that was not in agreement with their theories. In particular, the intensity 

of black-body radiation was then modelled using the Rayleigh–Jeans law 

following the principles of classical physics. The prediction of this law is that

intensity ∝ frequency2

This prediction is accurate for observed visible and longer wavelengths in the 

electromagnetic spectrum, but breaks down when the ultraviolet region and 

shorter wavelengths are measured. The problem was so great that the physicists 

of the day called this “the ultraviolet catastrophe”.▴ Figure 1 Classical theory suggests that 

this cup of coee should be emitting visible 

light and even more harmful UV and X rays. 

Planck’s theory of black-body radiation 

suggests that the peak wavelength of 

emission is in the infrared (around 8 μm).
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▴ Figure2 A comparison of the Rayleigh–Jeans model and the Planck theory for 

electromagnetic radiation.

Figure 2 shows the catastrophe. The Rayleigh–Jeans equation fits the 

observations at long wavelengths, but as the wavelength decreases the intensity 

rises well above the intensities that are observed. Max Planck tried to modify the 

theory to correct the Rayleigh–Jeans law and, in 1900, after a number of partially 

successful attempts, he made a crucial breakthrough and showed that the 

catastrophe disappeared when an important assumption was made.

The electromagnetic radiation is produced by oscillating electrons in classical 

physics (you met this idea in Topic C.2). Planck‘s assumption was that these 

electrons must have an energy that is quantized in integer values of hf, where f

is the frequency of the electrons (and the radiation they emit) and h is a constant 

now known as the Planck constant. 

Planck could not explain why this quantization was necessary nor what it 

represented. Einstein used the same assumption of quantization to explain 

photoelectricity with overwhelming success.

This constant is the same as the h

used in Topic E.1 for the quantized 

orbital energy of the electrons in 

the Bohr theory (page 606 ).

The ultraviolet catastrophe is an 

example of falsification. Classical 

physics was well established, but 

improvements in observational 

techniques revealed a mismatch 

between theory and experiment 

at the short wavelengths of 

continuous spectra. The classical 

theory was flawed and new 

hypotheses were required. 

Physicists rose to this challenge. 

The data that they collected and 

the hypotheses they developed 

led to a profound shift in our 

understanding of electromagnetic 

radiation and its effects.

Falsication 
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Explaining the photoelectric eect

A breakthrough occurred when Einstein explained the observations in 1905. 

He adopted Planck’s earlier idea of quantization and he added the following 

predictions about the interaction between electrons and radiation.

• Electromagnetic radiation consists of photons. Each photon has an energy 

equal to hf (Planck’s suggestion).

• Each photon interacts with one, and only one, electron. The photon 

disappears as a result of the interaction and its energy is entirely transferred to 

the electron.

• There is a threshold frequency f0, which corresponds to the minimum 

energy required to release an electron from the metal surface. 

• The minimum energy to release the electron is called the work function Φ of 

the metal. This is the energy required to overcome the forces that attract the 

electron back into the metal. (The release of the electron makes the surface 

slightly positive.)

• When the photon supplies more energy than the work function, the surplus is 

transferred to the initial kinetic energy of the electron aer it has le the surface.

• When the intensity of the radiation is increased, the number of photons 

incident on the surface in one second increases.

• Inquiry 2: Identify and record relevant qualitative 

observations.

• Inquiry 3: Compare the outcomes of an investigation 

to the accepted scientic context.

In the traditional experiment (Figure 3) a piece of zinc 

plate, freshly cleaned to remove the surface layer of 

zinc oxide, is attached to a gold-leaf electroscope. 

A digital coulombmeter can be used nowadays. 

Theelectroscope and the zinc are charged using either a 

lead attached to a high-voltage supply or by using 

a charging-by-induction process (Topic D.2). Then, 

electromagnetic radiation is shone on the plate. The 

results in terms of the divergence of the gold leaf (the 

angle it makes with the vertical) are as follow.

• When the plate is initially negatively charged, the leaf 

on the electroscope immediately begins to collapse 

(a coulombmeter will show that the charge on the 

plate starts to decrease straight away).

• When the intensity of the ultraviolet radiation is 

reduced even to very low levels, the discharge still 

begins immediately.

• When visible light or infrared radiation is used for the 

radiation source, no matter how intense, the eect 

does not occur, and charge is not lost from the plate.

• Placing a sheet of glass between the source of 

ultraviolet and the plate prevents the loss of charge 

(glass absorbs ultraviolet radiation even though it is 

transparent to visible wavelengths).

• When the plate is positively charged, there is no 

change to the charge on the plate whatever the 

wavelength of the radiation.

These observations were found to apply to many metals, 

but the wavelength below which the radiation can cause 

the eect varied from metal to metal.

Demonstrating the photoelectric eect

▴ Figure 3 The traditional experiment to demonstrate 

photoelectricity. When ultraviolet radiation is incident on the 

zinc, the divergence of the gold leaf decreases.

ultraviolet radiationnegatively
charged
zinc plate

gold leaf falls
immediately
that the zinc
plate is  illuminated
with ultraviolet 
radiation
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electrons have just

enough energy for

release

hf = Φ

metal of work function Φ

hf < Φ no electrons emitted hf > Φ electrons ejected

with excess

energy to

move away

from surface

▴ Figure 4 Observations made in the photoelectric eect for dierent values of hf

A metal has a work function Φ. The photon must have an energy greater than this 

to release an electron from the metal. Algebraically, according to Einstein, hf > Φ, 

where hf is the energy of the incident photon.

• When the radiation has a long wavelength then, because only one electron 

can interact with one photon, the energy of the photon will not be sucient 

to release an electron from the metal. This is the “red” photon in Figure 4.

• When the photon energy is hf
0
, then the energy is exactly equal to the work 

function. This is the greatest energy the electron can gain and still remain in 

the metal. However, no energy remains to transfer to the electron’s kinetic 

energy. We will not observe its emission from the metal. This is the “green” 

photon in Figure 4.

• When the radiation has short wavelength and high frequency, the energy of 

the photon exceeds the work function. The excess energy is transferred to 

the initial kinetic energy of the electron. The electron has enough energy to 

leave the plate (and is then repelled by the already negative plate). This is the 

“blue” photon in Figure 4.

• When the plate is positive, even when electrons are released with high-

energy photons, they are attracted back to the plate. They do not have 

sucient energy to escape the electric eld of the plate.

• When the intensity of monochromatic radiation is increased, the energy of 

an individual photon is not changed, there are simply more of them arriving 

every second. The overall eect on the release of an individual electron is not 

changed (provided the threshold frequency is exceeded). All that happens is 

that the number of electrons released every second increases.

• Glass absorbs the ultraviolet radiation and any visible-light photons do not 

have sucient energy to exceed the work function.

The Einstein photoelectric equation

Einstein recognized that

maximum kinetic energy of an emitted electron =

energy available from incident photon – energy required to release  

electron from surface

Algebraically, this is

Emax = hf −Φ

Einstein’s photoelectric equation

an alternative form is Emax = hf − hf0, where f0 is the threshold frequency.

The term “photon” is used here in 

the explanation of photoelectricity. 

However, this was not a term that 

Einstein used in his 1905 scientific 

paper. He was familiar with the 

term “quantum” (plural, “quanta”) 

that Max Planck had coined. 

The photon was only named around 

1926 after the conclusive work of 

Compton that is described later in 

this topic. This is a good example of 

how a working hypothesis becomes 

absorbed into both the language 

and the theories of science by 

exchanges between scientists with a 

gradual acquisition of knowledge.

Hypotheses 

Worked example 1

A copper plate is illuminated by a 

beam of monochromatic light of 

wavelength 580 nm and power 

0.50 mW. The work function of 

copper is 4.7 eV. 

a. Calculate the number of 

photons incident on the 

copper plate in one second.

b. Show that no electrons will be 

emitted from the plate.

Solutions

a.  The energy of a single  

photon in the beam is  

hf =
hc

λ
=

1.99 × 10 25

580 × 10 9

= 3.4 × 10 19 J. In one second, 

the radiation transfers an 

energy of 0.50 mJ, so the 

number of photons incident 

per second is 

0.50 × 10 3

3.4 × 10 19
= 1.5 × 1015

b.  In eV, the photon energy is 

3.4 × 10−19

1.6 × 10−19
= 2.1 eV. This is 

less than the work function of 

copper, so no photoelectrons 

will be emitted.
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This is one area of physics where the 

use of the electronvolt (eV) unit is very 

common. The Millikan experiment 

measures the stopping potential in 

volts because this is the calibration 

of the voltmeter. It therefore seems 

natural to use the electronvolt rather 

than the cumbersome negative 

powers of ten that arise in the energy 

of an individual electron. You may 

need to use both the electronvolt 

and the joule.

Using the 

electronvolt
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Eleven years after Einstein’s explanation, Robert Millikan devised an experiment 

to test the photoelectric equation.

A cell containing two metal plates in a vacuum is connected to a low-voltage 

power supply and a sensitive ammeter (shown as a picoammeter (pA) in 

Figure5).

The cathode consists of a plate which is the equivalent of the zinc in the gold-

leaf electroscope experiment. The other plate (anode) can be given a positive or 

negative potential relative to the cathode to collect or repel photoelectrons. The 

potential divider to enable this is not shown in thecircuit.

Light of various colours can be shone onto the cathode using filters to select the 

wavelength range required. The emitted photoelectrons that reach the anode 

form an electric current through the circuit.

A wavelength of light is selected and shone on the cathode. When this frequency 

exceeds the threshold, electrons will be emitted with a maximum kinetic energy. 

When the anode is positive, all electrons will reach it. But if the potential of the 

anode is now reduced, eventually becoming negative relative to the cathode, 

there will come a point at which even the most energetic electrons will not be 

able to reach the anode. The current on the ammeter falls to zero. The potential 

difference between cathode and anode at this point is known as the stopping 

potential Vs. It is a direct measurement of the maximum kinetic energy Emax of a 

photoelectron.

The photoelectric equation, in these terms, is

eVs = hf − hf0

In wavelength terms (using ideas from Topic E.1) this is

eVs =
hc

λ
−

hc

λ0

Rearranging the expression yields Vs =
hc

λe
−

hc

λ0e
 or Vs =

hc

e
(1

λ
−

1

λ0
)

A graph of Vs against 
1

λ
 is a straight line with:

• gradient 
hc

e

• intercept of 
1

λ0

 on the 
1

λ
 -axis

• intercept of Vs = −
hc

eλ0

= − 
Φ

e
 on the Vs-axis.

Notice that:

• The gradient of the graph depends on three fundamental constants,  

h, c, and e. It does not depend on the metal used for the surface.

• The value of the Vs intercept depends on the gradient and the work function 

(which aects the threshold wavelength). 

• Dierent metal surfaces give parallel lines with dierent gradients.

▴ Figure 6 The variation of Vs with 
1
λ

 for 

the Millikan photoelectric experiment.

Vs

gradient =

0
0

hc

e

hc

eλ0

1

λ

1

λ0

▴ Figure 5 A photoelectric cell. Electrons 

are emitted from the cathode as photons 

arrive. When the electrons have sucient 

energy, they reach the anode, which is at a 

negative potential relative to the cathode. The 

potential of the anode is made more negative 

until the electrons cannot quite reach it and 

the picoammeter reading becomes zero.

electrons

vacuum

incident

radiation

cathode

anode

+
Vs

pA
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▴ Table 1 Work functions of elements.

Element Work function / eV

caesium 2.1

sodium 2.3

potassium 2.3

calcium 2.9

magnesium 3.7

cadmium 4.1

aluminium 4.1

lead 4.1

silver 4.3

zinc 4.3

iron 4.5

mercury 4.5

copper 4.7

carbon 4.8

cobalt 5.0

nickel 5.0

gold 5.1

platinum 6.4

The table shows some data from Millikan’s 1916 paper 

(Millikan, R. A. 1916. A direct photoelectric determination of 

Planck’s “h”. Physical Review, Vol. 7, No. 3. pp. 355–388). 

(The stopping potentials have been corrected from Millikan’s 

original data to account for the work function of the copper 

electrode used to detect thecurrent).

Wavelength / nm Stopping potential / V

546.1 0.36

433.9 0.91

404.7 1.11

365.0 1.49

312.6 2.03

253.5 2.92

• Calculate the frequencies of the six wavelengths of 

light that Millikanused.

• Plot a graph of stopping potential versus frequency.

• Find the gradient of your graph.

• Millikan suggested that the uncertainties in 

the stopping potentials were ± 0.01 V. Use this 

uncertainty to estimate an uncertainty in your value for 

the gradient.

• Millikan determined the value of h using the equation 

h = G × e, where G is the gradient of the graph and 

e is the charge on the electron. Millikan’s value for e

was (1.5924 ± 0.0017) × 10 19 C. Determine the value 

of h and determine its uncertainty.

• Today, Planck’s constant is dened as  

6.626 070 15 × 10 34 J s. Is this value consistent with 

Millikan’s data? Calculate the dierence between the 

value from Millikan’s data and today’s dened value 

and express this as a percentage dierence.

• The work function of the element sodium is oen 

given as 2.3 eV, although a very pure sample would 

have a work function of 2.75 eV. Millikan’s sample is 

likely to have contained impurities which would have 

aected his measurement of the work function. (In 

fact, he did not make use of the work function in his 

paper.) Use your graph to nd the work function that 

is suggested by Millikan’s data.

Data-based questions

Table 1 gives some typical values for work functions. The work function is affected 

by the nature of the sample, for example, its crystalline structure.
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The graph shows how the maximum kinetic energy Emax of 

photoelectrons emitted from a metal surface varies with the 

frequency f of the incident electromagnetic radiation.

a. Explain why, for radiation of wavelength 500 nm, no  

electrons are emitted from the surface.

b. Estimate, using the graph:

 i.  the maximum kinetic energy of the electrons emitted  

when radiation of wavelength 250 nm is incident on  

the surface

 ii. the work function of the metal

 iii. Planck’s constant h, giving the answer in J s.

c. Another metal surface has a work function of 1.8 eV.  

Draw a graph showing how Emax varies with f for this surface.

Solutions

a.  The frequency of radiation is f=
c

λ
=

3.00 × 108

500 × 10 9
=

6.0 × 1014 Hz and is below the threshold frequency of about 

7.2 × 1014 Hz. The energy of the photons is therefore less than 

the work function and insucient to remove electrons from 

the surface.

b. i.  For this wavelength, the frequency  

is  
3.00 × 108

250 × 10 9
= 1.2 × 1015 Hz. The maximum  

energy of photoelectrons can be directly read o the 

graph, Emax = 2.0 eV.

 ii.  The work function is equal to the negative intercept with the 

energy axis of the extrapolated graph.

   Intercept =−3.0 eV ⇒ work function = 3.0 eV. 

 iii.  The equation of the line is Emax = hf−훷. Hence the 

Planck’s constant is equal to the slope of the graph.  

h ≃
3.2−(−3.0)

15 × 1014
= 4.1 × 10 15 eV s. 

Conversion to J s is straightforward:  

h= 4.1 × 10 15
× 1.6 × 10 19

= 6.6 × 10 34 J s.

c.  Both lines have the same slope h, hence must be parallel to 

each other. The new graph has an intercept of −1.8 eV with 

the energy axis.
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Worked example 3

In an experiment to investigate the photoelectric eect, 

monochromatic light of wavelength 430 nm is incident on a 

metalsurface. 

a.  Calculate, in eV, the energy of the photons incident on the 

photosensitive surface.

A variable voltage V is applied across the photoelectric cell.  

The current in the ammeter is zero when V is 0.60 V ormore.

b. Determine:

 i. the work function of the metal

 ii.  the photoelectric threshold frequency for themetal.

Solutions

a. E=
hc

λ
=

1.24 × 10 6

430 × 10 9
= 2.9 eV

b. i.  The maximum kinetic energy of the photoelectrons is Emax = 0.60 eV.  

(This is the work done by the electric eld in stopping the most energetic electrons.)

   The work function can be found by rearranging Einstein’s photoelectric equation,  

훷 = hf −Emax = 2.9 − 0.6 = 2.3 eV.

 ii.  Photons of threshold frequency f0 have energy equal to the work function: hf0 =훷. 

   Hence f0 =

훷

h
=

2.3 × 1.60 × 10 19

6.63 × 10 34
= 5.6 × 1014 Hz. Note that the work function is  

expressed in J, because the calculation involves the value of the Planck’s constant in J s.

Practice questions 

1. The work function for silver is 4.3 eV. 

a. Calculate the photoelectric threshold frequency 

for silver.

 Electromagnetic radiation of wavelength 240 nm is 

incident on the silver surface. 

b. Calculate, for the electrons emitted from the sliver 

surface, their maximum:

i. kinetic energy

ii. speed.

c. The intensity of the radiation is increased. State 

the eect of this change on:

i. the maximum speed of the photoelectrons

ii the rate at which the electrons are emitted 

from the surface.

2. Monochromatic electromagnetic radiation is incident 

on a photoelectric cell with a sodium cathode, causing 

the emission of photoelectrons. A potential dierence 

of at least 1.5 V applied across the cell prevents the 

photoelectric current from owing in the cell. 

Work function for sodium = 2.3 eV.

a. Calculate the maximum initial speed of the 

electrons emitted from the sodium surface.

b. Determine the wavelength of the incident radiation.

3. The photoelectric threshold wavelength for a 

particular metal surface is 480 nm.

a. Calculate, in eV, the work function of the metal.

b. Radiation of frequency 9.0 × 1014 Hz is incident 

on the surface. Calculate the stopping voltage for 

this frequency.
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scattering angle = 135°

scattering angle = 90°

scattering angle = 45°

no Compton scattering

single
crystal

lonization
chamber

X-ray source

carbon target

straight-on direction
λ = 0049 nm

λ = 0031 nm
λ = 0015 nm

▴ Figure 7 The arrangement and results from Compton’s scattering experiment. 

Thewavelength of the X-ray source is λ = 0.0709 nm. 

The Compton eect

By the early 1920s, physicists were still discussing the implications of Einstein’s 

explanation of photoelectricity. In 1923, Arthur H Compton, a scientist from 

the USA, was investigating the behaviour of high-energy, short-wavelength 

X-radiation. The X-rays were scattered by elements with small proton number. 

Compton found that the wavelengths of the X-rays increased after scattering.

Photoelectrons are emitted instantly when radiation is 

incident on the metal surface, no matter how small the 

intensity of the radiation. The wave theory cannot explain 

this. The properties and defining features of waves were 

described in Topics C.2 and C.3. In particular, the energy 

transfer properties of waves were outlined there.

A progressive wave transfers energy at a continuous rate 

and the intensity of the wave is proportional to the wave 

amplitude2 (Topic C.2). Wave theory predicts that, given 

a long enough wait, even a low-power source will deliver 

enough energy to release a photoelectron eventually 

whatever the radiation frequency. This is not what is 

observed. No photoelectric emission occurs below the 

threshold frequency, and instantaneous emission occurs 

above the threshold even with weak incident radiation. 

This falsified the theory that electromagnetic radiation 

in general, and visible light in particular, possessed only 

wave behaviour. It drove physics into new areas of study 

and creativity by creating a dilemma.

The dilemma was that a wave theory is needed to explain 

properties such as interference and diffraction, but a 

particle-like photon is required to explain photoelectricity. 

Light appears to have the properties of either waves 

or particles depending on the type of experiment or 

phenomena that we are observing. Put another way, we 

can invoke the wave properties or the particle properties 

depending on what we want to explain. This flexibility 

in approach is known as the wave–particle duality. 

The light has properties that can be either wave-like or 

particle-like.

What are the defining features and behaviours of waves?

How did the explanation of the photoelectric effect lead to the falsification that light was 
purely a wave? (NOS)
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X-radiation photons of very large energy are incident on a carbon target. 

Compton produced the radiation by accelerating electrons through a potential 

difference of 17 kV to strike a molybdenum target. The deceleration of the 

electrons in the target produces an intense beam of X-rays that Compton focused 

onto the carbon block. Figure 7 shows Compton’s experimental arrangement 

and his results at different scattering angles.

The scattered X-ray photons are observed using a detector consisting of a single 

diffracting crystal and an ionization chamber (in which an electric current is 

proportional to the number of air atoms ionized in the chamber). A spectrum with 

two peaks is seen at each scattering angle except for the straight-on direction. 

The smaller peak is due to atom scattering; the larger peak is due to free-electron 

scattering. As the scattering angle increases, the wavelength shift increases too.

The spectrum plot of scattered X-ray intensity against the wavelength of the X-rays 

allows the energy of the scattered X-ray photon to be estimated because

E=
hc

λ

The X-rays are scattered by free electrons in the carbon. Only a small fraction 

of the incident X-ray energy is needed to ionize carbon atoms in the target (the 

ionization energy of carbon is about 1 eV). The remaining energy of the X-ray 

photon is involved in its interaction with a free electron. Both an X-ray photon 

and the electron are scattered away from the initial photon direction (Figure 8). 

The electron recoils. The photon scattered from the interaction has an increased 

wavelength and therefore a smaller energy than the incident photon. 

incident X-ray

photon target

electron

scattered

photon

electron

recoil

λ
f

λ
i

ϕ

—

—

θ

▴ Figure 8 In the Compton eect, an incident X-ray photon interacts with a free target 

electron. The electron gains energy and moves away while an X-ray photon of a dierent 

frequency is scattered in a dierent direction.O
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LThe situation is very like the situation analysed in Topic A.2 where two bodies 

undergo a two-dimensional collision. Compton proved mathematically that the 

difference between the scattered and incident wavelengths, λf and λ , of the 

X-radiation was

λf − λi = Δλ =
h

mec
(1 − cos θ)

where θ is the scattering angle and me is the mass of the electron. It is also 

possible to predict the angle through which the electron recoils, although this  

was not measured in Compton’s experiment. When the electron recoils at an 

angle ϕ, then

1

tan ϕ
= (1 +

hf

mec
2 ) tan (θ

2)
Figure 7 shows the results for a series of scattering angles ranging from straight-

on (0°) to back-scattered through 135°. For all angles except the straight-on 

direction, there are two peaks for the photon wavelengths. The larger peak (at λf) 

is due to Compton scattering. This relies on the prior ejection of the electron from 

the atom by the incident X-ray photon, as explained above. 

However, another possibility is that the photon is scattered by the whole of the 

carbon atom. (It is likely that this scattering occurs at the inner, tightly bound 

electrons of the atom.) In the whole-atom case, the mass me in the Compton 

equation changes to the mass of the whole carbon atom, some 20 000 times 

greater than the electron mass. The wavelength shift in this case is correspondingly 

much less and effectively zero. This is the reason for the second smaller peak in the 

intensity graphs at the same wavelength as the incident photon.

Compton’s measurements confirmed his prediction for the relationship between 

Δλ and θ. The prediction had been made on the basis that photons have:

• energy given by E=
h

f
=

hc

λ

• momentum given by p=
hf

c
=

h

λ

Compton’s result cannot be explained on the basis of a wave model. The 

classical explanation of scattering of light by a charged particle does not predict 

wavelength shifts when the radiation has a small intensity. Compton’s incident 

X-rays had a small intensity and so the classical theory does not explain the effect. 

If the radiation intensity were to be very large, then other effects, different from 

the Compton effect, would be observed under a classical model.

Use Figure 7 to complete the following tasks.

• Use the three points of data in the diagram to make a table. Tabulate 

values of 1 − cos(θ).

• Plot a graph of λf on the y-axis against 1 − cos(θ) on the x-axis.

• Add a line of best t.

• By referring to the equation for Compton scattering, deduce what the 

gradient and the y-intercept of your graph represent. Hence nd the 

value of λ

Data-based questions
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Can the Bohr model help explain the photoelectric effect? (NOS) 

Why is Compton scattering more convincing evidence for the particle nature of light than 
that from the photoelectric effect? (NOS)

Compton proved the result for his effect by assuming that:

• Einstein’s light quanta possessed momentum even 

though this is the attribute of a particle

• there was only one interaction between a quantum 

and a free electron. 

In the collision of two solid balls in mechanics, there are 

many atoms involved and we use the centre of mass of the 

balls as an averaging process.

Additionally, Compton could not assume that the final 

speed of the electron was slow enough for the interaction 

to be treated as Newtonian. He had to use the full 

relativistic expression for the invariant energy of the 

electron. 

Finally, two solid balls have similarities in property even 

though their masses may be different. Likewise, the 

interaction between them is, for any practical case, 

inelastic. The derivation of the Compton equation 

assumes that no energy (in its broad sense, including 

mass energy) is lost in the interaction. Momentum is also 

conserved in the solid ball collision and in the Compton 

effect.

The energy change of the incident solid ball also depends 

on the “scattering” angle, although through a different 

equation. In both cases, the energy change of the 

scattered objects can be predicted using conservation 

laws, which links to the discussion in Topic A.2.

How is photon scattering off an electron similar to and how is it different from the collision of 
two solid balls?

Bohr’s model of the atom (Topic E.1), like many early 

models of a phenomenon was an over-simplification. It is 

taught to students today largely because of its historical 

importance and because it represents a superb synthesis 

of observation and physical hypothesis. 

Quantum mechanics dictates that we can no longer 

model the hydrogen atom as a system of an orbital 

electron and a stationary proton. Nor can we use the Bohr 

model to explain photoelectricity. Bohr himself knew that 

his model was limited to the simplest atoms with one 

electron. In the photoelectric effect, the incoming quanta 

are interacting with free electrons near the surface of a 

metal. The bonding between electron and metal cannot 

be modelled using Bohr’s ideas.

All physical models have limitations. It is the role of the 

scientist to appreciate these limitations and either work 

within them or strive to improve the scope of the model.

In the photoelectric effect, the incoming photon 

disappears without trace. Its energy is transferred to the 

metal undergoing the effect and what remains appears as 

kinetic energy of the emerging photoelectron. Einstein 

needed  

to infer the properties of what he called the “quantum” 

from the link between its disappearance and the resulting 

electron emission.

The Compton effect is more direct. The energies of both 

the incident X-ray photon and the emerging photon 

can be measured. The change in them can be directly 

related to the final state of the scattered electron. Further, 

coherent scattering — when the incident photon interacts 

with the whole atom — can also be observed and agrees 

with theory. There is a correlation between the absorption 

of a photon and the release of a photoelectron that can 

be explained using Einstein’s theory. However, the link 

between the wavelength shift of the X-ray photon and the 

gain in energy of the electron in the Compton effect is 

both measurable and causal.
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A photon of energy 15 keV interacts with a free electron that is initially at rest. The electron  

recoils and the photon is scattered at an angle of 60° relative to the original direction.

a. Explain why the energy of the photon decreases as a result of the interaction with the electron.

b. Calculate the wavelength of:

 i. the incident photon

 ii. the scattered photon.

c. Determine the energy of the recoil electron.

Solutions

a.  During the photon–electron collision, some of the energy and momentum of the photon are transferred to the electron. 

Since the total energy is conserved, the energy gain of the electron is equal to the energy loss of the photon.

b. i.  The wavelength of the incident photon is λ =
hc

E
=

1.24 × 10 6

1.50 × 104
= 8.27 × 10 11 m.

 ii.  The change in the wavelength can be calculated from the Compton formula, Δλ=
hc

mec2 (1 − cos θ)  

=
1.24 × 10 6

0.511 × 106
 (1 − cos 60°) = 1.21 × 10 12 m. (We have expressed the electron mass in MeV c 2 in order to 

simplify the calculation of the ratio 
h

me

. MeV c 2 as a unit of mass is described on page 641 in Topic E.3.) The 

wavelength of the scattered photon is therefore λf = λ +Δλ= 8.27 × 10 11 + 0.12 × 10 11 = 8.39 × 10 11 m.

c.  The energy of the recoil electron is equal to the energy loss of the photon, E − Ef = 1.50 × 104 −
1.24 × 10 6

8.39 × 10 11
= 220 eV.

Worked example 5

In a Compton scattering experiment, an X-ray photon of wavelength 1.20×10 11 m collides with a free,  

stationary electron. The outgoing photon is detected at an angle of 90° to the original direction.

a. Calculate the wavelength of the outgoing photon.

b. Determine the change in momentum (magnitude and direction) of the photon.

c. Hence, state the angle through which the electron recoils.

Solutions

a.  λf = λ +Δλ = 1.20 × 10 11 +
1.24 × 10 6

0.511 × 106
 (1−cos 90°) = 1.44 × 10 11 m. 

b.  The initial momentum of the photon is p =
h

λ
=

6.63 × 10 34

1.20 × 10 11
= 5.53 × 10 23 N s and the nal momentum is  

pf =
h

λf

=
6.63 × 10 34

1.44 × 10 11
= 4.60 × 10 23 N s. The vectors representing p  and pf are at right angles to each other, 

so the magnitude of their dierence is Δp = p 2 + pf
2
= 7.19 × 10 23 N s. The angle that Δp makes with the 

original direction is 180° − tan 1(pf

p )= 140°. This is illustrated in the following diagram, in which the incident 

photon propagates horizontally to the right and the scattered photon 

verticallyupwards.

c.  The momentum of the photon–electron system is conserved so the 

momentum gain of the electron is equal but opposite to the momentum 

change Δp of the photon. This means that the electron recoils diagonally 

to the right, at an angle of 40° below the horizontal. You should compare 

this problem with examples of two-dimensional collisions in Topic 

A.2 — the conservation of momentum applies to both situations!

140°

40°

p
i

Δpp
f
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Practice questions 

4. An X-ray photon of energy 25.0 keV collides with a 

stationary electron. The scattered photon has energy 

23.3 keV. 

a. Calculate the energy of the recoil electron.

b. Calculate the wavelength change of the photon.

c. Determine the angle through which the photon is 

scattered.

5. A photon of energy 20 keV is scattered at an angle of 

130° o a stationary electron.

a. Calculate the wavelength of the incident and the 

scattered photon.

b. Calculate the energy of the recoil electron.

6. In a Compton scattering experiment, a beam of X-rays 

of wavelength 2.50 × 10 11 m is incident at a carbon 

target. The graph shows the intensity spectrum of 

scattered X-rays observed at a particular angle.

2.50 2.97 wavelength/10–11m

a. Outline how the presence of a maximum at 

2.97 × 10−11 m supports the particle model of 

electromagnetic radiation.

b. Calculate the angle at which scattered X-ray 

photons are observed.

c. Determine the magnitude of the momentum of 

recoil electrons.

Other ways in which matter and photons interact

The Compton effect and photoelectricity are just two of the mechanisms by 

which photons are known to interact with matter. 

• The photoelectric eect occurs at small photon energies from a few eV to a 

few keV. It leads to the ejection of loosely bound electrons from the surface 

of a metal. These energies run from visible light through to the least energetic 

X-rays. The photon is completely absorbed by the material.

• The Compton eect occurs for energies up to about 1 MeV. The photon is 

scattered with a frequency shi.

• Photons with energies of 1.022 MeV and greater can interact with a nearby 

nucleus to undergo pair production. In this mechanism, the photon 

disappears and is replaced by two particles, one the antiparticle of the 

other. Typically, at the lower energy limit the pair will be an electron (e−) and 

an anti-electron called a positron (e+). The energy of the incident photon 

must provide at least both rest mass energies of the particles. Any remaining 

energy goes into the kinetic energies of the particles. Momentum must also 

be conserved in the interaction.

• At even higher energies, more than 2 MeV, photodisintegration can occur in 

which a photon is absorbed by a nucleus which enters a higher energy state 

and later decays with the ejection of a nuclear particle, such as a neutron, 

proton or alpha particle.

Matter waves and the de Broglie hypothesis

The French aristocrat Louis de Broglie (pronounced “de Broi”) took Einstein’s 

revolutionary explanation of photoelectricity and used its ideas to derive the 

Wien displacement law (Topic B.1) from first principles in quantum terms. The 

following year, 1923, he presented a series of short articles to the Paris Academy 

of Sciences in which he extended the wave–particle duality ideas to include 

matter as well as waves. He hypothesized that electrons and other particles could 
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is known as the de Broglie hypothesis

You met this idea in Topic E.1 in the discussion of the Bohr model where the 

electrons are assumed to have a standing-wave arrangement for the different 

energy states of the hydrogen atom. This aspect of the Bohr model arises directly 

from the work of de Broglie.

In his special theory of relativity, Einstein recognized that the mass m of a particle 

and its energy E were equivalent. This equivalence is described in his famous 

equation, E = mc2. This is discussed in more detail in Topic E.3. For a moving 

particle the total energy becomes

E = p2c2
+ m0

2 c4

where p is the momentum of the particle (m0 is sometimes known as the rest mass 

of the particle).

The photon is a particle of zero rest mass (m0 = 0) and therefore E = pc or p =
E

c
. 

According to Einstein, for a photon, E = hf =
hc

λ
 and substituting for E,

p =
hc

cλ
=

h

λ

De Broglie assumed that the equation p =
h

λ
 applied equally to particles as well as 

photons and so, for particles, one final arrangement gives

the de Broglie wavelength λ =
Planck constant

momentum of particle
=

h

p

A baseball pitcher can throw a fast ball in excess of 160 km h 1. The baseball has a 

mass of 0.15 kg. A simple estimate shows that the de Broglie wavelength for the 

ball treated as a single particle is 
6.6 × 10–34

44 × 0.15
≈ 10–34 m. This is an impossibly small 

wavelength. To observe diffraction of the baseball would require an aperture on the 

same scale — far smaller than a proton in a nucleus. However, choose something 

with a much smaller mass and the de Broglie wavelength will increase in inverse 

proportion. This was the basis of an experiment to verify de Broglie’s hypothesis. 

In Topic A.5 you met some invariant quantities that do not 

change between reference frames: proper time, proper 

length and the invariant interval. Another is the invariant 

energy, the total relativistic energy of a system as measured 

by an observer at rest relative to the system.

The invariant energy can contain many types of energy, 

including the rest mass, field potential energies, internal 

energies and energies due to interactions with radiations. 

Many of these energy types have appeared earlier in this 

course in Themes B, D and E.

For the equation in the text, E = p2c2
+ m0

2 c4 , notice 

that this is also  

E = m0c2
1 + ( p

m0c)
2

, which can be expanded.  

When v ≪ c , this becomes  

E ≈ m0c2 (1 +
1

2 (m0v

m0c)
2

) which is

E ≈ m0c2
+

1

2
× m0c2

× (m0v

m0c)
2

or E ≈ m0c2
+

1

2
m0v2

The second term in the expansion is effectively the 

classical Newtonian result for the kinetic energy of a 

moving body travelling slowly in relativistic terms.

Is energy conserved under special relativity? 
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The Davisson–Germer experiment

Two years after de Broglie’s work was announced, Clinton Davisson and Lester 

Germer in the USA verified his hypothesis experimentally. They fired a beam of 

electrons at a nickel target and observed diffracted electrons being emitted by 

the nickel surface (Figure 9). This confirmation together with a slightly later one by 

George Thomson at the University of Aberdeen convinced the Nobel committee 

to award the 1929 Nobel Prize to de Broglie.
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▴ Figure 9 Davisson and Germer red electrons at a nickel target. The nickel atoms 

acted like a diraction grating and the electrons were diracted back to a detector. The 

intensity–scattering angle graph had a pronounced maximum rather like the optical 

diraction patterns you met in Topic C.3. This allowed the two scientists to estimate the 

“grating spacing” — the separation of the nickel atoms which agreed with estimates made 

in a dierent way. The electrons had a wave-like behaviour when they interacted with the 

nickelatoms.

Electron diffraction can now be easily demonstrated in a school laboratory 

using a beam of electrons incident on a thin film of carbon (graphite), as shown 

inFigure 10.

Electrons are emitted by a heated cathode via the process of thermionic 

emission. In this, the electrons gain sufficient energy to leave the surface — rather 

like the process in which electrons gain energy from incident photons in 

photoelectricity. The electrons are then accelerated through a potential 

difference of about 3 kV in a cylinder at a positive potential relative to the 

cathode. The final speed of the electrons is about 10% of the speed of light.

If the electrons behaved as particles when interacting with the carbon film, then 

they would form a bright region in the centre of the fluorescent screen at the 

far end of the tube. However, they do not do this. What is seen on the screen 

is a series of concentric bright and dark lines, or fringes, similar to those seen in 

diffraction gratings due to the interference of light.

You may wonder why there are rings rather than points of light which is what a 

diffraction grating would produce. This is because the carbon film has many small 

crystals of graphite with the planes of atoms all at different angles to each other. The 

individual beams—one from each small crystal—are diffracted at the same angle but 

rotated about the line of the beam so that the characteristic ring shape is produced.

If you get the chance to use this apparatus, take the opportunity to change the 

accelerating potential difference of the electrons. This changes their final speed 

and, according to de Broglie, their wavelength. A smaller pd means a smaller 

electron speed and therefore a larger wavelength. Reducing the pd should make 

the rings spread out more and this is what is observed.

evacuated tube

diffracted electron beams

crystal

heated cathode

(a)

▴ Figure 10 Electrons are emitted from 

a heated cathode and are incident on a 

crystalline sample of graphite. They are 

diracted by the sample and the resulting 

diraction pattern as a series of bright and 

dark rings is observed on the face of the 

uorescent screen. The power supply  

and its connections are not shown in  

diagram (a).

(b)
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Worked example 6

Calculate the de Broglie wavelength for:

a. a neutron moving with a speed of 2.5 × 103 m s 1

b. an electron accelerated from rest through a potential dierence of500 V.

Solutions

a.  The neutron has a momentum p = mnv, so the de Broglie wavelength is λ =
h

mnv
=

6.63 × 10 34

1.675 × 10 27
× 2.5 × 103

= 1.6 × 10 10 m. This is about the size of an atom.

b.  The kinetic energy of the electron is 500 eV. Since p = 2meE,  

λ =

h

2meE
=

6.63 × 10 34

2 × 9.11 × 10 31
× 500 × 1.6 × 10 19 = 5.5 × 10 11 m.

Worked example 7

The atomic structure of a crystal can be investigated using a beam of electrons that diract  

from parallel planes of atoms in the crystal, in a similar way to light diracting at parallel slits.

Distances between atomic planes of a particular crystal are of the order of 1.5 × 10 10 m. 

Estimate the energy of electrons in a beam suitable for a diraction experiment with this crystal.

Solution

Electrons will form a diraction pattern when their de Broglie wavelength is comparable to or shorter than a 

typical interatomic distance. Since λ =

h

p
, this gives a condition for the momentum of electrons: p > 

h

d
,  

where d = 1.5 × 10 10 m is an estimate of the interatomic distance. This means that the energy of the electrons  

must be greater than 
p2

2me

=

h2

2d2me

=
(6.63 × 10 34)

2

2(1.5 × 10 10)2
× 9.11 × 10 31

= 1.1 × 10 17 J ≃ 70 eV.

Practice questions 

7. Calculate the de Broglie wavelength for:

a. an alpha particle of kinetic energy 200 MeV

b. an electron accelerated from rest through a 

potential dierence of1.0 kV.

8. Estimate the minimum energy of neutrons that 

will form a diraction pattern when scattered from 

molecules whose interatomic distance is of the order 

of 10 10 m.

To see this in more detail: The kinetic energy gained by one electron as it is 

accelerated through a pd V is eV, which is equal to 
1

2
mev2. This kinetic energy can 

be expressed in terms of momentum p because

1

2
mev2

=

1

2

(mev)2

me

=

p2

2me

Therefore, 
p2

2me

= eV and p = 2meeV . Invoking the de Broglie expression λ =
h

p

gives λ =

h

2meeV
.

Decreasing V should increase λ. A comparison with the diffraction grating 

equation nλ = d sin θ reminds you that, as λ increases, so does θ.
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Is a beam of light a series of photons or is matter a wave? 

Is light a wave or does matter consist of particles?

Neither of these interpretations is completely correct. 

We need to use wave models at some times and particle 

models at others. The visible-light photons interfering 

in a two-slit experiment are interacting with the slits on a 

probabilistic basis, so that only chance determines the 

outcome. All we can say is that there is more chance of 

a photon arriving at a region where photon densities are 

high. There is less chance of photon arrival where there is 

a predicted minimum in the interference pattern.

Figure 11 shows the build-up of an interference pattern as 

individual photonsarrive.

When interference experiments are carried out with 

small photon incidence rates at the slits, an interference 

pattern is still observed, even though the photons cannot 

possibly be interacting (interfering) with each other. The 

interference wave theory predicts a probability pattern 

and the photons obeythis.

Exactly the same results are obtained when electrons 

diract rather than photons. The build-up of the patterns 

is identical whether there is one electron in transit in the 

diracting apparatus or many.

This strange behaviour takes us into the realms of quantum 

mechanics. 

(c) (d)

(a) (b)

▴ Figure 11 Each dot represents the impact of an individual 

photon with the screen. The exposure time increases from (a) 

through to (d). In (a) it is impossible to see the diraction pattern 

clearly, but as time goes on the pattern of maxima and minima 

becomes more obvious.

Models — Wave–particle duality

There are strong similarities between the wave diffraction 

patterns described in Topic C.3 and the observed 

behaviour of electrons when they interact with crystalline 

lattices. This provides exceptionally strong evidence to 

allow us to describe the electrons as undergoing diffraction. 

Wave theory, when applied to waves of visible-light 

wavelengths and below, is very successful in accounting 

for the diffraction patterns that are observed. Experiments 

and advanced wave theory are in good agreement 

about the origins of the patterns. These observations 

began as early as the lifetime of Grimaldi in the 1660s. 

The full theory reached complete acceptance in 1820 

with the work of Fresnel. However, it was only when 

experimentation became more sophisticated in the 

20th century that scientists could observe the passage 

of individual photons through a double-slit apparatus. 

This had implications that forced a paradigm shift in our 

understanding of the nature of light and matter.

The work described in Topics C.3, E.1 and E.2 

merges into a new but coherent understanding of 

the interaction of matter that is known as quantum 

mechanics. The Bohr model and the ideas of de Broglie 

stimulated scientists such as Heisenberg, Schrödinger 

and Dirac to develop quantum mechanical models, and 

this work continues today. 

In quantum mechanics, particles are described 

using probability waves. These probability waves 

superpose with each other to produce interference 

patterns, whether for light or for particles. The work of 

Schrödinger was crucial here. He postulated a wave 

function to describe the state of a particle. It can predict 

the observed behaviour of many of the simpler atomic 

systems such as hydrogen. 

As an example of the power of the wave function, imagine 

a double-slit interference experiment in which only one 

photon is in transit at any one time. Quantum mechanics 

suggests that the photon has all possible states and 

positions until the instant at which it is observed (that is, 

when we see it on a screen). At this moment, the wave 

function reduces to the classical case as photon detection 

occurs. This is one way to interpret quantum mechanics — it 

is known as the Copenhagen interpretation as named by 

Heisenberg — but it is not the only interpretation possible. 

In summary, it says that nothing can be treated as real until it 

is observed. When light is observed as a wave, it is a wave. 

When it is observed as a photon, it is a particle.

What evidence indicates the diffraction of a wave? How can particles diffract?
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Erwin Schrödinger was an Austrian physicist awarded the 

Nobel Prize in 1933 for his mathematical formulation of 
quantum mechanics. He is famous for his “Schrödinger’s 
Cat” thought experiment. He corresponded with Einstein 

about the Copenhagen interpretation of quantum 
mechanics and used this idea to illustrate the problems 

of applying quantum mechanics to large systems. It was 
his attempt to comment on criticism made by Einstein, 

Podolsky and Rosen who argued that quantum mechanics 

gave an incomplete picture of reality. 

Schrödinger described a thought experiment in which 
the life of a cat in a box depends on the state of a 

radioactive nucleus. If the nucleus decays, the emitted 
particle from the decay triggers, via a mechanism, the 
release of a poison gas. This kills the cat. However, if the 

nucleus remains undecayed, the cat lives. The outcome 
for the cat depends on the state of a quantum particle in 

the nucleus that is said to be in a superposition of states: 
decay/non-decay. Until the box is opened and the state 
of the large-scale cat system is observed, the state of the 

quantum particle cannot be deduced. The Copenhagen 
interpretation implies that the cat is both alive and dead 

until the quantum state has been observed. In quantum-
mechanical terms there is a pre-box-opening wave 

function to describe the system which includes both 
outcomes. This wave function reduces to one state (cat 
alive) or the other (cat dead) as the outcome is observed.

The Schrödinger’s Cat thought experiment is still used 

to test quantum mechanical interpretations. Take 
your knowledge of this area of quantum mechanics 

further by carrying out web research into the work and 
interpretations of John von Neumann-Eugene Wigner, 
David Bohm (pilot-wave interpretation), Hugh Everett 

(many-worlds interpretation), and others.

Communication skills ATL

▴ Figure 12 Erwin Schrödinger (1887–1961).

The implications of quantum mechanics can seem 

confusing to us. In order to observe interference from a 
two-slit system, a contribution from each slit is required so 

that, when the phase dierence between them is π rad, 
destructive interference occurs. When a dim beam of light 
is used (so that we have only one photon in the system at 

a time) or a stream of electrons, then we might wonder 
which slit each particle travels through. The answer must 

be that any individual photon or electron passes through 
both slits.

So, what would happen if we attempted to measure which 
slit a particle travels through? We could imagine a two-slit 

experiment with a stream of photons travelling through 
it. Compton scattering would be one suitable method 
to detect the presence of photons. A beam of electrons 

could be red across the system and the photons of light 

would interact with them. The deection of the electrons 
could be measured to determine information about 
the photons. However, as we saw earlier in the topic, 

in Compton scattering, the photon is scattered into a 
dierent direction. This scattering of the photons destroys 

the two-slit interference pattern and we are le with the 
single-slit diraction pattern (which is to be expected when 

photons of light only pass through one slit). It appears that 
any measurement system which is sensitive enough to 
determine which slit the photons travel through will disturb 

the experiment suciently to remove the two-source 
interference pattern.

Are there other situations where measurement aects the 
observation? Are there any where it does not?

Measurement and observation
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The story of the discovery of radioactivity is well known. 

On 1 March 1896, Henri Becquerel developed one of his 

photographic plates. He saw on the developed plate the 

outline of some uranium salts that had been lying on top 

of the wrapped photographic package. Realizing that 

something about the uranium material caused the effect, 

he looked further and confirmed that the radiation from 

the uranium was the cause. Becquerel was inadvertently 

repeating the same discovery made by Abel Niépce de 

Saint-Victor forty years earlier. Niépce, however, did not 

pursue the idea, even though he reported it to the French 

Academy of Science at the time.

The uranium material near Becquerel’s plates was decaying 

to form a more stable substance. What drives these changes 

to stability? This is a matter of internal balance within the 

nucleus and is driven by the interactions that occur between 

particles in the nuclei of all atoms (except hydrogen, the 

simplest atom of all). As you may expect from work in earlier 

themes, the changes are driven by energy considerations. 

When the nucleus can move to a state where the amount of 

internal binding is greater, then it will do so. The degree of 

initial instability is crucial to determining the outcome of the 

radioactive decay process. 

This topic describes the principal ways in which 

radioactive materials decay. You may already know 

these as alpha decay, beta decay and gamma-photon 

emission. For each radioactive nucleus, the decay process 

is dictated by the causes of the nuclear instability. Some 

nuclei can have too many protons; others have too many 

neutrons. Radioactive-decay processes correct these 

imbalances. As a nucleus undergoes a decay, it moves to 

an increasingly stable state. 

The decay chain is the basis of the way in which a large, 

unstable nucleus moves to stability. This happens not by a 

single one-off change but by a series of incremental, and 

simple, shifts in the balance of the nucleons. 

Radioactive decay is a random process. However, even 

random events can be managed using statistics. The large 

number of atoms in any manageable sample of a material 

means that averages can be predicted and that the 

predictions are accurate to a high degree. Randomness 

means that the mathematics of radioactive change is well 

understood because it depends on the knowledge that 

radioactivity is proportional to the number of active nuclei 

present in the sample. Predictions can be made from this 

straightforward starting point.

Why are some isotopes more stable than others?

In what ways can a nucleus undergo change?

How do large, unstable nuclei become more stable?

How can the random nature of radioactive decay allow for predictions to be made?

E.3  Radioactive decay

In this topic you will learn about:

A
H

L

• isotopes

• nuclear binding energy and mass defect

• the variation of the binding energy per nucleon with 

nucleon number

• mass–energy equivalence 

• the existence of the strong nuclear force

• the random and spontaneous nature of radioactive 

decay

• alpha, beta and gamma radioactive decay 

• neutrinos and antineutrinos 

• the penetration and ionizing ability of alpha and beta 

particles and gamma rays

• activity, count rate and half-life for radioactive decay 

processes and their changes for integral values of half-life

• background radiation 

• evidence for the strong nuclear force

• the stability of nuclides

• discrete nuclear energy levels and the evidence  

for them

• the continuous spectrum of beta decay as  

evidence for the neutrino

• the radioactive decay constant and the radioactive 

decay law N = N0e
휆t

• the relationship between half-life and the radioactive 

decay constant.
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In the history of science, some discoveries have been 

serendipitous — that is, they were unintentional. Becquerel 

observed radiation from uranium compounds because he 

le them lying on a photographic plate (Figure 1).  

Many other phenomena have been observed when 

scientists were not looking for them. For example, 

Wilhelm Röntgen had discovered X-rays largely by 

accident, the year before Becquerel’s discovery. Playing 

with the properties of these new rays soon led to their 

ability to see the bones inside the human body (Figure 2).

Serendipity has led to the discovery of drugs and 

antibiotics, the development of new chemicals and the 

invention of many devices from the microwave to the 

Post-it Note. In these cases, the scientists were able to use 

what might have been a failed experiment and realize the 

potential in their observations.

Introduction
Radioactivity is nuclear change. An unstable atomic nucleus will, sooner or later, 

decay into a different element with the emission of one or more nuclear particles. 

These particles transfer energy from the unstable nucleus through ionization and 

other processes to other atoms with which they collide. These could be atoms in 

a living cell. The damage from these collisions drives cellular change and can lead 

to the evolution of the organism. But it can also lead to cell mutation. Radioactive 

decay has been an essential process but is also a potentially damaging one. We 

need a balanced view on its benefits and drawbacks. 

Isotopes and isotones

The chemistry of an element is determined largely by the configuration of the 

electrons outside the nucleus. Their numbers are equal to the number of protons 

in a neutral atom. Nuclei that have identical numbers of protons must therefore 

have very similar chemical properties and are known as isotopes

Isotopes are two or more atoms that have the same proton number  

but different nucleon numbers.

Carbon has fifteen known isotopes. The two stable forms of carbon are carbon-12 

(also written as C-12; C is the chemical symbol for carbon) and carbon-13. 

Carbon-14 is the longest-lived unstable isotope of the element with a half-life of 

about 5700 years.

These three isotopes are written as: 12
6 C, 13

6 C and 14
6 C. They all have 6 protons in the 

nucleus. C-12 has 6 neutrons, C-13 has 7 neutrons and C-14 has 8. Each neutral 

isotope has 6 electrons and all isotopes share the same chemical properties.

The term “isotope” needs a little care. It is often misused. Do not use it as a general 

name for a stable or unstable nucleus — saying “a 11H isotope” is incorrect unless you 

are speaking in the context of deuterium (2
1H) as well. The proper term for a distinct 

type of nucleus with a characteristic number of protons and neutrons is a nuclide

▴ Figure 2 One of Röntgen’s early 

X-ray images.

▴ Figure 1 Henri Becquerel placed this photographic plate in a 

drawer with some uranium compound wrapped in a black cloth. 

When he later looked at the plate, it appeared to have been 

exposed to light. The shadow of a metal Maltese Cross, located 

between the plate and the uranium compound, is also visible. 

Becquerel realized that the uranium compound was producing 

invisible radiation.

Self-management skills ATL
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Marie Curie is sometimes described 

as the most famous female scientist 

ever. Her work on radioactivity led 

her to discover two new elements, 

radium and polonium. She shared 

the 1903 Nobel Prize for Physics with 

her husband Pierre Curie and Henri 

Becquerel. She was later awarded 

the 1911 Nobel Prize for Chemistry 

and became not only the rst woman 

to win any Nobel Prize, but the rst 

person to win two Nobel Prizes. She 

remains the only person to have won a 

Nobel Prize in two dierent sciences.

During the First World War, she 

endeavoured to use her scientic 

discoveries for good. She established 

mobile X-ray units and acted as a 

driver to assist wounded soldiers. She 

also realized the uses of radioactive 

sources for sterilizing wounds.

While her scientic achievements 

brought her increasing fame, she 

rarely accepted awards and donated 

prize money to scientic institutions. 

Einstein is reputed to have said that 

she was probably the only person 

not corrupted by the fame that 

shegained.

▴ Figure 3 Marie and Pierre Curie 

pictured in c.1903.

Social skills ATL

Occasionally, it is helpful to have a name for two nuclides that share neutron 

numbers but have different proton numbers. These are called isotones. An 

example of a set of isotones that have 20 neutrons is: 36S, 37Cl, 38Ar, 39K and 40Ca.

Can you complete the full notation for these isotones? The first is 36
16S.

Radioactive decay 

Radioactive decay occurs naturally. The nucleus of an unstable atom changes 

into a different nuclear arrangement by emitting combinations of particles. The 

original unstable atom is known as the parent nuclide, the element that results 

from the change is the daughter nuclide. The daughter nuclide may or may not 

be stable. If it is not, then it will go on to decay again, eventually reaching stability 

after a long series of decays called a radioactive series or decay chain.

Radioactivity is:

• random; we cannot predict which nucleus in a sample of a radioactive 

material will decay next

• spontaneous; we cannot inuence the rate of decay by changing the 

physical conditions of the sample such as its temperature, pressure, etc.

Nuclear changes during radioactive decay

The principal types of decay possible are:

• alpha (α) decay — a helium nucleus is emitted by the decaying nucleus

• beta (β) decay — an electron or its anti-particle is emitted or captured by 

thenucleus

• gamma (γ) emission — electromagnetic radiation of high frequency (a gamma 

photon) is emitted by the nucleus as it transfers energy away when moving to 

a lower energy state.

Alpha (α) decay

An unstable alpha emitter emits a particle that consists of two protons and two 

neutrons bound together. This particle is identical to the nucleus of a helium-4 

atom (
4
2He). The overall change from parent to daughter is represented by a 

nuclear equation such as the decays of uranium-232 and polonium-210:

232
U92
→ 228

Th90
+ 4

He2

210
Po84

→ 206
Pb82

+ 4α
2

Notice that in one of these equations the emitted alpha particle is shown as a 

helium nucleus, in the other with the symbol α. Both are correct.

The equations balance. The left-hand and right-hand totals for both A and Z are 

the same.

Energy is also released during the decay. This is not usually shown in the 

equation. In alpha decay, energy is transferred to the kinetic energies of both 

the daughter nucleus and the alpha particle. This has consequences for the 

motion of the products.

A fixed quantity of energy from the decay is available to the two decay 

products. This energy must be conserved as it is shared. But momentum must 

also be conserved. When the parent nucleus is stationary before the decay, then 

There is an example of a radioactive 

series on page 664.
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the total momentum after the decay must also be zero. In an obvious notation, 

md × vd = −mα × vα. With a fixed amount of energy at the disposal of the system, 

the speed of the alpha particle away from the site of the decay and the recoil 

speed of the daughter nucleus are completely determined. Although the 

momenta are shared evenly, energy is not. The alpha mass is much less than the 

nuclear mass of the daughter and so the initial alpha energy is likely to be much 

more than the initial energy of the daughter nucleus.

The emitted alpha speeds are initially the same and the alpha particles lose a 

roughly fixed amount of energy per collision with each air atom as they travel. 

This means that alphas with the same energy from a particular nuclear decay 

travel about the same distance as each other, as shown by the alpha tracks in 

Figure 4.
▴ Figure 4 Polonium-212 is an alpha 

emitter. This is a photograph of the paths 

of the alpha particles made visible as they 

pass through the supersaturated water 

vapour in a cloud chamber. Most of the 

emitted alphas have the same initial energy 

and travel the same distance through the 

chamber. A single alpha particle has a 

higher initial energy and can travel further 

before stopping. This photograph was 

taken during the 1920s by Norman Feather.

Worked example 1

Radon-222 (222
Rn86 ) decays by alpha-particle emission into polonium (Po).

a. Write down the nuclear equation for this decay.

b.  Calculate the ratio 
kinetic energy of alpha particle

kinetic energy of polonium
. Assume that the radon 

nucleus is at rest immediately before the decay.

Solution

a. 222
Rn86

→ 218
Po84

+ 4
2
α

b.  The combined momentum of the decay products is zero; hence p
α
= −pPo.  

The ratio of kinetic energies is 
E

α

EPo

=

p
2
α

2m
α

p
2
Po

2m
Po

= (
p

α

p
Po

)
2
mPo

m
α

= 
mPo

m
α

. The mass ratio of  

the nuclei is, to a good approximation, equal to the ratio of their nucleon numbers;  

therefore, 
E

α

EPo

=
218

4
= 54.5. This means that the alpha particle accounts for about  

98% of the kinetic energy of the decay products.

One of the reasons why a large particle with four nucleons is emitted rather 

than the smaller proton is the energy bound up in the alpha particle. This is 

large; alpha particles are exceptionally stable. Once outside the nucleus, 

the alpha particle is a helium-4 nucleus and can exist as a stable entity. It is 

energetically preferable to allow the alpha particle rather than two protons and 

two neutrons to leave the nucleus. 

A typical alpha particle will have an absolute potential energy of around 

6 MeV and this is substantially less than the potential barrier that prevents 

particles leaving the nucleus. (Imagine the barrier as a fence over which 

particles must jump to escape. Under a classical view, when there is too little 

energy, then the particles cannot reach the top of the fence.) 

The alpha particles leave the nucleus through quantum-mechanical tunnelling. 

The probability wave that describes the alpha particle gives a small, but nite, 

probability that the particle can exist outside thenucleus. 

Patterns and trends

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



Topic E.3 Radioactive decay

634

Practice questions 

1. Thorium-234 (234
Th90 ) is a product of alpha decay of an 

isotope of uranium (U).

a. Write down the nuclear equation for this decay.

b. Calculate the number of neutrons in the parent 

nucleus of thorium-234.

2.  Americium-241 ( 241
Am95 ) decays into an isotope of 

neptunium (Np) by an emission of an alpha particle.

a. Write down the nuclear equation for this decay.

b.  The kinetic energy of the alpha particle is 5.5 MeV. 

Estimate the kinetic energy of the neptunium 

nucleus. Assume that americium is stationary 

when it decays.

▴ Figure 5 This picture shows Arthur 

Compton (discoverer of the Compton eect) 

with Luiz Alvarez (on the right). Alvarez went 

on to observe electron capture for the rst 

time in 1937 and was awarded the Nobel 

Prize in 1968 for his development of the 

bubble chamber. In 1980, in collaboration 

with his son and two nuclear chemists, 

he proposed that a large asteroid impact 

was responsible for the extinction of 

the dinosaurs — a theory which is now 

widelyaccepted.

Beta (β) decay

There are three variants of beta decay: 

• the emission of a beta-minus (β−) particle (an electron)

• the emission of a beta-plus (β+) particle (a positron)

• electron capture.

Negative beta (β−) decay

A neutron in the nucleus is converted into a proton and an electron. The decay 

occurs in nuclides with a ratio of neutron:proton that is large and where, 

therefore, it is preferable to lose a neutron and gain a proton.

The electron leaves the nucleus because confining the electron in a very small nuclear 

region would require an enormous energy to be available in the nucleus. This is not 

the case, so the electron leaves the daughter nucleus as a result of the interaction. 

A third particle is emitted as well (unlike the alpha emission with two particles). This 

particle is known as an electron antineutrino (which has the symbol νe).

In terms of nuclear notation, the beta-minus decay of a thorium (Th) nucleus to 

protactinium (Pa) is

231
Th90

→ 231
Pa91

+ 0
β−1
+ νe

Again, the equation balances because neutrinos are small particles with no 

effective mass or charge. Neutrinos do not require A or Z values, but if you 

include them, they must be both zero. What is important in writing its symbol is to 

remember the “bar” over the Greek lower-case nu. This signifies that this electron 

antineutrino is an antiparticle.

Because there are three emitted particles in this equation (the daughter, the beta-

minus particle and the antineutrino), there is no single solution to the momentum 

equation. The beta-minus particle can have a range of energies unlike the alpha 

particle earlier. It was the observation of this beta energy spectrum that led to the 

discovery of the neutrino. This is discussed on page 638 (AHL).

Positive beta (β+) or positron decay

Here a proton is converted to a neutron and a positron. As you might expect, it is 

observed in nuclei that are proton-rich. The positron is the antiparticle of an electron 

with one positive electronic charge and an identical mass to that of the electron.

The third particle here is an electron neutrino. This is an antiparticle to the 

electron antineutrino involved in beta-minus decay.

The decay of magnesium-23 to sodium-23 is typical of this type of decay. The 

magnesium nuclide does not occur naturally, but the daughter product is a stable 

form of sodium.
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23
Mg12

→ 23
Na11

+ 0
β++1

+ νe

The equation balances with the νe as an allowed shorthand for 0
0
νe

Electron capture

An alternative way in which a proton-rich nucleus can increase the 

neutron:proton ratio is to capture an electron. This electron and a proton 

interact to produce a neutron and an electron neutrino. For any radioactive 

decay to take place, the difference in energy between parent and daughter 

nuclei must be sufficiently large to permit the decay. In nuclides that decay 

by electron capture, the energy difference is small and the positron cannot 

be created. Instead, the nucleus captures one of the inner electrons from the 

atomic shells outside the nucleus.

Subsequently, an outer-shell electron replaces the captured electron with the 

emission of a photon (of large energy usually in the X-ray region).

The equation for the electron-capture process as argon-37 decays is

37
Ar18

+ 0
β1

→ 37
Cl17

+ νe

where the outcome is a chlorine nucleus and the emitted electron neutrino.

(You might expect a positron-capture process to occur. Although this would 

be a symmetrical outcome equivalent to electron capture, it is not observed to 

occur naturally.)

Worked example 2

Write down nuclear equations for:

a. negative beta decay of cadmium-113 (113
Cd48 ) into an isotope of indium (In)

b. positive beta decay of oxygen-15 (15
O8 ) into an isotope of nitrogen (N)

c. electron capture by iron-55 (55
Fe26 ) transmuting into an isotope of manganese (Mn).

Solutions

a.  Decay particles are indium nucleus, an electron and an electron antineutrino. 
113

Cd48
→ 113

In49
+ 0

β1
+ νe. 

  There are other ways to represent an electron in nuclear reactions, some of them are 0e1
, e  or simply e.

b.  Decay particles are nitrogen nucleus, a positron and an electron neutrino.
15

O8
→ 15

N7
+ 0

β
+

1
+ νe

  Alternative ways to represent a positron include 0e+1
+, e+ or e (the bar as usual denotes an antiparticle).

c.  The products of the reaction are a manganese nucleus and a neutrino.
55

Fe26
+ 0

β1
→ 55

Mn25
+ νe

Practice questions 

3. Thorium-234 (234
Th90 ) decays into protactinium-234  

(234
Pa91 ). State the two remaining decay products of 

thorium-234.

4. Oxygen-18 (18
O8 ) is formed when an isotope of uorine 

(F) decays with an emission of a positron. Write down 

the nuclear equation for this decay.
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Gamma-photon (γ) emission

A daughter nucleus is often left in an excited state after alpha or beta decay. An 

excited state is one in which the nucleus has a surplus amount of energy relative 

to the state of lowest energy. The following decay scheme is part of the path that 

begins with the neutron bombardment of naturally occurring cobalt-59:

59
Co27

+ 1
n0

→ 60
Co

m
27

 (A)

60
Co

m
27

→ 60
Co27

+ γ (B)

60
Co27

→ 60
Ni

m
28

+ 0
β1

+ νe (C)

60
Ni

m
28

→ 60
Ni28

+ γ (D)

▸ Figure 6 The energy states involved in 

the decay of 
60

Co
m

27

2.505

2.158

1.332 

1.3325 MeV γ
Ni

60
28

Co
60

27

1.1732 MeV γ

Co-60m

B

β

0.31 MeV β 99.88%

10.467

minutes

0.05859 MeV γ

C

D

Figure 6 shows part of the energy-level diagram for this scheme.

• In A (not shown on the diagram) a single neutron interacts with naturally 

occurring cobalt to produce an excited state of cobalt-60. The excited 

nature of the state is indicated by the superscript “m” to the right of the 

chemicalsymbol. 

• The original excited state is shown in the diagram (B) together with the 

energy level to which the nucleus falls aer emitting a gamma photon of 

energy 0.059 MeV.

• The cobalt-60 now undergoes beta-minus decay to form the excited nickel 

nucleus 60
Nim

28
. This decay (step C) occurs in 99.9% of all cobalt-60 decays 

by emission of a β  particle of maximum energy 0.31 MeV or, in 0.12% of 

all cobalt-60 decays, by the emission of a β− particle of maximum energy 

1.48 MeV. Whether path B or path C is taken, the nickel is produced in an 

excited state.

• Finally (step D), the metastable nickel decays by the emission of further 

photons to arrive at its lowest energy (ground) state.

The gamma photons (or gamma rays) emitted during radioactive decay obey all 

the usual rules of electromagnetic radiation, although they are likely to have high 

energies measured in MeV. The energy of the photon is given by  E = hf and they 

possess momentum according to p = hf
c

.
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Discrete nuclear energy levels

Figure 7 is an example of the energy changes that occur in gamma emission. 

There are only three photon energies that are observed in the de-excitation of the 

cobalt-60.

Earlier the nuclear equation for the decay of uranium-232 to thorium-228 was 

given. Figure 8 shows the three lowest energy states of the thorium. The figure 

also shows the alpha and gamma emissions that are observed most often. 

The discrete nature of the photon energies emitted in gamma decay and the 

discrete nature of the alpha energies should remind you of the line spectrum 

emitted by the hydrogen atom. This is a different phenomenon — the transition of 

the atom to a lower energy state — but nevertheless, the non-continuous nature of 

the energies is strongly indicative of a discrete energy structure in the nucleus. 

Discrete spectra always provide evidence for discrete energy levels whether in 

the nucleus or in the atomic electron shells.

Physics makes no distinctions between photons other 

than by energy. However, as Topic C.2 shows, we do 

distinguish these energies by assigning dierent names to 

the regions of the electromagnetic spectrum. Oen these 

names reect the origin of the photons.

A good example of this is the distinction made between 

photons in the X-ray region and gamma photons. 

Although both sets of photons can easily have the same 

energy (and thus the same frequency), they are usually 

imagined as having dierent origins:

• X-ray photons arise when high-energy electrons are 

decelerated to rest when they interact with matter. As 

the electrons lose the energy, it is radiated as photons in 

the X-ray region by a process known as bremsstrahlung 

(German for “braking radiation”). The spectrum of such 

X-rays is continuous (like black-body radiation).

X-ray photons can also be produced when high-

energy electrons eject the electrons from the tightly 

bound inner energy states of atoms of heavy metal 

elements such as tungsten. This radiation has a line 

spectrum and is known as a characteristic spectrum 

because it depends on the element from which the 

inner electrons are ejected.

• Gamma photons arise from interactions, but this time at 

the level of the nucleus. As described above, changes 

in nuclear energy states can lead to the emission of 

photons of high frequency. An example of this is the 

58 keV photon emitted when the thorium-228 E1,

energy state changes to E0 (Figure 8). This gamma 

photon comes from a nuclear energy change. An X-ray 

photon of almost exactly the same energy is emitted 

during the de-excitation of a tungsten atom following 

its the excitation by high energy electrons in the 

formation of an X-ray spectrum. 

Additionally, nuclear transitions generally have energy 

gaps of the order of MeV whereas the orbital electron 

transitions from Topic E.1 have gaps of the order of eV. 

Are there differences between the photons emitted as a result of atomic versus  

nuclear transitions?

E2 = 187 keV

E1 = 58 keV

E0 = 0

α0(5320 keV)

α2(5139 keV)

α1(5263 keV)
γ (129 keV)

γ (58 keV)

228
Th90

232
U92

◂ Figure 7 Three of the energy states 

involved in the decay of 
232

U92  to 
228

Th90 .
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Continuous spectra of beta decay

Unlike alpha particles that have only a single initial energy (or at most a few discrete 

energies), the beta particles from a particular decay are observed to take any energy 

value between zero and the maximum (Figure 8). This maximum value depends on 

the decay in question and is related to the energy released as a result of the decay. 

In alpha decay, the daughter nucleus and the alpha particle share the available 

energy. With an initially stationary parent nucleus, the momentum of the 

two particles must sum to zero. Two equations (conservation of energy and 

momentum) and two unknowns (speeds of the emitted particles) means that 

there is one unique mathematical solution. The alpha particles can take only one 

initial speed for each available discrete energy.

In beta decay, energy and momentum must still be conserved, but with three 

particles and two equations, there is no longer a unique solution. The total 

energy can be divided between the kinetic energies of daughter, neutrino and 

electron in an infinite number of ways. In fact, because the mass of the daughter 

atom is very large compared with that of the electron and neutrino, its mass is 

by far the largest factor in calculating its momentum, and both its speed and 

kinetic energy must be small. The energy is therefore effectively split between 

the neutrino Ev and the beta particle Ee, as shown in Figure 8. The vertical dotted 

line can be placed anywhere between zero and Emax to give the infinite number of 

possibilities for the energy split.

The detection of a neutrino is exceptionally difficult. The particle interacts 

only weakly with matter. The first detection experiment involved the use of 

antineutrinos from a nuclear reactor that then interacted with protons in nuclei 

to produce neutrons and positrons. The positron almost immediately annihilates 

with an electron to produce two gamma photons. The neutron is also captured 

with the emission of a third photon. The coincidence of the photon arrivals at 

detectors indicates that an antineutrino interaction must have occurred.

There is a constant and very large flux of neutrinos incident on (and through) 

Earth. For example, the neutrinos emitted as a result of the fusion reactions in the 

Sun give rise to a flux of 1015 neutrinos every second through one square metre 

of Earth’s surface. Experiments carried out in gold mines 3.5 km below Earth’s 

surface and elsewhere have confirmed the properties of the neutrinos as being 

uncharged, having essentially zero mass and having a very weak interaction with 

matter. The chance of a single neutrino undergoing one interaction as it passes 

through Earth along a diameter is less than 1 in 1011

Ee

Emax

in
te
n
si
ty

β energy

E휈

▴ Figure 8 The graph of intensity against 

beta-minus energy for the beta particles 

emitted in beta decay.

Dierences between alpha decay and beta emission led 

Wolfgang Pauli in 1930 to the prediction that a third type 

of particle was involved in beta decay. The evidence of 

monoenergetic alpha decay and continuous-spectrum beta 

decay was an enormous problem for the physicists of the day. 

Niels Bohr even proposed, at one point, that the principle of 

conservation of momentum would have to be discarded.

The Solvay conference of 1933 was ocially devoted to the 

discovery of the neutron, but Enrico Fermi used the event 

to propose that an electron–neutrino pair is the result of 

beta decay in just the same way that a photon is emitted 

by an excited atom. This was the precursor of the modern 

theory of the weak interaction.

However, it took over 20 years before Frederick Reines 

and Clyde Cowan found evidence for the existence of the 

neutrino in 1956. This shows the diculties that must be 

overcome to observe interactions involving the neutrino.

This is an example of a successful experiment that provides 

evidence as a result of a hypothesis. It led to the theory of 

the weak interaction originally propounded by Murray  

Gell-Mann one year before the observation of the neutrino 

that had started it all.

How did conservation lead to experimental evidence of the neutrino? (NOS)
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Properties of ionizing radiation

The emitted alpha, beta-minus and beta-plus particles and the gamma photons 

are classed as ionizing radiation. This means that, as they pass through matter, 

they ionize the material (creating separated electrons and positive ions from 

previously neutral atoms). This ionization requires a transfer of energy from the 

energetic particle to separate the electron from the ion. 

In the case of alpha and beta particles, ionization results in a reduction in the 

kinetic energy of the particle. (It slows down.) This is not an option for the gamma 

photon, which travels at the speed of light in the medium concerned. The loss of 

energy will either be complete — that is, the photon is completely absorbed — or 

it will experience a frequency shift. This occurs in Compton scattering (Topic E.2) 

where a photon and an electron interact, with the electron gaining energy and 

the photon shifting to a lower frequency, longer wavelength.

Alpha particles are the most massive of the emitted particles. They also have the 

largest charge. For a given energy, they travel slowly and take the longest time of 

the particles to pass an atom. The charge and mass of the alphas mean that they 

have a high chance of interaction with neighbouring atoms and of transferring 

energy to them. This interaction can be via an inelastic or elastic collision, through 

ionization, or by some other effect.

Table 1 lists the properties of the radioactive emissions. These are approximate 

and there are exceptions to the suggested absorption ranges.

It is particularly important to prevent alpha particles coming in contact with animal 

tissue, whether externally on the skin, or internally through inhaling or swallowing 

the radioactive emitter.

The strong nuclear force

Earlier themes have discussed the electromagnetic interaction between charges 

and the gravitational interaction between masses. Another interaction that acts only 

within the nucleus is the strong nuclear force, which is short-range and attractive.

Properties of the strong nuclear force:

• relative strength compared with gravity is approximately 1038

• range is between nucleons ∼ 1 fm

• involves nuclear particles such as protons and neutrons—the strong 

interaction does not aect electrons and neutrinos.

There was an implicit problem with the model of the nucleus in the first half of the 

20th century. The discovery of the neutron by Chadwick in 1932 accounted for 

the nuclear mass, but not for the interactions inside the nucleus. The protons are 

positively charged and, for every nuclide from helium upwards, there must be 

electrostatic repulsion between protons in the nucleus. Hydrogen, having only 

one proton, is exempt.

The nucleus, on this basis, is inherently unstable. It should fly apart under the 

effects of the electrostatic repulsion. Evidently this does not happen, so there 

must be other attractive forces, or interactions, that overcome this.

A simple description of the effects of the strong nuclear force and electrostatic 

repulsion on two protons is given in Figure 9. 

• In region X, both strong and electrostatic forces are repulsive and the 

protons repel each other.

• In region Z, the strong nuclear force is very weak and approaches zero 

asymptotically on the separation axis. The electrostatic force dominates and 

the overall force is repulsive.
639

Alpha particles:

• are very highly ionizing 

• penetrate matter very poorly 

• are absorbed by a few 
centimetres of air 

• are absorbed by a thin sheet  
of paper.

Beta-minus particles:

• have a moderate ionizing power 
compared with alpha particles 
of the same energy

• have a moderate ability to 
penetrate matter 

• are absorbed by around 25 cm 
of air 

• are absorbed by a few 
centimetres of animal or plant 
tissue 

• are absorbed by a few 
millimetres of aluminium.

Gamma photons:

• are weakly ionizing 

• eject electrons from metals (via 
the photoelectric eect) that 
cause secondary ionization 

• are highly penetrating 

• are absorbed by a few 
centimetres of lead 

• are absorbed by a few metres  
of concrete 

• are only weakly absorbed by 
animal tissue.
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▴ Figure 9 The variation of the forces 

acting between two nuclear protons with 

distance between them. 

▴ Table 1 Properties of the radioactive 

emissions.
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• In region Y, the strong nuclear force is strongly attractive and dominates the 

repulsive electrostatic force. There is an overall attraction between the two 

protons and this range of separations is their preferred distance apart.

For a nucleus of helium, A = 4 and the radius of the nucleus is about 2 fm. This 

suggests that the protons will be within region Y of each other. However, for large 

nuclei — for example uranium where the nuclear radius is about 7.5 fm — there will 

still be problems of repulsion between protons on opposite sides of the nucleus. 

This is where the neutrons help. They are subject to the strong nuclear force but 

not electrostatic repulsion because they have no charge. Packing the nucleus 

with neutrons allows the amount of attraction to increase because now protons 

will be attracted by nearby neutrons.

Mass defect and nuclear binding energy

Radioactive change has so far been described simply in terms of instability in 

the parent nucleus. What are the energy transfers that occur during a decay or a 

nuclear fusion or fission?

The fact that the nucleus is a stable and bound system means that energy is 

required to break the nucleus apart and separate the individual neutrons. Figure 

10 gives the process for separation and recombination of the simplest nucleus 

that contains more than one nucleon: deuterium.

Deuterium has one proton and one neutron. To separate these (Figure 10(a)), 

energy must be transferred to the nucleus to break the strong nuclear interaction 

between the proton and neutron. (There is no electrostatic repulsion.) This 

energy is known as the binding energy

The strong nuclear force is 

discussed in more detail in the 

additional higher level section  

on page 647 later in this topic.

The existence of equilibria between opposing forces 

accounts for many areas of physics. The force that 

balances the electrostatic repulsion between protons 

is not gravity. The table on page 533 shows the relative 

sizes of the four known interactions and it is clear that 

gravity cannot hold the key. The theory behind this table 

is covered in Topics D.1 and D.2.

The nature of the attractive force — now named the strong 

interaction — was originally proposed by Hideki Yukawa in 

1935. He suggested that the nucleus was stable because 

nucleons exchanged particles between themselves rather 

as the massless photon connects one object with another 

through what we call electromagnetic radiation. Imagine 

two children, each with a ball, throwing the ball to the 

other child. While the balls are in the air the children 

are connected by this ball transfer. Yukawa predicted 

the existence of these nuclear particles (the balls) that 

he named mesons. The pion, one type of meson, was 

discovered in 1947 by Cecil Powell when he ew balloons 

carrying photographic plates into the highatmosphere.

Would a nucleus be able to exist if only gravitational and electric forces were considered?

The stable nucleus of an atom has a balance between 

strong interaction and electrostatic repulsion. In a similar 

way, a star has a dynamic equilibrium. The outwards 

expansion of the star is due to thermal and radiation 

pressures arising from the extremely high temperatures 

of the interior. The compression comes from the 

gravitational forces that are tending to pull the star’s 

material inwards towards the centre. For most of its life 

the star is stable, even though these two forces are slowly 

changing. This is described in Topic E.5.

Equilibria of dierent sorts signal the end of stellar 

evolution too. Some stars end as neutron stars in which 

the equilibrium is a balance between the outwards 

pressure of neutrons (the end point of electron capture by 

a proton) and the gravitational attraction, as before. Other, 

smaller stars end as white dwarfs where the equilibrium 

is between electron pressure and gravity. Finally, when a 

neutron star exceeds a certain mass, the neutron pressure 

outwards cannot resist the inwards attraction of gravity. 

This time the star collapses completely to form a black 

hole from which not even photons can escape.

How does equilibrium within a star compare with stability within the nucleus of an atom?
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When more energy than the binding energy is provided, the excess will appear 

as kinetic energy of the two nucleons so that they move apart (Figure 10(b)).

Conversely, a proton and a neutron can collide to form a deuterium nucleus and 

release the binding energy as they form a bound system. This energy is released 

as a photon.

Energy and mass are related through the Einstein mass–energy equivalence:  

E = mc2. This is better expressed as

ΔE = c2Δm

where ΔE is the energy transfer and Δm is the mass difference. The release of 

energy when the nucleus forms from its component nucleons is equivalent to a 

loss of mass. The total mass of the separate nucleons in any nucleus is greater than 

the mass of the nucleus, since energy must be provided to separate the nucleons 

from the bound system. This difference in mass is called the mass defect

It is important to realize that this change of mass is implicit in any energy transfer. 

When 1.0 kg of water is boiled completely into steam, an energy of 2.26 MJ is 

required to change the water molecules from the liquid to the gas phase. But this 

(when divided by c2) is a mass change of about 10−11 kg, so is not noticed on a 

regular basis.

Nuclear mass

Changes in mass during a nuclear reaction drive the reactions and it will be 

important to have suitable units for mass measurement in nuclear physics. 

Measuring in kilograms is not suitable as the small mass of a nucleus leads to 

inconvenient and large negative powers of ten. Instead, it is usual to use a quantity 

that is defined by experiment, in this case the unified atomic mass unit. The term 

is usually shortened to atomic mass unit (or even amu) and has a unit symbol of u. 

The value of the atomic mass unit is 1
12

× (mass of a 12
6C atom). 

The full value of the atomic mass unit is 

1 atomic mass unit (u) ≡ 1.660 539 066 60(50) × 10−27 kg ≡

931.494 102 42(28) MeV c−2. (The brackets around the final pair of digits is 

intended to indicate the uncertainty in the measurement. There are further details 

in the Tools for Physics section page 349.)

The final alternative unit that is used is the energy equivalent of mass. This allows

masses to be measured in units of MeV c−2. The rearranged equation Δm = ΔE

c2

allows Δm to be measured in energy units divided by c2

To check that this is correct: an energy of 931.5 MeV is equivalent to 

931.5 × 106 × 1.6 × 10−19 = 1.49 × 10−10 J. When this is divided by c2 (9 × 1016 m2 s−2), 

the answer is 1.66 × 10−27 kg, as stated above.

This makes the:

• mass of a proton = 1.673 × 10−27 kg = 1.007 276 u = 938 MeV c−2

• mass of a neutron = 1.675 × 10−27 kg = 1.008 665 u = 940 MeV c−2

The neutron is slightly more massive than the proton.

Chemists often use the unit “dalton” (symbol: Da) rather than refer to it as the 

“unified atomic mass unit”. It is certainly shorter! Because 1 Da ≡ 1 u, there is 

no need to learn anything new, but the Da will not be used in the IB Diploma 

Programme physics examinations.

photon

deuterium

nucleus (a)

proton neutron
(c)

(b)

deuterium

nucleus

free proton

and 

free neutron

photon
(d)

deuterium

nucleus

▴ Figure 10 A deuterium nucleus can be 

separated into a proton and neutron when 

energy is supplied to it (a & b). When a 

proton and neutron combine, this energy 

must be released (c & d). The total mass of 

the deuterium nucleus is less than that of the 

free proton and free neutron. The dierence 

is the mass defect, which is equivalent to the 

binding energy.
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Worked example 3

The mass of an atom of copper-63 (63
Cu29 ) is 62.929 597 u. 

Calculate, for a nucleus of copper-63, its: a. mass defect b. binding energy.

Solutions

a.  We need to subtract the mass of the electrons from the atomic mass to get the  

mass of the nucleus of copper: mnucleus = m
atom

− Zm
e

= 62.929 597 − 29 × 0.000 549 = 62.913 676 u.

  The nucleus of copper has 29 protons and 34 neutrons. The mass defect is Δm = Zm
p

+ Nm
n

− m
nucleus

= 29 × 1.007 276 + 34 × 1.008 665 − 62.913 676 = 0.591 938 u.

b.  The binding energy of a nucleus is the energy equivalent of its mass defect. Numerically, the 

conversion between mass and energy units is easiest when the mass is expressed in MeV c−2: Δm= 0.591 938 × 931.5 

= 551.4 MeV c−2. From here, the binding energy = Δmc2 = 551.4 MeV. 

  If needed, this can be easily converted to joules: 551.4 × 106 × 1.60 × 10−19 = 8.82 × 10−11 J.

Practice questions 

5. For each of the following nuclei, calculate its:  

i. mass defect ii. binding energy.

a. oxygen-16 ( 16
O8 ), atomic mass = 15.994 915 u.

b. nickel-58 (58
Ni28 ), atomic mass = 57.935 342 u.

c. lead-208 (208
Pb82 ), atomic mass = 207.976 652 u.

6.  The mass of a typical grain of coarse sand is 12 mg. 

Calculate the energy equivalent of this mass. Express 

the answer in (a) joules and (b) MWh.

The table shows the masses of nuclides which all have 

A= 197.

Nuclide Z Nuclear mass / u

197Ir 77 196.969 65

197Pt 78 196.967 34

197Au 79 196.966 57

197Hg 80 196.967 21

197Tl 81 196.969 58

197Pb 82 196.973 43

197Bi 83 196.978 86

197Po 84 196.985 66

197At 85 196.993 19

197Rn 86 197.001 58

• Tabulate values of the mass defect mD for each 

nuclide. (mp = 1.007 825 0 u and mn = 1.008 664 9 u)

• Plot a graph of the mass defect mD against Z

• The mass defect for these nuclei can be modelled by 

the equation mD = c1 − c2(Z − c3)2. Taking a value of  

c3 = 78.5, plot a graph of mD against (Z − c3)2. Use 

your graph to nd the values of c1 and c2

• The formula is empirical (that is to say, it is based on 

observation rather than testing a hypothesis). Evaluate 

how well this equation predicts the mass defect. 

• What is the maximum percentage deviation of the 

mass defect from the predicted value?

Data-based questions

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



E. Nuclear and quantum physics

643

Variation of binding energy per nucleon

As the nucleon number increases, the binding energy of the nucleus increases.  

There are more strong nuclear force “bonds” because each nucleon sees every 

other nucleon through the strong interaction. Going from four nucleons to five 

nucleons means going from six nucleon–nucleon bonds to ten. More energy per 

nucleon will be required to break up a large nucleus compared with a small one.

This makes the quantity the average binding energy per nucleon a useful one.

To calculate the average binding energy per nucleon, divide the total binding 

energy of a specific nucleus by the nucleon number (total number of nucleons in 

the nucleus):

average binding energy per nucle on = 
total binding energy of nucleus

A

A plot showing average binding energy per nucleon against nucleon number is 

an important tool in our understanding of nuclear change (Figure 11). Each point 

on the chart shows one nuclide. 

General features of the plot are:

• The larger the binding energy per nucleon (in other words, the higher up the 

chart) the more stable is the nuclide, up to the point where A = 60. The most 

stable nuclides (for example, iron and nickel) are in this region.

• For larger nucleon numbers beyond this stability region, the general stability 

decreases, which means that it is energetically favourable for very large 

nuclides (U, Pu, etc) to split up to form smaller but more stable nuclides. 

Thisprocess is known as nuclear ssion. It is examined in more detail in 

Topic E.4.

nucleon number

heavier nuclides

(e.g. U, Pu)

most stable

nuclides (e.g. Fe, Ni)

lighter nuclides

(e.g. 2H, 3Li)
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◂ Figure 11 The chart of average binding 

energy per nucleon against nucleon number 

for the elements. As this is a scatter graph it 

is not usual to draw a trend line. 
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• For values of nucleon number up to the stability region, it is energetically 

favourable for some nuclides to join forming larger nuclei. This process is 

called nuclear fusion. It is described in the context of the formation and 

evolution of stars in Topic E.5.

• The region from A= 1 to A= 20 is of particular interest (and is shown in more 

detail in Figure 12). Certain nuclides (4He, 12C, 16O) are markedly above the 

trend of the plot. This means that they are more stable than other nuclides 

of similar mass. In particular, 4He is an especially stable nuclide and this 

accounts for its important role in stellar evolution.

• Hydrogen (1H) cannot have a binding energy with only one proton, so is not 

generally shown on the chart.

• The most massive nuclides on the far right have roughly 1 MeV per nucleon 

less binding energy than the most stable. This means that splitting a large 

nucleus up is likely to release signicant amounts of energy during ssion.

• A similar argument applies to the formation of 4He from smaller nuclei. 

Signicant amounts of energy will be released (roughly 6 MeV per nucleon 

when forming from 2H).
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▸ Figure 12 The fusion region of the 

binding energy per nucleon chart. Nuclides 

that are formed from integer multiples of 

helium-4 nuclei are locally more stable than 

other nearby nuclides.

Worked example 4

Calculate the binding energy per nucleon of copper-63 (63
Cu29 ). 

Solution

The total binding energy (BE) of copper-63 is 551.4 MeV (see Worked example 3).

A

BE
=

63

551.4
= 8.752 MeV.
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Worked example 5

Radium-223 decays into radon-219 according to the reaction 
223

Ra88 →
219

Rn86 +
4
α2 . 

The following data are given.

Nuclide Binding energy per 

nucleon / MeV

223
Ra88

7.6853

219
Rn86

7.7238

4
α2

7.0739

Determine the energy released in this decay.

Solution
The total binding energy of the radium nucleus is 223 × 7.6853 = 1713.8 MeV. The total binding 

energy of the decay products is 219 × 7.7238 + 4 × 7.0739 = 1719.8 MeV. The binding energy  

has increased as a result of the decay, indicating that the mass of the products is less than the mass  

of the radium nucleus. 

The energy released in the decay is equal to the dierence between the binding energies,  

1719.8 − 1713.8 = 6.0 MeV. This energy appears as the kinetic energy of the alpha particle  

and the radon nucleus.

Worked example 6

Nitrogen-13 ( 13
N7 ) decays into carbon-13 ( 13

C6 )
a. Identify this type of radioactive decay.

b.  The atomic mass of nitrogen-13 is 13.005 739 u and that of carbon-13 is 13.003 355 u. 

Determine the energy released in the decay. 

Solutions
a.  The nucleon number is unchanged, but the daughter nuclide has one proton less, so a  

positively charged particle must have been emitted. This particle is a positron and the  

decay is an example of positive beta emission.

b.  The nuclear equation for the decay is 
13

N7 → 
13

C6 +
0
β1

+ + ν
e
. Neutral atoms of carbon and  

nitrogen contain a dierent number of electrons and we need to subtract the mass of  

electrons from each of the atomic masses to obtain their nuclear mass.

m
nitrogen

= 13.005 739 − 7 × 0.000 549 = 13.001 896 u, m
carbon

= 13.003 355 − 6 × 0.000 549 = 13.000 061 u. 

Themass dierence in the decay is Δm = m
nitrogen

− (m
carbon

+ m
e
 ) = 0.001 286 u. The mass of the positron is  

thesame as that of an electron and we can treat the neutrino as a massless particle. The energy released is  

E = Δmc2 = 0.001 286 × 931.5 = 1.198 MeV. This energy is shared between the positron and the neutrino,  

as the recoil energy of carbon is negligible due to its large relative mass.

Practice questions 

7.  For each of the nuclides in practice question 5 

(page 642), calculate the binding energy per nucleon.

8. Calculate the energy released in the following decays:

a. 
238

U92 →
234

Th90 +
4
α2

Binding energies per nucleon of 
238

U92 : 7.5701 MeV, 
234

Th90
: 7.5969 MeV, 

4
α2 : 7.0739 MeV.

b. 
18

F9 → 
18

O8 +
0
β1

+ + ν
e

 Atomic masses of 
18

F9 : 18.000 937 u, 
18

O8 : 17.999 160 u.
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Strictly, binding energy is a negative quantity as it is the 

energy that must be transferred to the nucleus to split it 

up into its components. Some physicists draw the chart of 

binding energy per nucleon “upside down” to emphasize 

this (Figure 13(a)). The top of the plot is now the energy 

level at which the nucleons are free and the distance from 

a nuclide’s position to the zero line is the binding energy 

required per nucleon to separate everything.

Another aspect of this upside-down plot is that it also 

shows mass per nucleon (aer the y-axis has been scaled 

appropriately). A lower mass per nucleon on this chart 

means that a larger fraction of the mass of the original 

nucleons is “hidden” as binding energy (mass defect). 

Yet another possible way to show the importance of 

binding energy per nucleon plots is to draw a 3D plot 

with axes: proton number Z, neutron number N and 

average binding energy per nucleon (Figure 13(b)).

This plot is sometimes known as the valley of stability

• The plane at the top of the diagram (BE per nucleon 

= 0) is the region of free protons and neutrons. When 

these form a nuclide, the position of the nuclide is 

somewhere on the valley oor. 

• For small N and Z (the back le corner of the plot) the 

fusion hill runs down and eventually meets the iron lake 

(56
Fe26 ) at the most stable part of the diagram. Nuclides 

on this slope are most likely to increase in size through 

fusion.

• Around the iron lake is a region where beta-minus 

and beta-plus decay occurs. Excess neutrons lead to 

β  emission. Excess protons lead to β+

• As N and Z increase from the iron lake, towards the 

front right corner, the N increases more rapidly than 

Z  More neutrons are required in a particular nucleus 

to counteract the proton–proton repulsion. Nuclides 

on this gradual slope are likely to undergo radioactive 

decay via alpha emission, removing 2 protons and 

2neutrons in a single event.

Models — Viewing binding energy another way

◂ Figure 13 (a) The binding 

energy per nucleon chart replotted 

to show that the binding energies 

are negative quantities. (b) This 

“negative” shape is sometimes 

replotted in 3D to show the “valley 

of stability”.
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Evidence for the strong nuclear force

Topic E.1 contains a description of the Geiger–Marsden–Rutherford experiment 

in which alpha particles were scattered by the nuclei of gold and other metals. 

When Rutherford, in 1919, examined the scattering data for aluminium he realized 

that there was a deviation from the expected result. The equation (page 594) that 

models the alpha scattering assumes the Coulomb law, predicting that the number 

N of alpha particles scattering at an angle ϕ to the incident direction is given by

N ∝
1

sin
4( ϕ2 )

You can see this dependency clearly in the Rutherford equation.

This implies that, when the Coulomb law holds, N × sin4 (ϕ2 ) should be constant. 

Rutherford found that the equation began to break down at large ϕ. This is 

because aluminium has a relatively small nuclear positive charge compared 

with the original gold atoms of the experiment. The alpha particles therefore 

approach closer to the nucleus in aluminium. They are sufficiently close for the 

strong force to act on them. 

Figure 11 of Topic E.1 shows Eisberg and Porter’s published data for a fixed 

scattering angle of 60° with varying initial alpha energies.

Up to initial energies of 28 MeV, the scattering obeys the Rutherford prediction. 

However, at energies larger than 28 MeV, the Rutherford prediction is no longer 

obeyed and the intensity drops rapidly with energy. This is the regime where the 

strong nuclear force takes over.

Further evidence of the internal structure of the nucleus comes from other types 

of scattering experiment in the late 1960s. Beams of electrons can be accelerated 

towards nuclei in particle accelerators. The electrons — with their wave-like 

properties; see Topic E.2 — can be diffracted by the nuclei. Topic C.3 shows that 

a minimum appears at a diffraction (scattering) angle θ given by θ ≈
λ

b
, where b

is the diameter of the nucleus and λ is the de Broglie wavelength of the electron 

(= h

p). This scattering, which is elastic because no energy is lost, can be used to 

determine the diameter of the nucleus.

However, as the initial energy of the electron increases, the scattering becomes 

inelastic and the scattering behaviour deviates from what is expected. This is 

because the electrons — which are not subject to the strong nuclear force — are 

able to interact with the internal structure of the protons. Experiments of this 

type have revealed that protons and neutrons contain quarks. These are a more 

fundamental particle than either a proton or a neutron. It is transitions between 

quark types that allow a neutron to convert to a proton and an electron. This 

change in quark configuration is the basic mechanism that drives beta decay.

Further evidence is provided by the approximately constant value of the binding 

energy per nucleon plot from the most stable nuclides (Z ≈ 60) up to the 

highest values of nucleon number. Imagine a particular nucleon in the centre of 

a thorium-234 nucleus. This nucleon is only influenced by the strong interaction 

from a relatively few “nearest-neighbour” nucleons around and close to it. 

The effects of the strong interaction on nucleons at the surface of the nucleus are 

shielded from the central nucleus. Compare this with a uranium-238 nucleus that 
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has four more nucleons imagined to be at the surface. These additional nucleons 

will make little or no difference to the strong forces that act on our central 

nucleus, so the binding energy per nucleon will not change significantly.

This is a crude argument, because the strength and distance variation of the 

strong nuclear force vary in subtle ways. However, the change of about 1 MeV per 

nucleon over the range from Z≈ 60 to Z≈ 240 is enough to drive nuclear fission 

but also constant enough to provide us with evidence of the strong nuclear force 

and its effects.

Nuclear stability 

The plot of binding energy per nucleon against A gives valuable insights into the 

behaviour of nuclides in various parts of the Periodic Table. There are other plots 

that provide us with information about the nature of decay.

Figure 14 shows the plot of neutron number N versus proton number Z for all the 

known nuclides whether stable or unstable.

• Stable nuclides are shown in red. When N and Z are small (up to about 15), 

this is a straight line so that there are equal numbers of neutrons and protons. 

The region dened by these stable nuclides is known as the zone of stability

β+

β

α

Fission

Proton

Neutron

Stable Nuclide

Unknown
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Z
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A =  N

alpha decay
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beta-minus

decay
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decay

one o

stability
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▴ Figure 14 The zone of stability in the plot of the known nuclides (both stable and unstable) of N against Z

Elements with high proton 

numbers are unstable. The 

element with a proton number of 

118 — Oganesson — has a half-life of 

less than a millisecond and was rst 

synthesized in 2002.

Some theories of nuclear stability 

predict that elements with proton 

numbers around 114 might have 

some isotopes which are more 

stable than the currently known 

isotopes. This is referred to as the 

island of stability. If found to exist, 

it may point to the possibility of 

long-lived isotopes of 

super-heavy nuclei.

Hypotheses — 
Superheavy elements
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▴ Figure 15 Diagram for decay by beta-

minus emission, positron emission and 

alpha emission.

• A line of N= Z is also drawn on the plot. When N and Z are greater than 

around 15, the zone of stability gradually moves above this line, showing that 

more neutrons than protons are required for stability. This is the consequence 

of the increased electromagnetic repulsion at high Z. The extra neutrons 

supply the attractive strong nuclear force to overcome this.

• Each side of the zone of stability, nuclides are unstable. Generally, the further 

from the line, the more unstable the nuclide. Greater instability means that the 

nuclei are likely to decay more quickly (with a larger decay constant, shorter 

half-life; see later in this topic).

• Above the stability line are the nuclides that decay by beta-minus (β ) 

emission. These nuclei are neutron-rich and move diagonally downwards to 

the right towards the zone of stability, converting a neutron to a proton as they 

go. Figure 15 shows the change.

• Below the stability line are proton-rich nuclides. These are positron emitters. 

The change moves the nuclide diagonally upwards to the le.

• At high Z and N are the alpha-particle emitters. Recalling the binding energy per 

nucleon plot reminds you that the most stable nuclides are around A= 60. At 

higher A, the binding energy per nucleon decreases, so that the higher nuclides 

are slightly less stable even though their proton:neutron balance is correct. 

These nuclides decay via alpha emission because this changes both Z and N at 

once. The nuclide moves two diagonals down and to the le on the plot.

Well away from the zone of stability at low N and Z lie some very unstable 

nuclides that emit neutrons (coloured purple on the plot) and protons 

(coloured red) directly. 

• Finally, at large N and Z are some rare nuclides that ssion spontaneously 

(rather than emit alphas). These are coloured green.

Worked example 7

Aluminium has only one stable isotope, aluminium-27 (27
Al13 ) . 

Predict the likely decay mode of the radioactive isotopes of aluminium:

a. aluminium-26

b.  aluminium-28.

Solutions

a.  Aluminium-26 is ‘proton-rich’ (it has one neutron less than the stable 

isotope), so it is likely to decay with an emission of a positively charged 

particle, a positron (positive beta emission).

b.  Aluminium-28 has one neutron more than the stable isotope and is 

therefore ‘neutron-rich’. It will likely decay via negative beta emission, 

converting one of its neutrons into a proton.

Radioactive half-life

Radioactivity was described earlier as a process that is random and spontaneous. 

We cannot predict which nucleus will decay next, or when it will happen.

Radioactive phenomena obey the laws of random statistics. These tell us that, 

when large numbers of objects are involved, we can make accurate predictions 

about behaviour. We will deal from now on, not with the details of an individual 

nuclear change, but with the behaviour of many nuclei in a sample. This 

alpha emission

N – 2
Z 

N

Z – 2

positron emission

Z 

N + 1

N

Z – 1

Z

beta-minus emission

Z + 1
N – 1

N
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number is very large indeed: 14 g of radioactive carbon-14 — the molar mass 

is 14 g mol−1 — will have about 6 × 1023 atoms in the sample. If your school has 

access to radioactive materials for experiments, these materials may typically  

have masses around 1 µg. This still means that the whole sample consists of about 

4 × 1016 atoms.

Each of the atoms in a radioactive nuclide has a constant probability of decay, 

independent of the sample size. This means that the activity of the sample — the 

total amount of decay that happens in one second — depends on the size of the 

sample. This is the rate of decay: the rate (per second) at which the radioactive 

nuclei of the chemical element are decaying.

The activity of a radioactive sample is the total number of nuclei that  

decay in the sample in one second

The SI unit of activity is the becquerel (Bq). 1 Becquerel is an activity of 1 decay 

per second.

The larger the sample, the greater the activity. As an example, consider a sample 

that consists of 4 × 1012 atoms and that each atom has a 1% chance of decaying 

in the next second. That means that 4 × 1010 atoms will decay in the next second. 

But if there were only 4 million atoms to begin with, then only 40 000 would 

decay in the next second. 

The ratio of 
number that decay in the next second

total initial number in the sample
 is always the same for a 

particular radioactive decay.

The fact that the probability is constant means 

that the nuclide has a half-life that depends only 

on the nuclide in question. This link between 

decay probability and half-life is developed in 

more detail in the additional higher level (AHL) 

section of this topic.

The half-life of a radioactive nuclide can be 

defined in two ways:

The half-life of a radioactive nuclide is the 

time taken for half the initial sample to decay.

or

The half-life of a radioactive nuclide is the 

time taken for the initial activity of the sample 

to halve.

Half-lives vary over a vast range of time 

intervals: from the 4.5 billion years of 

uranium-238 through to the 2.5 ms of 

fluorine-29 and even shorter times.

Figure 16 shows the progress of a series of 

decays for a small number of nuclei (100).

Initially, there are 100 parent nuclei (red). In 

the first half-life, 50% of them decay into the 

daughter nucleus (assumed stable). After 

successive half-lives, the amount of parent 

nuclei that remain falls to 25%, 12.5%, 6.25% 

and so on.

number of half-lives
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▴ Figure 16 Every half-life the number of the radioactive parent nuclei halves. This is 

exponential decay.

When the initial number of 

parent nuclei is N0, the 

number of parent nuclei 

remaining: 

• aer 1 half-life is 
N

0

2

• aer 2 half-lives is 
N

0

4

• aer 3 half-lives is 
N

0

8

• and so on…
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Exponential growth and decay are found in many areas 

of physics and in science as a whole. All that is required 

is that the rate of change of a quantity N depends on the 

quantity N itself. In mathematical terms,

dN

dt
= ±kN

Where the sign is plus, then the equation indicates growth 

in N; when negative, the change is a decay. 

Whenever an eect can be described with this equation, 

then it can be modelled using the solutions to the 

dierential equation which are of the form

N = N
0
e±kt

Examples from science include:

• the growth or decay of charge on a capacitor

• the change in height of a foam with time 

• the change in amplitude with time of a damped 

harmonic oscillator (Topic C.4).

• a nuclear reaction

• growth of bacteria in a culture

• the change in size of a seashell — as the organism 

grows its food input is proportional to the size of 

itsmouth.

Exponential change is an example of patterns and trends 

in science where a solution of one phenomenon leads 

directly to a solution of another in a dierent eld.

Which areas of physics involve exponential change? (NOS)

Worked example 8

The graph shows how the activity of a 

sample of a radioactive nuclide varies 

with time.

a. State the half-life of the nuclide.

b.  Predict the activity of the sample 

aer a time of 10 minutes.

Solutions
a.  From the graph, the activity halves 

aer 120 s. Hence T1
2
= 120 s.

b.  10 minutes is 5 half-lives of the 

nuclide. The initial activity is  

8 × 106 Bq.

  Activity aer 10 minutes  

= 8 × 106
× ( 1

2)
5

= 2.5 × 105 Bq.

180
time / s

24060

6

7

8

5

3

4

2

1

0
0 300 360

ac
ti

vi
ty

 /
 1

0
6

 B
q

120

When the initial number of parent nuclei is N0, the number of parent nuclei 

remaining aer 1 half-life is 
N

0

2

After n half-lives, the amount remaining is 
N

0

2n
.

This behaviour is known as exponential decay. It is a consequence of the 

factthat

activity of the sample ∝ number of parent nuclei remaining.
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Worked example 9

Nuclide X decays into stable nuclide Y with a half-life of 7 days. A freshly prepared sample contains 240 g of pure 

nuclide X. Calculate:

a. the mass of nuclide X remaining in the sample aer 14 days

b.  the time aer which the sample contains 225 g of nuclide Y.

Solutions

a.  14 days is two half-lives. The remaining mass of X is 240 × ( 1

2)
2

= 60 g .

b.  The remaining mass of X is 240 − 225 = 15 g. 
15

240
=

1

16
 so the remaining mass of X is 

1

16
 of the initial mass.

 Because 
1

16
= ( 1

2)
4

, this happens aer 4 half-lives, or 28 days.

 A more systematic way to nd the number of half-lives is by solving the equation 240 × ( 1

2)
n

= 15 ⇒ n = 4.

Practice questions 

9. The initial activity of a sample of 

radioactive nuclide is A
0
. The graph 

shows how the relative activity 
A

A
0

 of 

the sample varies with time.

a. State the half-life of the nuclide.

b. Predict the activity of the sample 

aer 15 days.

c. Determine the time for the 

activity to decrease to 
A0

16

10.  Nuclide X decays into stable  

nuclide Y with a half-life of 4.0 hours. 

A sample initially contains 64 g of 

pure nuclide X.

a. Calculate the mass of nuclide Y 

in the sample aer 12 hours.

b. Calculate the time aer which 

there will be 1.0 g of nuclide X 

remaining in the sample.

c. Draw a graph to show how the masses of nuclides X and Y in the sample vary with time during the rst 24 hours of 

the experiment.

11. Iodine-131 decays into stable xenon-131. Activity of iodine-131 in a sample decreases to 1
16

 of its initial value in 

32.1days. Determine the half-life of iodine-131.

12. A sample initially contains equal masses of radioactive nuclides X and Y. Nuclide X decays with a half-life of 12 hours 

and nuclide Y decays with a half-life of 6 hours. What is the ratio 
mass of X remaining in the sample

mass of Y remaining in the sample
 aer 24 hours?

A. 2  B. 4  C. 8  D. 16

6
time / days

8 102

0.75

1.00

0.50

0.25

0.0
0 4

A

A0
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In 1911, Hans Geiger and John Nuttall proposed a rule which 

related the half-life of alpha decaying isotopes to the range of 

the alpha particles in air. Since the range of the alpha particles 

is related to their energy, this rule can be used to relate the 

energy of the alpha particles to the half-life of decay.

The Geiger–Nuttall rule can be expressed as

log
10

1
2
= c1

√E
+ c2

where c1 and c2 are constants.

The table shows some data for isotopes of radon which 

decay through α-decay.

Isotope
Isotope

mass / u

Daughter isotope

mass / u
Half-life / s

196Rn 196.002 115 191.991 335 0.0047

198Rn 197.998 679 193.988 186 0.065

212Rn 211.990 704 207.981 246 1430

214Rn 213.995 363 209.982 874 2.70 × 10−7

216Rn 216.000 274 211.988 868 4.50 × 10−5

218Rn 218.005 601 213.995 201 0.035

220Rn 220.011 394 216.001 915 55.6

222Rn 222.017 577 218.008 973 3.30 × 105

• The equation for the decay of 196Rn can be written as 
196

Rn86
→ 192

Po84
 + 4α2

. Using the masses given in the 

table and the mass of an alpha particle,  

mα = 4.002 603 u, calculate the mass lost in the decay. 

Using the energy–mass equivalence of  

1 u ≡ 931.49 MeV, nd the energy released in  

the decay.

• Tabulate the energy released in the decay of the other 

radon isotopes.

• Tabulate values of 1
√E

 and log
10
T1

2

• Plot a graph of log
10
T1

2
 against 1

√E
 and use your graph 

to determine the values of c1 and c2

• Assume that the uncertainties in your values of 1
√E

 are 

approximately 3%. Add uncertainties to your graph 

and use maximum and minimum gradients to estimate 

the uncertainties in c1 and c2

Data-based questions

Radioactive decay measurements

Instruments used to measure radioactivity in some school laboratories include the 

Geiger–Müller tube with its associated counter and the spark counter.

• The Geiger–Müller tube (sometimes abbreviated to Geiger counter or 

GM tube) is used to detect beta-minus particles and gamma photons. 

It consists of a sealed metal tube lled with a mixture of gases at low 

pressure(Figure 17). 

insulator

to counting

circuit

central electrode

supply
– +

casing

gas at

low pressure

thin mica

window

▴ Figure 17 The internal structure of a Geiger–Müller tube.
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One end of the tube is made of a thin sheet of a mineral called mica that 

allows the beta-minus particles to enter the gas. A pd of a few hundred volt 

is maintained between the inside of the tube and a central electrode. When 

the beta particle or gamma photon enters the space inside the tube, an 

atom of the gas is ionized by an interaction with the radiation. The electric 

eld accelerates the ion and the electron in opposite directions (Topic D.4). 

This leads to more ionization as the ion and electron gain energy and collide 

with other atoms. The resulting current across the tube is detected by a 

countingcircuit.

There is a mixture of gases in the tube. One of the gases is there to suppress 

the spark (otherwise it would persist for a signicant time) so that the GM tube 

can detect the arrival of the next particle. This process is called quenching and 

the minimum time possible between detections is called the “dead time” of 

the tube.

• The spark counter is used to detect alpha particles (Figure 18). A thin metal 

wire in air lies a few millimetres beneath a metal grid. 

A high pd (a few kV) is maintained between the grid and the wire. When 

alpha particles enter the space between the wire and the grid, they ionize air 

molecules and a spark passes between wire and grid. This can be seen and 

counted either visually or electronically.

▴ Figure 18 A cross-sectional view of a spark counter. A spark jumps between the grid  

(or mesh) and the thin wire.

radioactive source

wire grid

thin wire

+
+

–

–

Activity and count rate

There is a distinction between activity and count rate.

• Activity is the total number of disintegrations per second in a sample of 

radioactive material. Activity is measured in becquerel.

• Count rate is the number of counts detected by a measuring apparatus in  

one second. Count rate is measured in counts per second.

A radioactive source sends its emitted particles through a 360° angle. A detector 

cannot usually sample the whole of this angle. Typically, only a small fraction 

of the whole activity can be sampled. Some of the particles will be absorbed 

between source and detector and this will also reduce the count rate. Provided 

that the geometry of the detector–source arrangement is constant, there should 

be a proportional relationship between count rate and activity.

Throughout this topic, it has been 

noted that radioactivity is random. 

While we cannot predict when 

a particular nucleus may decay, 

we can assign a probability to the 

event and use statistics to model 

outcomes.

Suppose that an experiment has an 

average background count rate of  

5.3 counts in ten seconds. The 

most likely number of background 

counts in a ten-second period is 

5 (with a probability of 17.4%). 

However, there is a small 

probability (0.5%) that there will be 

no counts in that ten-second period 

and there is a similar probability of 

measuring 12 counts. There will 

be a 73% chance of measuring 

between 3 and 7 counts in ten 

seconds. Such considerations 

enable us to establish an 

uncertainty in such a measurement.

It may appear that we lack 

knowledge of the system when 

dealing with random events, but 

if we can establish an average 

value and an uncertainty, is this 

knowledge worse than any  

other measurement?

Randomness
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Background radiation

When a GM tube is left to count for several minutes in the absence of any 

radioactive source, it will detect ionizing radiation. This is the background 

radiation and the count rate will depend on the location of the laboratory and the 

type of rock from which, and over which, it is built. 

It is important to eliminate this background count from any counting 

measurements in radioactivity. When the background has been eliminated from a 

count, the result is known as the corrected count rate:

corrected count rate (in counts per second) 

=  observed count rate (in counts per second)  background count rate  

(in counts per second)

There are many contributions to background radiation from both natural 

and artificial radiation sources. Figure 19 shows a pie chart of some of these 

contributions.

A major source of radiation is from the Earth’s rocks. As the elements in them 

decay, radon gas is emitted at low levels. This radioactive gas can accumulate in 

buildings — again, only to low and safe levels. 

• Inquiry 2: Interpret qualitative and quantitative data.

• Inquiry 2: Interpret diagrams, graphs and charts.

• Inquiry 3: Discuss the impact of uncertainties on  

the conclusions.

• When you have a graph of the variation with time 

of the corrected count rate from a sample, then the 

graph can be used directly to determine the half-life.

• The error bars are not shown on this graph, but  

you will see some scatter about the line when  

you look closely. This scatter is normal in 

radioactivity experiments.

• Estimate the time for the corrected count rate to 

halve. Do this at least three times.

• A common error is to halve the initial corrected 

count rate, then halve it again, and then halve it for a 

third time. This is undesirable because this will take 

you to 
1

8
 of the initial rate. In this region of the graph 

the errors are more signicant. It is better to use 

three separate starting points but to take all of them 

within the rst or second half-life. Then you can take 

an average of the three results.

Evaluating half-life from a graph
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▴ Figure 20 At least three estimates of half-life are required. These are 

best taken from the region where the corrected count rate is large.

▸ Figure 19 Some of the contributions to 

the background radiation.
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Worked example 10

A radioactive nuclide decays into a stable nuclide with a half-life of 25 days. 

A Geiger–Müller detector measures the count rate from a sample of the 

nuclide. The detector is exposed to background radiation of a constant 

average count rate. The table shows how the count rate in the detector 

varies with time. 

a. Determine the average background count rate.

b. Predict, for a time of 100 days:

 i. the count rate from the sample corrected for background radiation

  ii. total count rate as recorded by the detector.

Solutions
a.  The background count rate is constant, so the measured count rate only changes due to the decreasing activity of 

the radioactive sample. During the rst 25 days, the count rate from the radioactive nuclide in the sample decreases 

to one-half of its initial value. The initial count rate of the sample, corrected for background radiation, must have been 

2 × (650 − 330) = 640 counts minute−1. The background count rate is therefore 650 − 640 = 10 counts minute−1

b.  i.  100 days is 4 half-lives. The count rate corrected for background radiation is 640 × ( 1

2)
4

= 40 counts minute−1

  ii.  The constant background count rate of 10 counts minute−1 will be added to the count rate from the sample. 

Thedetector will measure 40 + 10 = 50 counts minute−1

Time / days Count rate / counts 

minute−1

0 650

25 330

50 170

Practice questions 

13. The graph shows how a count rate from a radioactive source varies 

with time. The background count rate is constant at the location of the 

detector.The half-life of the source is 4 hours.

time / hours

15

20

10

5

c
o

u
n

t 
ra

te
 /

 s
–

1

0
6 820 4

a. Determine the average background count rate.

b. Predict the count rate in the detector aer 16 hours.

14. Without a radioactive source present, a Geiger–Müller tube measures an 

average background activity of 20 counts minute−1. When a radioactive 

source is placed near the tube, the count rate increases initially to  

340 counts minute−1. 

 Determine the count rate detected by the tube aer three half-lives of the 

radioactive source.

Two measures have been 

developed to assess the impact of 

radiation on animal tissue.

The gray (Gy) is the energy 

absorbed by one kilogramme 

of tissue. Therefore 1 Gy occurs 

when 1 J is deposited in tissue.

The sievert (Sv) is a measure of the 

biological eect that the radiation 

has, and this depends on the type 

of radiation and the type of tissue. 

A dose of 1 Gy of X-rays to the body 

will lead to a 1 Sv dose equivalence, 

whereas 1 Gy of the much more 

damaging alpha particles will lead 

to a 20 Sv equivalent dose.

These ideas link to the absorption 

and ionization properties of 

alpha, beta and gamma radiation 

described earlier. 

The gray and the sievert are 

not tested in the IB Diploma 

Programme physics examination.

Measurements — Gray 
and Sievert
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Radioactive dating

The changes in radioactivity can be used to determine the age of rocks and 

carbon-based materials using the technique of radioactive dating (or  

radiometric dating).

The general principle is best illustrated using the carbon-dating technique used 

for materials that are up to about 60 000 years old.

Living plants and animals absorb carbon during their lifetime. At death, the 

carbon is fixed and no more can be added. Naturally occurring carbon on Earth 

contains the stable carbon-12 nuclide and the unstable carbon-14 nuclide that 

decays to nitrogen-14 via beta-minus emission. After the death of the organism, 

the carbon-14 begins to decay. The ratio of carbon-14
carbon-12

, previously in equilibrium 

with the environment and therefore constant, begins to decrease. Carbon-14 has 

a half-life of 5700 years.

The assumption is made that the value of 
carbon-14
carbon-12

 for living material does not 

change with time. This means that a present-day measurement of the ratio in the 

dead material will reveal the length of time since the death of the organism.

Geologists can determine the age of rocks using several possible nuclides. The 

decays of uranium-238 and uranium-235 (both to lead isotopes) have half-lives of 

470 billion years and 700 million years, respectively. This allows them to be used 

as a cross-check on the dating ages.

Ground water on the surface seeps into underground lakes where it can be 

trapped for hundreds of thousands of years. Chlorine-36 and krypton-81 are 

nuclides that decay over long timescales and dating techniques can be applied 

to assay the age of the water in the lakes. Any uranium or thorium salts in the rocks 

surrounding the lake will decay releasing alpha particles that acquire electrons to 

become helium atoms. The detection of the helium also allows an estimate of the 

lake’s age. 

Radioactive nuclides and medicine

Radioactivity has many uses in medicine both for diagnosis and therapy. 

Diagnostic uses involve the ingestion, injection or inhalation of a suitable 

radioactive nuclide. The material then collects in the organ under investigation 

and emits gamma photons during radioactive decay. These photons can be 

imaged either by photographic or sensor techniques to study the region of 

interest. Nuclides include:

• Technetium-99m which is used to diagnose a number of problems in the 

bones, the heart and other organs. The material is usually made on site at the 

hospital from the decay of radioactive molybdenum-99 as the technetium 

half-life is only 6 hours and this makes its transport impracticable. (The 

molybdenum, on the other hand, has a half-life of 2.7 days.) The technetium 

is oen combined with biologically active materials that allow it to be taken 

to most parts of the body easily and quickly. The low-energy gamma photons 

from its decay to the stable form can be detected and used for diagnosis.

• Radioactive iodine becomes located in the thyroid gland, which is otherwise 

dicult to image. Higher doses can then be used to treat the thyroid when a 

diagnosis is complete.

The assumption behind carbon 

dating is that there is a constant 

ratio in the abundance of 14C : 12C.

14C is formed in the atmosphere 

when cosmic rays interact with 
14N in the atmosphere. Since 

the intensity of cosmic rays and 

the amount of nitrogen in the 

atmosphere are unlikely to have 

changed signicantly over the past 

60 000 years (the maximum age 

of an object that might be carbon 

dated), this seems a reasonable 

assumption.

Studies of tree rings enabled a 

sequence of measurements to be 

taken to conrm this. Each tree 

ring represents a time increment 

of a year and the ring can be 

considered to be dead at that 

point in time. This showed that the 

amount of 14C has uctuated in the 

past. More sophisticated carbon-

dating techniques take account of 

this uctuation.

Models — Carbon 

dating
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• The PET scan (positron emission tomography) is a sophisticated technique in 

which a nuclide is injected into a region under investigation. The nuclide emits 

a positron that combines with a nearby electron to emit two gamma photons. 

These move o in opposite directions due to momentum conservation and are 

subsequently detected by two gamma cameras which, aer computation, gives 

a very precise position of the point where the positron and electron combined. 

 Fluorine-18, a β+ emitter, is commonly used in this way for PET-scan imaging. It  

is also used to detect infections because the chemical uorodeoxyglucose has 

an increased uptake at the site of inammation. When the uorine isotope in  

the chemical is radioactive, then imaging can take place.

Oxygen-15, another β+ emitter, is used as a tracer for measuring the blood ow 

in the body. The radioactive oxygen is produced by bombarding nitrogen 

nuclei with deuterium nuclei at kinetic energies of about 7 MeV. This is oen 

done at hospitals which have small cyclotrons for producing these and other 

radioactive materials. The reaction is

14
N7
+ 2

D1
→ 15

O2
8

+ n

The radioactive oxygen isotope is then reacted with hydrogen to produce 

water that can be injected and used for a PET scan. A challenge for the medical 

practitioners is that the half-life of O-15 is 2.04 minutes, so the production and 

use of the nuclide must be carried out quickly.

Therapeutic uses for radioactive materials include:

• Small low-activity packages of gamma emitters that are placed in the body in 

order to deliver a localized dose of radiation to that region.

• The gamma knife (teletherapy) focuses the gamma photons from cobalt-60 

sources onto a single small region within the brain to destroy tumours there.

Radiation is also used to sterilize medical materials of all types once they have  

been sealed in their protective package.

Radioactivity and materials testing

Radioactive materials are used increasingly in industry. Thickness measurements 

can be made rapidly and accurately (the intensity of the radiation emerging from a 

material varies exponentially). The nuclide used depends critically on the thickness 

measurement in question. For example, beta-minus particles are commonly used to 

control the rolling of aluminium into a sheet form. Alpha particles would be unlikely 

to be useful as either all, or a large percentage, would be absorbed by the metal. 

Equally, gamma photons would not be absorbed at all by the aluminium.

Flow rates and the presence of rubbish in rivers are often measured using radioactive 

tracers. Again, the nuclide must be tailored to the application. Half-lives must 

generally be short so that the material does not damage the environment.

The law of radioactive decay and its consequences

Earlier, the ratio  number of nuclei that decay in the next time interval

initial number of nuclei in the sample at the beginning of the time interval 

was introduced as a constant for a particular nuclide. 

This ratio is the probability of decay of an individual nucleus in the given time 

interval. This time interval must be short, so that the change in the number of nuclei 

during the time interval is small compared with the initial number. (Earlier,  

a time interval of one second was used for simplicity.)

▴ Figure 21 Images of the brain using the 

technique of positron emission tomography.
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When the time interval is sufficiently small (and, therefore, tends mathematically 

to zero), the probability of decay is known as the decay constant λ. This is the 

constant of proportionality that links the activity A (the number of decays per 

unit time) and the initial number of nuclei N at the start of the time interval. As an 

equation this is

A = λ × N

The activity itself is the rate of change of N which leads to

A = − dN

dt
= λN

The negative sign is important as it models the decrease in N as time increases. 

This negative sign is not present when the A = λN equation is quoted in the 

Physics Data Booklet, but it is important for you to realize that it is always implicit 

in the definition of activity as a decreasing quantity.

This equation, here in the context of radioactive decay, has a much wider application. 

The mathematical physics that follows can be applied to any situation where:

rate of change of a quantity N ∝ amount of the quantity N remaining to change

The equation dN

dt
= −λN rearranges to dN

N
= −λdt. 

This expression can be integrated. The following symbols are used:

• At time t = 0 the initial (original) number of nuclei is N0

• At a later time t the number of nuclei remaining has fallen to N

Thus,

∫ N

N0

dN

N
 = −∫ t

0  
λdt

which integrates to give

[ln N]N

N0
= −[λt]t

0
= −(λt − 0).

Therefore, ln N − ln N
0

= −λt or ln ( N

N
0

) = −λt. Taking the natural exponential 

function of both sides of the equation,

N

N
0

= e λt or N = N
0
e λt

Because A = λN, this can also be written as

A = A
0
e λt or A = λN

0
e λt

where A
0
 is the initial activity and A

0
= λN

0

Decay constant or probability of decay?

The link between decay constant and probability of decay is a subtle one.  

The radioactive decay constant λ is defined, for a nuclide, as the probability  

P per unit time that a given nucleus of the nuclide will decay. For a time interval  

Δt this is 
P

Δt
= λ or P = λΔt. Put this way, it is clear that Δt must be much smaller 

than the time scale over which the nuclide decays. Therefore, the statement that 

the probability of decay is the same as the decay constant is only true when Δt

is small compared with the mean lifetime of a nucleus of the nuclide. (This mean 

lifetime is not the same as the half-life.)
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Worked example 11

The initial activity of a sample of radioactive polonium-210 (Po-210) is 2.3 × 108 Bq. 

The decay constant of Po-210 is 5.8 × 10−8 s−1

a. Determine the initial mass of Po-210 in the sample.

b. Calculate the activity of the sample aer 100 days.

Solutions

a.  A
0

= λN
0
, so initially the sample contains N

0
=

A0

λ
=

2.3 × 108

5.8 × 10 8
= 4.0 × 1015 nuclei.  

This amounts to 
N0

NA

=
4.0 × 1015

6.02 × 1023
= 6.6 × 10 9 mol. The molar mass of Po-210 is  

approximately 210 g mol−1, so the initial mass of the sample is 6.6 × 10 9 × 210 = 1.4 × 10 6 g = 1.4 μg.

b.  100 days = 100 × 24 × 3600 = 8.64 × 106 s. The activity decreases exponentially  

and aer 100 days it becomes A
0
e−λt = 2.3 × 108e 5.8 × 10 8×8.64 × 106

= 1.4 × 108 Bq.

Worked example 12

The count rate, corrected for background radiation, of a sample of radioactive 

uorine-18 decreases from 45count s−1 to 28 count s−1 during a time of 4500 s.

Determine the decay constant of uorine-18.

Solution

The count rate follows the exponential decay law, 28 = 45e 4500λ. The equation can 

be solved for the decay constant graphically or using logarithms.  

ln 28 − ln 45 = −4500λ. Therefore λ = 
ln 45 − ln 28

4500
= 1.1 × 10 4 s 1

Worked example 13

An old piece of cloth is examined for the content of radioactive carbon-14. 

It is found that the mass ratio of carbon-14 to stable carbon-12 has decreased 

to 70% of its value in living matter. 

The half-life of carbon-14 is 5700 years. Determine the age of the cloth.

Solution

The exponential decay law, written in terms of the ratio of C-14 to C-12, is 0.70 = 1.0 × ( 1

2)
n

, where n is the  

number of half-lives of carbon-14 since the plants used to make the cloth were harvested. n =
ln 0.7

ln 0.5
= 0.51.  

The cloth is 0.51 × 5700 = 2900 years old.

Practice questions 

15. The decay constant of caesium-134 (Cs-134) is  

1.06 × 10 8 s 1. A laboratory sample contains 6.00 μg 

of Cs-134.

a. Determine the initial activity of the sample.

b. Determine the time for the activity to decrease to 

80% of its initial value.

c. Calculate the mass of Cs-134 remaining in the 

sample aer one year.

16. A sample contains 7.0 × 1012 atoms of radioactive 

oxygen-15. The initial activity of the sample is  

4.0 × 1010 Bq.

a. Calculate the decay constant of oxygen-15.

b. Calculate the activity of the sample aer 1.0 hour, 

correct to one signicant gure.
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Half-life and the decay constant

The earlier treatment of half-life can now be extended.

After one half-life, the activity will have fallen to half of its initial value (so 
A0

2 ), and 

there will be half of the initial number of nuclei (N0

2 ). We can use the symbol T1
2

 to 

represent half-life.

Therefore, 
N0

2
= N

0
e

λT1
2. Taking logs to base e gives ln N

0
−ln 2 = ln N

0
−λT1

2

, 

which becomes ln 2 = λT1
2

 and

T1
2

= 
ln 2

λ
≈

0.693

λ

Worked example 14

The half-life of phosphorus-32 (P-32) is 14.3 days. A sample initially contains 2.0 mg of P-32.

a. Calculate, giving your answer in s−1, the decay constant of P-32. 

b. Determine the initial activity of the sample.

c. Calculate the mass of P-32 remaining in the sample aer 30 days.

Solutions

a. λ = 
ln 2
T1

2

=
ln 2

14.3 × 24 × 3600
= 5.61 × 10 7 s 1

b.  The molar mass of P-32 is 32 g mol 1, so the initial number of nuclei in the sample is  

N
0

=
2.0 × 10 3

32
× 6.02 × 1023

= 3.8 × 1019. The initial activity is A
0

= 5.61 × 10 7
× 3.8 × 1019

= 2.1 × 1013 Bq.

c.  Expressing time in seconds, mass in mg and using the radioactive decay law, we get mass remaining  

= 2.0 × e 5.61 × 10 7 × 30 × 24 × 3600
= 0.47 mg.

  Alternatively, the time elapsed can be expressed in terms of the number of half-lives: 30 days = 
30

14.3
 = 2.10 half-lives. 

The mass remaining is 2.0 × (1

2)
2.10

= 0.47 mg, the same as calculated with the rst method.

Practice questions 

17. The activity of a sample of radioactive nuclide 

decreases from 24.0 × 107 Bq to 21.0 × 107 Bq over a 

time period of 10.0 days. Calculate:

a. the decay constant, in s−1, of the nuclide

b. the half-life, in days, of the nuclide

c. the time required for the activity of the sample to 

decrease to 10% of the initial value.

18. Radium-226 has a half-life of 1600 years.

a. Calculate, in s−1, the decay constant of 

radium-226.

b. Determine the expected number of nuclei 

decaying per second in a 1.0 μg sample of 

radium-226.
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Determining half-lives

Long half-life

Long half-lives are those where the half-life is much longer than the time interval 

over which the measurement is made. They are estimated directly using the 

equation A = λN or with a substitution and rearrangment: T1
2
=

0.693

A
× N.  

When the sample is pure, a determination of the mass of the sample together 

with its molar mass will give the total number of atoms N. A careful determination 

of the activity A of the sample can be made in several ways. These include a 

knowledge of the total energy transfer per second from the sample and the 

energy of the emissions. This will yield T1
2
 directly.

Worked example 15

Thorium-232 (Th-232) is a naturally occurring isotope of thorium. It decays to 

radium-228 by alpha decay. A sample containing 5.0 g of Th-232 is prepared. 

a. Calculate the number of nuclei of Th-232 in the sample.

b. The average activity of the sample is 2.0 × 104 Bq. Determine: 

 i. the decay constant

 ii. the half-life of Th-232.

Solutions

a.  As usual, we estimate the molar mass of the nuclide by its nucleon number, 232 g mol−1.  

N =
5.0

232
× 6.02 × 1023

= 1.3 × 1022

b. i. λ =
A

N
=

2.0 × 104

1.3 × 1022
= 1.5 × 10 18 s 1

 ii.  T1
2
 =

ln 2

λ
=

0.693

1.5 × 10 18
= 4.5 × 1017 s. This corresponds to 1.4 × 1010 years.  

Thorium-232 is a very long-lived isotope; it occurs on Earth as a primordial  

nuclide — it has existed since before Earth was formed.

Short half-life

Short and medium half-lives can be determined using one of two approaches:

• The graphical approach outlined on page 655. In this method, the analysis is 

based on the graph of corrected count rate against time. The analysis is based 

on a curve and depends on the accuracy with which this curve is drawn.

• Another way to make a graphical analysis, this time with more condence  

in the result, is to recognize that the radioactive-decay equation can be  

written as

ln R = −λt + ln R
0

where R is the corrected count rate and R0 is the initial corrected count rate. 

This matches y = mx + c and so a graph of ln R against t should be a straight 

line with a gradient −λ and an intercept of ln R0 on the y-axis. The plot is shown  

in Figure 22. This method has the advantage that the half-life can be found 

even when R is measured over a period of time that is less than the half-life.

When the straight line has been drawn and the gradient (−λ) calculated, then the 

half-life comes from T1
2
 = − 

0.693

gradient
 .

▾ Figure 22 The graph of 

ln (Rcorrected) against time gives 

a straight line with a gradient 

of −λ

t / s

In (R / s 1)

A point to note is the way the label 

on the y-axis is written. A logarithm 

has no unit and so the units for R

must be included with R within 

thebrackets.
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• Tool 1: Recognize and address relevant safety, ethical 

or environmental issues in an investigation.

• Tool 3: Construct and interpret graphs using 

logarithmic scales. Plot linear and non-linear graphs 

showing the relationship between two variables with 

appropriate scales and axes.

• Tool 3: Record uncertainties in measurements as a 

range (±) to an appropriate precision.

• Inquiry 1: Appreciate when and how to take 

background radiation into account.

Half-life can be determined easily in the laboratory. If you 

have access to the necessary materials, the procedure 

is straightforward. You will require a suitable detector of 

ionizing radiation, such as a Geiger–Müller tube with its 

counter and a stopwatch. Alternatively, a data logger with 

a radiation sensor can be used.

A number of possible radioactive substances can be used 

safely in this experiment. Your teacher will need to explain 

which one you are to use, and the safety precautions you 

must take when using it.

• Measure the background count rate in the room with 

no radioactive sources present. This should be done 

over several minutes, leading to the rate per second. 

You should repeat the determination when the main 

experiment is complete.

• The decaying radioactive material is now brought into 

the laboratory and placed close to the window of the 

GM tube or sensor.

• Take readings of the observed count rate at time 

intervals appropriate to the source until the count rate 

has fallen to a value close to the background.

• The corrected count rate is (observed count rate − 

background count rate).

• The analysis follows the pattern given earlier: 

construct a plot of ln (corrected count rate) against 

time and use the line of best t to obtain the gradient 

and then the half-life.

• This is a better method than plotting corrected count 

rate against time. Why is this?

• You should be able to compare your value with the 

accepted half-life for the nuclide. This gives an overall 

view of the accuracy of your experiment.

Errors in radioactive experiments.

When using a data logger, you may need to set the data 

logger up with a scanning time over which it computes 

the average count rate. Too long and the radioactive 

material will have decayed signicantly; too short and 

the total counts measured will be small. A compromise 

isneeded. 

Radioactivity is a random process. A rule of thumb for  

the statistics of radioactive decay is that the error in 

measuring N radioactive events is ±√N. The error  

when N = 100 is ± 10 — that is, 10% — but the error when 

N = 10 000 is ± 100 — that is, 1%. In other words, count 

for as long as possible provided that the material will not 

have signicantly decayed in the time interval. 

Another approach, particularly for use when half-lives 

arelonger, is to time the arrival of the same number of 

counts which keeps the error per count measurement 

thesame.

Measuring short half-lives in the laboratory
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Decay chains — Growth and decay

The section on radioactive dating above (page 657) mentions the 

decay of uranium isotopes to the element lead. The change in A is 

from 238 to 206 in this decay and this change cannot occur in one 

step. This decay is part of a naturally occurring decay chain in which 

unstable nuclides decay step-by-step via alpha and beta decay. As 

the chain progresses, the nuclides tend towards greater stability until 

eventually a completely stable element remains. 

The uranium-238 decay is shown in Figure 24.

The circle for each nuclide contains the proton and nucleon numbers 

and the half-life of the nuclide. The chain links to the next nuclide and 

gives the decay mode. 

During the long series of decays, several separate nuclides form, 

including three lead isotopes, three polonium isotopes and two 

isotopes of bismuth. 

You can find references on the internet to the other naturally occurring 

decay chains (such as the thorium and actinium series) and also some 

that involve synthetic elements.

U U92
238

4.5 Billion
Yr

92
234

245,500
Yr

Pa91
234m

1.17min

Ra88
226

1,602Yr

Rn86
222

3.8 day

At85
218

1.5se

Po84
218

3.1min

P82
214

26.8min

P82
210

22.3yr

P82
206

tale

81
206

4.2min

81
210

1.3min

80
206

8.1min

Bi83
214

20min
Bi83

210

5day

Po84
214

164.3 µ se

Po84
210

138day

90
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27 day
90

230

75,380

β

β

β

β

ββ

β

β
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Yr

α
α

α
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α
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α

α

α

α

α

α

▾ Figure 24 The complex 

decay chain that leads from 

uranium-238 to lead-206.

• Tool 3: Construct and interpret tables and graphs for 

raw and processed data including scatter graphs and 

line and curve graphs.

• Inquiry 1: Pilot methodologies.

• Inquiry 3: Evaluate the implications of methodological 

weaknesses, limitations and assumptions on 

conclusions.

It is not always possible to carry out experiments with 

radioactive nuclides. This experiment is a simulation  

of a half-life measurement.

Perspex tube

with open top

metre ruler

adjustable

clip

capillary

tube

rubber tube

▴ Figure 23 How to measure the change in height 

of a water column to simulate radioactive decay.

Radioactive decay can be simulated in a number of 

ways. This practical version has the advantage of simple 

apparatus. A chemical burette can replace the Perspex 

tube and clip.

• The Perspex tube is lled with water aer closing the 

adjustable clip at the bottom of the apparatus. There 

should be a mark on the outside of the tube and the 

water must be lled above this level.

• The clip is then opened completely so that the height 

of water in the tube begins to decrease.

• As the water passes the mark on the tube, a clock is 

started. The water height is measured at regular time 

intervals. A preliminary experiment will inform you of 

the ideal interval between time readings for your tube.

• The experiment should be repeated twice more, 

always beginning the timing when the water passes 

the mark on the tube. Calculate the average height for 

each time. 

• Plot graphs to show the variation of height with time 

and ln (height / cm) with time.

• Use the graphs to determine the half-life and the 

decay constant of this system.

• To what extent does the system model radioactive 

decay? In what way is it dierent?

Simulating radioactive half-life

664
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In many ways, radioactive decay is only half the story. 

As the atoms of a parent nuclide decay, the number of 

daughter nuclei grows. When the daughter is stable, then 

the graphs of decay and growth are straightforward (Figure 

25). The number of daughter nuclei at any moment is the 

dierence between the initial number of parent nuclei and 

the present number of parent nuclei.

When the daughter is also unstable, the situation is more 

complicated. Suppose parent A decays to an unstable 

daughter B, which then decays to form the stable element 

C. The variation with time of the numbers of each nuclide 

is shown in Figure 26. The proportions of the graphs now 

depend on the relative decay constants of A and B.

These graphs can be easily modelled: 

• The rate of loss of A depends on its decay constant λ
A
: dNA

dt
= −λ

A
N

A

• The rate of change of B depends on its growth from A and its own decay constant λ
B
: dNB

dt
= + λ

A
N

A
− λ

B
N

B
.  

Note the signs here and assume that initially N
B

= 0.

• The rate of change of C (assumed stable) is dNC

dt
= + λ

B
N

B

This model can be constructed and run using suitable soware to give the graphs shown here. Details of how to 

approach this are given in Tools for physics. You will need to choose the initial number of nuclei and suitable decay 

constants for A and B.

Models — Radioactive growth 
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▴ Figure 25 The simple case where, as the parent nuclide (red 

curve) decays, the stable daughter (blue curve) grows.  

The sum of both lines is constant (and the initial number of 

parent nuclei).

▴ Figure 26 The daughter product also decays to form a stable granddaughter (green curve). (a) Here the half-life of the daughter 

nuclide is less than that of the parent. Only small amounts of the daughter are present in the nuclear mix. (b) When the daughter half-life 

is equal to that of the parent, the fraction of daughter nuclide in the mix is greater. (c) This is the case when the parent half-life is less than 

that of the daughter.
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Fission leads to the release of energy. This is a 

consequence of the plot of binding energy per nucleon 

against nucleon number from Topic E.3. 

Figure 1 shows the binding energies per nucleon for 

elements with high binding energies per nucleon. On the 

right are the elements with large A. Uranium-235 is indicated 

together with the energy dierence between it and the 

most stable elements around iron-56. When the uranium 

ssions — whether by induced or spontaneous ssion — it will 

produce two nuclei that must be around the stable region 

where A≈ 120. The binding-energy dierence is released 

in several energy forms, such as the kinetic energy of the 

particles aer ssion and as high-energy photons. Binding 

energy is the source of nuclear energy.

This topic also considers the use of U-235 in a practical 

reactor. Problems to overcome include the following.

• Neutrons are easily absorbed by U-238 nuclei to 

produce plutonium-239. This is unavoidable and 

undesirable because it removes available neutrons from 

the reactor. Unfortunately, the naturally occurring U-238 

and U-235 occur together in mined uranium ore. 

• Each neutron is emitted with an energy of around 

2 MeV of kinetic energy. This is a high speed, roughly 

10% of the speed of light. However, ssion is best 

initiated by a neutron with a much slower speed with 

an energy of a factor of 108 lower. The neutrons from 

the ssions must be slowed down without allowing 

them to interact with other nuclei (principally U-238) in 

the reactor. 

The solutions to these and other engineering problems 

form the basis of this topic. They involve physics from 

other areas of the subject too. The uranium fuel must be 

enriched by using a gaseous form of it in a centrifuge. The 

heavier U-238 is separated from the lighter U-235 and 

proportionally less of the heavier isotope is in the nal 

material.

The speed of the emitted neutrons must be moderated 

down to the equivalent of the kinetic energy of the average 

particle in a gas at room temperature (Topic B.3). This 

process involves the mechanics of Topics A.2 and A.3. 

Repeated elastic collisions redistribute the energy between 

fast neutrons and the atoms of the moderator material.

This topic looks closely at how physicist and engineers 

harness nuclear energy in practice, and how they deal with 

the practical issues of radiation and nuclear waste.

In which form is energy stored within the nucleus of the atom?

How can the energy released from the nucleus be harnessed?

E.4  Fission

In this topic, you will learn about:

• spontaneous and neutron-induced fission

• energy released in fission

• chain reactions 

• control rods, moderators, heat exchangers and 

shielding in a nuclear power plant

• management of the waste products of nuclear fission.
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▴ Figure 1 The dierence between the binding energy per nucleon of the most stable nuclei and heavy elements is enough to 

make nuclear ssion a sensible method for the transfer of energy.
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Introduction
In her long life, Elise Meitner won many prizes and honours for her scientic 

research. She received 29 separate nominations for the Nobel Prize in Physics. 

However, she never received a Nobel Prize, even though her collaborator Otto 

Hahn won the award for their joint work. In 1939, she used the term “ssion” for 

the rst time in a scientic paper that she wrote with her nephew Otto Frisch.

Almost 90 years later, the term nuclear ssion is now commonplace, and we use 

the process to generate electrical energy. But we have also used ssion in more 

sinister ways over the past 90 years, so that the use of nuclear power continues 

to cause disagreement in society. To have a considered view on nuclear power in 

society, you need to understand the physics of ssion. In other words, the physics 

of the release of energy because of an induced change in a nucleus and how this 

release can be safely harnessed for good. 

Elise Meitner was forced to ee Germany during the Second World War due to 

the rise of anti-semitism. She ed to Sweden which was neutral in the war and 

refused to join other scientists in their pursuit of making nuclear weapons. 

Her collaborator, Otto Hahn remained in Germany. In later life, he became 

outspoken against the use of science for military purposes. He later came to 

regret his conduct during the war saying “Come the year 1933 I followed a ag 

that we should have torn down immediately. I did not do so, and now must bear 

responsibility for it.”

Meitner was critical of many German scientists, including Hahn, for their 

involvement in the war. She also regretted staying in Germany before the war  

with the words “it was not only stupid but very wrong that I did not leave at once”

Meitner died in 1968 aged 89. The inscription on her grave, written by her 

nephew, says “Lise Meitner: a physicist who never lost her humanity”.

Social skills — Reecting on the impact of behaviour ATL

Nuclear ssion — Induced and spontaneous

Nuclear ssion occurs when the nucleus of a heavy element (with a nucleon 

number greater than about 230) splits into two or more nuclei. This nuclear 

splitting occurs in two ways:

• Spontaneous ssion This is a rare form of radioactive decay in which the 

parent nucleus splits into smaller nuclei with the additional release of nuclear 

particles. These particles are likely to be neutrons, so that the daughter nuclei 

have proton:neutron ratios that are closer to the zone of stability (Topic E.3,  

page 648) although they are unlikely to be on it.

  Spontaneous ssion is conned to decays observed in naturally occurring 

thorium-232, uranium-235 and uranium-238. It is also seen more commonly 

in articially produced elements in the actinide and transactinide groups of 

the Periodic Table.

  In the case of the thorium and uranium nuclei, it is much more likely that  

alpha emission will occur, but geological evidence indicates that they can 

ssion spontaneously and have done so during the Earth’s history. The  

half-life for the alpha emission is around 700 million years, whereas the  

half-life for spontaneous ssion is 11 billion years. This emphasizes the rarity  

of a spontaneous ssion event.

▴ Figure 2 Elise Meitner meeting some 

young American physicists in 1946.
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• Neutron-induced ssion This is the more important type of ssion in which a 

neutron from outside the nucleus interacts with it to produce a new unstable 

isotope of the original with an increased neutron number (Figure 3). 

This is the type of ssion used in nuclear engineering, where it is oen 

known as a “nuclear reaction”. It is important to recognize that induced 

ssion is not a radioactive decay of the type outlined in Topic E.3. An 

initiating neutron is required to induce the ssion. The emission of neutrons 

as some of the nal products is essential to maintain the reactions in a 

sustainable way — to establish a chain reaction. 

The ssion mechanism

Two common nuclear fuels in use today are uranium-235 and plutonium-239. 

The uranium occurs naturally. Plutonium is only present in trace amounts 

in the Earth’s crust and, when used in nuclear reactors, must be produced 

synthetically. The trace amounts of plutonium in the rocks are produced when 

natural uranium-238 captures a neutron as a by-product of cosmic rays or from a 

natural uranium-235 decay.

Here is the  uranium-235 ssion process in detail.

• An incoming neutron interacts with the uranium-235 nucleus and is 

absorbed. This creates the unstable uranium isotope U-236:

235
U92

+ 1
n0

→ 236
U*

92

The asterisk indicates the unstable nature of the U-236.

• In 82% of the neutron interactions, the U-236 ssions in a very short time to 

produce two ssion fragments of approximately equal size together with 

several high-speed emitted neutrons.  

In the remaining 18% of interactions, the U-236 emits gamma rays to become 

a more stable form of the nuclide. In this form, it has a half-life of about 23 

million years and is a small but signicant problem in nuclear reactors as it 

builds up in the fuel.

• The main ssion process does not have a denite endpoint as, providing 

the numbers of protons and neutrons balance, many combinations of nal 

nuclides are possible. One typical ssion leads to the creation of barium 

and krypton:

236
U*

92
→ 144

Ba56
+ 90

Kr36
+ 2 1

n0
+ ΔE

where ΔE is the energy released.

• ΔE can be calculated using ΔE = c2Δm, where Δm is the overall dierence 

between the total mass before the ssion (including the incoming neutron) 

and the total mass aer the ssion:

Δm = mU-235 mBa-144 mKr-90 mn

• The barium–krypton endpoint is oen quoted in books because it is one of 

the most common outcomes of U-235 ssion. For example, the reaction

236
U*

92
→ 144

Ba56
+ 89

Kr36
+ 3 1

n0
+ ΔE

also occurs with one more neutron emitted than for Kr-90.  

Other possible ssions include

236
U*

92
→ 140

Xe54
+ 94

Sr38
+ 2 1

n0
+ ΔE      and      236

U*
92

→ 132
Sn50

+ 101
Mo42

+ 3 1
n0

+ ΔE

neutron
n

n

n235

92
U

141

56
Ba

92

36
Kr

▴ Figure 3 An incoming neutron induces 

the ssion of a U-235 nucleus into two 

smaller nuclear fragments with the emission 

of more high-speed neutrons.

The number of neutrons produced 

from the ssion of U-235 varies. The 

table below gives the probability P

of dierent numbers of neutrons N 

being released.

N P

0 0.033

1 0.174

2 0.335

3 0.303

4 0.123

5 0.028

6 0.003

• Calculate the average number 

of neutrons emitted (express 

your answer to 1 decimal place).

• Theory suggests that  

ln P = k (N − N
av

)2 + A where 

N
av

 is the average number of 

neutrons emitted and k and  

A are constants. Plot a graph  

of ln P against (N − N
av

)2 to test 

this theory.

• Use your graph to nd values 

of k and A. Hence, nd the 

probability of a ssion reaction 

releasing 7 neutrons.

Data from N. Ensslin: The Origin of 

Neutron Radiation

Data-based questions

O
xf

or
d 

U
niv

er
si
ty

 P
re

ss

Eva
lu

at
io

n C
op

y 
O
nly



E. Nuclear and quantum physics

669

• Either two or three neutrons are released in all the possible ssions quoted 

here. However, other numbers of neutrons are also possible with dierent 

products.

Figure 4 gives the % yield of nuclides with peaks around the 36–38 and  

54–58 regions. The outcome with equal proton number is rare.  

(This y-axis scale is logarithmic.) 

• The two nuclei have greater stability than the U-235 because their binding 

energies per nucleon are greater than that of the uranium. So, as well as the 

two nuclei and several neutrons, energy is released as a result of the ssion. 

• Electrostatic repulsion controls the energy release. The two nuclei suddenly 

occupy similar regions in space and the large electrostatic repulsion 

overcomes the strong nuclear force. All the emitted nuclei and particles gain 

kinetic energy with some photon emission. 

  The average binding energy per nucleon in U-235 is in the region of 7.6 MeV 

per nucleon. For the products it is around 8.5 MeV per nucleon. Thus, the 

energy released is about 1 MeV per nucleon, or around 200 MeV per  

U-235 nucleus.
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▴ Figure 4 The two peaks in this 

logarithmic plot indicate that the outcome 

with two equal proton numbers is rare. Such 

nuclei would be likely to be neutron-rich and 

very unstable.

The 200 MeV of energy per nucleus that is transferred 

from the binding energy comes in a number of forms. 

Some is released immediately (with a total of about 

180 MeV), some later. The table gives a broad picture of 

the types and percentages of the emitted fission energy.

Much of this energy can be recovered as the various 

particles are brought to rest in a nuclear reactor. This 

increases the internal energy of the reactor. A coolant is 

used to transfer the energy away from the reactor vessel. 

Some energy (about 20 MeV), however, is released over a 

much longer time scale as alpha and beta decays from 

the fission fragments (handling this material is considered 

later in this topic). It is not practical to recover all the 

energy because some is emitted as antineutrinos (about 

9% of the total energy). Similarly, the neutron kinetic 

energy is not all immediately available as it can be used to 

breed plutonium-239 from U-238 interactions. 

The various forms that the energy takes are considered 

elsewhere in the course. For example, treatment of the 

kinetic energies is in Topic A.3 and the photon energies 

are discussed in Topic E.1.

In which form is energy released as a result of nuclear fission?

Energy type Energy released / MeV

immediate release fission product kinetic energy 165

neutron kinetic energy 5

gamma photons (during fission) 7

later release from 

activity of fission 

products

beta particles 7

gamma emission 7

antineutrinos 9

net energy released / fission 200
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Worked example 1

In neutron-induced ssion, a nucleus of uranium-235 (235
U92 ) absorbs a neutron and yields a nucleus of  

xenon-140 ( 140
Xe54 ) and a nucleus of strontium-94 (94

Sr38 ), according to the reaction

235
U92

+ 1
n0

→ 140
Xe54

+ 94
Sr38

+ x 1
n0

a.  Calculate the number of neutrons released in the reaction.

The atomic masses of the nuclides are given in the table.

b. Calculate, in MeV, the energy released in the reaction.

c.  Estimate, in J, the nuclear energy transferred when 1.0 kg of  

pure uranium-235 undergoes fission.

Solutions

a.  The number of nucleons on the left-hand side of the reaction must be the same as the number of nucleons  

on the right-hand side. 235 + 1 = 140 + 94 + x ⇒ x = 2. The fission releases two neutrons.

b.  The loss of mass in the reaction is Δm = (mU-235 + mn)  (mXe-140 + mSr-94 + 2mn). The process involves atomic nuclei,  

but since the proton number does not change, we can work with atomic masses instead and do not need to 

subtract the mass of the electrons.

  Mass difference Δm = 235.0439  139.9216  93.9154  1.0087 = 0.1982 u, where 1.0087 u is the mass  

of one net neutron produced in the reaction.

  As u = 931.5 MeV c−2, Δm = 0.1982 × 931.5 = 184. 6 MeV c−2. The energy equivalent of this mass is  

∆E = ∆mc2 = 184.6 MeV.

c.  The fraction of mass of uranium converted to energy is 
Δm

m
=

0.1982

235.0439
= 8.4 × 10–4. For every 1 kg of pure 

uranium-235 undergoing fission, the mass converted to energy is 8.4 × 10−4 kg = 0.84 g. This corresponds to  

∆E = ∆mc2 = 8.4 × 10–4 × (3.0 × 108)2 = 7.6 × 1013 J. This is an approximate value as not every fission reaction yields 

the same amount of energy. There are many other combinations of fission fragments than Xe-140 and Sr-94, with 

small differences in energy released from one pair of fragments to another. Moreover, the calculation does not 

include energy released during subsequent decays of fission products.

Nuclide Atomic mass

235
U92 235.0439 u

140
Xe54 139.9216 u

94
Sr38 93.9154 u
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The 200 MeV of energy emitted when one U-235 nucleus 

fissions is about 3.2 × 10−11 J of energy. On the face of it, to 

transfer 1 MW h of energy should require 1020 fissions. 

Of course, not all this binding energy from fission can be 

transferred to electrical energy. Energy is removed from the 

reactor vessel using steam at temperatures around 300 °C 

that drives turbines. The steam is ejected from the turbines 

at around 50 °C. Topic B.4 reminds us that the second law of 

thermodynamics will give a maximum theoretical efficiency of

ηCarnot = 1 
Tc

Th

= 43%

The reactor is a heat engine too and is not close to a reversible 

state. Overall, the maximum efficiencies of the whole reactor 

plant approach 30%, so that to obtain 1 MWh of electrical energy,  

3 MW h of fission energy must be transferred.

How is binding energy used to determine the rate of energy production in a nuclear  
power plant?

▴ Figure 5 A nuclear power station.
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Worked example 2

Xe-140 and Sr-94 produced in neutron-induced ssion of uranium-235 in Worked example 1 are  

radioactive and undergo further decays. The stable end products of their respective chains of  

decays are cerium-140 ( 140
Ce58 ) and zirconium-94 (94

Zr40 )
a.  Explain why the combined proton number of Ce-140 and Zr-40  

is different from the proton number of U-235.

The binding energies per nucleon are given in the table.

b.  Calculate, in MeV, the total energy released as a result of this  

fission reaction of U-235.

Solutions

a.  The combined proton number of Ce and Zr is 98 and that of uranium is 92. Since the nucleon number is unchanged 

compared with the initial fission products, the decays leading to the production of Ce and Zr must have been beta 

decays, resulting in an emission of charged particles and a change in the proton number of the resulting nuclei.

b.  The total binding energy increases as a result of the initial fission and subsequent decays. Since Ce-140 and Zr-94 

are the final stable products, the total energy released can be approximately taken as the binding energy difference 

between these two nuclei and U-235.

ΔE = 140 × 8.376 + 94 × 8.667  235 × 7.591 = 203.5 MeV

  This energy includes 184.5 MeV released in the initial fission (see Worked example 1) and about 19 MeV in the 

subsequent decays of fission products.

Nuclide Binding energy /A

235
U92 7.591 MeV

140
Ce58 8.376 MeV

94
Zr40 8.667 MeV

Practice questions

1. Consider the neutron-induced fission reaction

235
U92

+ 1
n0

→ 144
Ba56

+ 89
Kr36

+ 3 1
n0

 The following data are given about the binding 

energies per nucleon of these nuclides.

Nuclide Binding energy /A

235
U92 7.591 MeV

144
Ba56 8.265 MeV

89
Kr36 8.615 MeV

 a. Calculate, in J, the energy released in the reaction. 

 b.  Estimate the fraction of the mass of uranium-235 

converted to energy in this reaction.

 c.  A nuclear power station outputs 1.3 GW of 

electrical power. Use your answer in part b. to 

estimate the mass of uranium-235 that undergoes 

fission in one day. Assume that the overall 

efficiency of nuclear to electrical energy transfer in 

this power station is 0.30.

2. Consider neutron-induced fission of plutonium-239,

239
Pu94

+ 1
n0

→ 134
Xe54

+ 103
Zr40

+ x 1
n0

 a.  State the number of neutrons released in 

this reaction.

 b.  Calculate, in MeV, the energy released. The 

following data are available for this question.

Nuclide Atomic mass

239
Pu94

239.0522 u

134
Xe54

133.9054 u

103
Zr40

102.9272 u
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Chain reactions

So far, we have concentrated on the process of ssion of a single nucleus. 

However, a key requirement for the continuous production of energy is the chain 

reaction. Neutrons from a single ssion must be able to initiate further nuclear 

ssions as they interact with other ssionable nuclei.
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A working chain reaction in a real-life nuclear reactor involves both careful physics and 

meticulous engineering. Figure 6 shows the process. The three neutrons from the rst 

ssion go on to cause another ssion each of which leads to further ssions and so on.

This process was rst envisioned by Leo Szilard, a Hungarian physicist, who realized 

that the emission of more than one neutron from a ssion could lead to multiple 

further ssions. The trick is to maintain the reaction in such a way that it can be 

controlled: by allowing the number of neutrons to increase to produce more power 

from a reactor, and by reducing the number to stop the reactor working.

The way these limitations are overcome is described in the next section.
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▴ Figure 6 A chain reaction in a nuclear reactor — emitted neutrons go on to cause further ssions.

Practical nuclear reactors

There are many types of reactor in common use around the world. This 

description focuses on the thermal ssion reactors. One example of this type is 

the pressurized-water reactor (PWR) which uses uranium-235 as fuel. The aim of a 

nuclear power station is to take energy transferred from the nucleus in the nuclear 

ssion and to use this to create high-pressure steam. The steam then turns turbines 

connected to an electrical generator using techniques discussed in Topic D.4. 

Figure 7 shows a schematic of a PWR with the nal output of steam to, and the 

return pipe from, the turbines. 

Uranium is mined as an ore in various parts of the world. About 99.3% of the 

ore as it comes directly from the ground is made up of uranium-238, with the 

remainder being U-235; it is the U-235 not U-238 that is required for the ssion 

process. This means that an initial extraction process is required to boost the ratio 

of U-235 to U-238. The fuel needs to contain about 3% U-235 before it can be 
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used in a reactor. This is because U-238 is a good absorber of neutrons and too 

much U-238 in the fuel will prevent the ssion reaction becoming self-sustaining. 

The fuel with its boosted proportions of U-235 is said to be enriched

The enriched material is then formed into fuel rods — long cylinders of uranium 

that are inserted into the core of the reactor. 

Immediately aer emission, the neutrons are moving at very high speeds of the 

order of 104 km s−1. However, for them to be as eective as possible in causing 

further ssions to sustain the reaction, they need to be moving with kinetic energies 

much lower than this, of the order of 0.025 eV (with a speed of about 2 km s−1). 

This slower speed is typical of the speeds that neutrons have when they are in 

equilibrium with matter at about room temperatures. Neutrons with these typical 

speeds are known as thermal neutrons. The slowing is achieved by moderation.

Moderators

The requirement to reduce the kinetic energy of the neutrons is not only so that 

the neutrons can stimulate further ssions eectively, but so that their energy can 

be eciently transferred to the later stages of the power station. The removal of 

energy is achieved using a moderator, so-called because it moderates (slows 

down) the speeds of the neutrons. 

Typical moderators for the PWR type include water, heavy water (deuterium 

oxide) and carbon in the form of graphite. The transfer of energy is achieved 

when a fast-moving neutron strikes a moderator atom elastically, transferring 

energy to the atom and losing energy itself. Aer a series of such collisions, the 

neutron will have lost enough kinetic energy for it to be moving at thermal speeds 

and to have a high probability of causing further ssion. 

When a neutron strikes a stationary carbon atom, momentum must be conserved. 

You should be able to show using ideas from Topics A.2 and A.3, that the change 

in kinetic energy ΔEk of a neutron of mass m and initial kinetic energy Ek when it 

collides head-on with a moderator nucleus of mass M is

ΔEk =
4mM

(m+M)2 Ek

control rods

containment

building

steam to drive turbines

cold water from turbines

heat exchanger

graphite moderator

uranium fuel rods

steel reactor vessel

▴ Figure 7 A schematic of a pressurized water reactor (PWR).

▴ Figure 8 These bundles of fuel rods for 

a nuclear reactor are about 0.5 m long and 

0.1 m in diameter. Each bundle generates 

about 4 TJ of energy during the time it is in 

the reactor.
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For one collision with each of the common moderator nuclei:

• Hydrogen: 
ΔEk

Ek

=
4mM

(m + M)2
=

4mn × mp

(mn+ mp)2
≈ 1

(The neutron stops and the hydrogen gains all the neutron’s kinetic energy.)

• Deuterium: 
ΔEk

Ek

≈ 0.9

• Carbon:
ΔEk

Ek

≈ 0.3

This is a simplified model as few collisions will be head on. But on this basis, with 

carbon as a moderator, the number of collisions n required to reduce the energy 

of the neutron by a factor of 108 is roughly (1  0.3)n ≈ 10–8. This leads to n ≈ 50. 

(In practice, the average number required is around 120 because the collisions 

are not head on.)

A further problem is that U-238 is very effective at absorbing high-speed 

neutrons. When the slowing down is carried out in the presence of the U-238, 

then most neutrons will be absorbed. Reactor designers make the moderators 

close to, but not part of, the fuel rods. The neutrons then slow down in the 

presence of moderator only. The fuel rods and the moderating material are 

separated, and neutrons move from one to the other at random. The reactor 

vessel and its contents are designed to facilitate this. 

The criteria for a material to be a good moderator include:

• being a poor absorber of neutrons (absorption would lower the reaction rate 

and possibly stop the reaction altogether)

• being inert in the extreme conditions of the reactor. 

You should be able to predict from the analysis above that the best moderator 

of all should be a hydrogen atom (a single proton in the nucleus). The maximum 

energy can be transferred when a neutron strikes a proton. However, hydrogen 

itself is a very good absorber of neutrons, leading to the formation of deuterium, 

and it cannot be used as a moderator in this way. 

Modelling the moderation process

The probability of a neutron causing the ssion of a uranium-235 nucleus depends on the 

energy of the neutron. Nuclear physicists oen use the concept of a ssion cross-section 

σ to represent a probability. A large cross-section represents a larger target and therefore 

has a higher probability of the neutron “hitting” that target. The unit is a barn, abbreviated 

to b, (1 b = 10−28 m2). The table gives σ for uranium-235 at a number of neutron energies E

• Tabulate values of log E and log σ

• Plot a graph of log σ against log E.

• Find the gradient of your graph and explain how it demonstrates that σ ∝
1

√E

• Plot a graph of σ against 
1

√E
 and nd the gradient of your graph.

• Assume that the uncertainty in the values of σ are 10%. Add error bars to your graph 

and hence evaluate the uncertainty in your gradient.

• In a nuclear reactor, the energy of a neutron will be reduced by a factor of 108.  

Estimate the increase in the cross-section from this reduction in energy.

Data-based questions

E / eV σ / b

1.00 × 10−4 9780

2.00 × 10−4 6910

5.00 × 10−4 4370

1.00 × 10−3 3080

2.00 × 10−3 2170

5.00 × 10−3 1360

1.00 × 10−2 954

2.00 × 10−2 665

5.00 × 10−2 399

1.00 × 10−1 259

2.00 × 10−1 182
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Control rods

The power output from the reactor must be regulated. It is also necessary to shut 

down the operation when required. These are achieved through the use of control 

rods. These are rods, oen made of boron or some other element that absorbs 

neutrons very well, that can be lowered into the reactor. When the control rods are 

inserted a long way into the reactor, many neutrons are absorbed in the rods and 

fewer neutrons will be available for subsequent ssions. The rate of the reaction will 

drop. By raising and lowering the rods, the reactor operators can keep the energy 

output of the reactor (and therefore the power station) under control.

Heat exchangers

The last part of the nuclear power station that needs consideration is the mechanism 

for conveying the internal energy from inside the reactor to the turbines. This is 

known as the heat exchanger and is shown on the right of Figure 7.

The energy exchange cannot be carried out directly as in, say, a fossil-fuel station. 

There needs to be a closed-system heat exchanger that collects energy from the 

moderator and other hot regions of the reactor and delivers it to the water. The 

turbine steam cannot be piped directly through the reactor vessel because there 

is a chance that radioactive material could be transferred outside the reactor 

vessel. The use of a closed system prevents this. 

The pressurized water reactor is given its name because it transfers the energy 

from moderator and fuel rods to the boiler using a closed water system under 

pressure. Water is not the only substance available for this. In the advanced 

gas-cooled reactors (AGR) used in the UK, carbon dioxide gas is used rather than 

water, but the principle of transferring energy safely through a closed system is 

the same.

Shielding a nuclear reactor and its operators

The emissions from the nuclear process have large energies and take many forms: 

neutrons, gamma photons and so on. Some of these have high penetration 

through solid material. There needs to be a range of safety measures provided at 

the site of a nuclear reactor to protect the work force, the community beyond the 

power station and the environment.

Typically: 

• The reactor vessel is made of thick steel to withstand the high temperatures 

and pressures present in the reactor. This has the benet of also absorbing 

alpha and beta radiations together with some of the gamma photons and 

stray neutrons. 

• The vessel itself is encased in layers of very thick reinforced concrete that also 

absorb neutrons and gamma rays. 

• The whole reactor is within a containment building designed to withstand 

major events such as earthquakes. In the worst scenario, the entire contents 

of the reactor would be trapped in this construction.

• There are emergency safety mechanisms that operate quickly to shut the 

reactor down in the event of an accident. 

• The fuel rods are inserted into and removed from the core using robots, so 

that human operators do not come into contact with the spent fuel rods, 

which become highly radioactive during their time in the reactor. 

▴ Figure 9 The control room of a nuclear 

power station.
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Managing nuclear waste
The U-235 and U-238 nuclides in the fuel rods are subject to extensive change in 

the reactor as the ssion occurs.

• Some U-235 nuclei are converted to pairs of elements with smaller A

during ssion.

• Some U-238 absorbs a single neutron to become plutonium-239.

• Some U-235 absorbs a neutron to become U-236 with a long half-life.

These processes cause signicant problems for the operators of a nuclear plant.

• The rods gradually convert from uranium into a cocktail of many chemical 

elements (krypton, barium, molybdenum, etc). These nuclei are generally 

neutron-rich compared with their stable isotopes and are therefore likely to 

decay via beta-minus emission. Typically, such products have half-lives that 

range from hours to tens of years. This requires safe handling and eective 

medium-term storage.

• The creation of two nuclei in the place of the original U-235 nucleus will 

distort the container that contains the fuel rod and it can, in a worst case, jam 

in its channel in the reactor. Reactor operators only allow a limited amount of 

ssion to occur in any one fuel rod to prevent jamming. The rod is then taken 

from the reactor vessel, its ssion products are chemically removed, and the 

remaining U-235 is recycled into another fuel rod.

• The formation of plutonium-239 has benets and disadvantages. The 

plutonium-239 is ssile and so can be used in a dierent type of reactor to 

generate more power. This is the basis of the so-called fast-ssion (fast-breeder) 

reactor. Here, a layer of U-238, placed as part of the shield of a Pu-239 reactor, 

converts into Pu-239. This type of reactor therefore creates its own fuel. It also 

does not need a moderator as Pu-239 can ssion easily with fast neutrons. 

However, this type of reactor has not proved to be economically viable.

The medium and short half-life products produced in the fuel rods during the 

reaction need to be treated carefully. They are highly active materials. Remember 

that a short half-life means a large decay constant (Topic E.3) and, because  

A= λN, this implies large activity too. 

The spent fuel rods are initially transferred to cooled underwater storage in 

something resembling a large swimming pool (Figure 10). The rods are stored for 

roughly ve to ten years before undergoing treatment to recycle the uranium into 

fresh fuel rods. This is called reprocessing. 

Figure 10 shows a blue light at the bottom of the pond, which is Cerenkov 

radiation emitted as the high-speed alpha and beta particles are slowed down, 

and nally absorbed, in the water. During this time the rods must be handled 

remotely given their high radioactivity.

Once the very active elements have been removed from the uranium, the 

resulting waste can be treated in a number of ways. Remember that some of 

it can remain active for hundreds of thousands of years (half-life of 93Zr = 1.53 

million years; half-life of 107 Pd = 6.5 million years, etc). Disposal of this low-activity 

waste can involve storage:

• in well-sealed drums on the surface

• or in underground vaults such as disused mines. 

Every nuclear-reactor plant produces large amounts of low-level waste, for example, 

gloves, over-shoes and so on used by the workers. Such material is produced by 

▴ Figure 10 A cooling pond near a 

nuclear reactor where the fuel rods are 

stored before further processing.
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other organizations too, such as hospitals and engineering facilities. This is 

generally disposed of by ground burial under secure conditions. 

There may be other problems involving the chemical toxicity of waste 

material, which mean that it is vital to keep it separate from biological 

material and thus the food chain. The technology required to achieve this 

is still developing.

At the end of its life (of the order of 25–50 years at the moment), a reactor 

plant has to be decommissioned. This involves removing all the fuel rods 

and other high-activity waste products and enclosing the reactor vessel 

and its concrete shield in a larger shell of concrete. It is then necessary 

to leave the structure alone for up to a century to allow the activity of the 

structure to drop to a level similar to that of the local background. Such 

long-term treatment is expensive, and it is important to factor this major 

cost into the price of the electricity as it is being produced during the 

lifetime of the power station.

Topic B.2 suggests that global society cannot continue to use fossil 

fuels in the way that historically it has. Alternative sources of energy 

include wind, wave and solar forms. However, ssion also provides 

a means — perhaps temporary — for providing us with the energy on 

which the modern world relies. The alternative sources too have their 

critics as they require costly and scarce minerals for their construction.

The issue is a balanced one. Fission provides a convenient, controlled 

source of energy. However, at the end of the reactor’s life, the costs 

of keeping the active parts of the reactor safe are considerable. There 

have also been accidents at nuclear power plants with the release of 

radioactive material. Perhaps nuclear power is a short-term solution? 

Scientists must continue to work together in shared endeavour to 

create the fusion reactors (Topic E.5) that use mechanisms found in the 

stars domestically to fuse hydrogen into helium.

At the end of the day, this is a question for society as a whole. The 

global impact that science has requires scientists to assess risks and 

to consider all the consequences of their work. The scientists and 

engineers then have the responsibility to report their research and 

ndings to the general public free of any political lter.

To what extent is there a role for fission in addressing 
climate change? (NOS)

Progress in physics and technology is linked. 

Technological developments enable better 

measurements and more precise experiments to test 

new theories. The improved theories can then be used 

to develop more sophisticated technology. Sometimes 

technological applications may only be discovered long 

aer a theory is formed.

In the case of nuclear ssion, discovered in 1938 although 

hypothesized earlier, scientists quickly saw that it had the 

potential for developing weapons. In 1939, Hungarian 

physicists Leo Szilard and Eugene Wigner wrote a 

letter, signed by Albert Einstein, to President Roosevelt 

of the United States. In it they warned of the potential 

application in the creation of “extremely powerful bombs 

of a new type”.

Should scientic research be regulated? Is it possible to 

pursue scientic research independently of any concerns 

over the possible applications of discoveries?

Does science need an ethical basis?

Once the principles of nuclear ssion had 

been described by Elise Meitner and Otto 

Hahn, scientists started to consider how 

to develop a working nuclear reactor. A 

large group of scientists led by Enrico 

Fermi and overseen by Arthur Compton 

worked towards building such a reactor. 

Their reactor was built at the University of 

Chicago and rst achieved self-sustaining 

ssion in December 1942.

Such a project required a large team of 

scientists, technicians and workers. It 

was, itself, a smaller part of the Manhattan 

Project which, near the end of the 

Second World War, employed almost 

125 000 people.

The Manhattan Project remains 

controversial. However, it is widely 

regarded as an early and successful 

collaborative scientic project. Today 

there are many examples of signicant 

international collaborations which 

embark on large-scale experiments such 

as CERN. Such collaborations can involve 

academic institutions, industry and 

themilitary.

▴ Figure 11 A drawing of the Chicago 

Pile-1 which was the world’s rst nuclear 

reactor in 1942.

Social skills — Collaboration ATL
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▴ Figure 1 The evolution of the universe with time since the  

Big Bang.

• Very little can be deduced about the start of the universe 

and the first fractions of a second of its existence because 

there was probably quantum fluctuation in the behaviour 

of spacetime. For the first 10 43 s, the universe has a 

diameter of about 10 35 m. All the fundamental forces are 

likely to have the same strength. As time increases, first 

gravitation, and then the strong nuclear force, separate 

from the others. Rudimentary elementary particles begin 

to form. Cosmic inflation occurs, and the electroweak 

force (electromagnetic + weak interactions) drives the 

creation of bosons, and eventually quarks, electrons 

and neutrinos.

• By the end of the first second, the temperature has 

dropped to 1012 K and protons and neutrons with their 

antiparticles can begin to form from quarks. These 

hadrons annihilate frequently, with only the overall 

charge and energy of the universe remaining constant.

• After three minutes the temperature has fallen to 109 K 

and nucleosynthesis occurs for the next 17 minutes, 

forming hydrogen, helium and some lithium. At the 

20-minute point, the temperature has fallen below that 

at which nuclear fusion can occur.

• For the next quarter of a million years, the energy of 

the universe is dominated by the presence of photons 

which interact with the protons, electrons and any 

simple nuclei that have formed.

• By 300 000 years from the Big Bang, the temperature 

has fallen to 3000 K and the ionized atoms capture 

electrons. This is the point at which the universe 

becomes transparent to electromagnetic radiation and 

photons can now travel freely. The universe is a fog of 

hydrogen and helium gas with traces of lithium.

• The next 150 million years are dominated by darkness. 

Little changes. The stars have not yet formed, and the 

universe is controlled by the behaviour of dark matter.

• Now, the first quasars form from gravitational collapse 

and the intense radiation emitted ionizes the gas so that 

a plasma re-forms.

• Within the first fractions of a second after the Big Bang, 

small irregularities in the distribution of energy are 

thought to have occurred. These are now amplified 

by gravitational force so that pockets of gas form and 

begin to collapse under their own gravity. These denser 

regions of hydrogen gas become hot enough to trigger 

the nuclear fusions that create short-lived massive stars. 

These soon burn out and explode in supernovae, the 

contents of the explosion providing the material for 

second-generation and third-generation stars. Larger 

volumes of matter condense to form galaxies in groups, 

clusters and superclusters. This is the universe we 

observe today.

At the moment, cosmologists are undecided on the future 

of the universe. One possible answer is heat death, in 

terms of the thermodynamics in Topic B.4. They say that 

the universe may eventually run out of transferable energy 

in 1042 or more years from now. However, this depends 

on whether protons are truly stable or have a very long 

radioactive half-life (of the order of at least 1035 years).

Astrophysics and cosmology tell a different story. Here 

physicists make observations in the present that look 

back through time to make predictions about the future. 

There is a critical density for the matter and energy in 

the universe that defines whether it expands forever or 

contracts or whether it stops expanding after an infinite 

time. Whatever the endpoint for the universe, whether 

heat death or expansion/contraction, Earth will not be in 

existence bythen. The Sun will run out of nuclear fuel in a 

few billionyears.

What physical processes lead to the evolution of stars?

How are elements created?

Can observations of the present state of the universe predict the future outcome of the universe?

E.5  Fusion and stars
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In this topic, you will learn about:

Introduction
The Sun radiates about 1026 J of energy every second. Stellar matter undergoes 

nuclear fusion at vast rates. What is the source of this enormous power?

Primordial hydrogen was created as a result of the Big Bang. The gravitational 

collapse of clouds of this hydrogen led to fusion processes. More hydrogen was 

released in the supernovae of the earliest stars. The evolution of a star leads to the 

creation of elements heavier than hydrogen. What are the fusion processes that 

have led to life in the universe?

• the stability of stars

• fusion as the source of energy in stars

• conditions leading to fusion

• the effect of stellar mass on the evolution of a star

• the Hertzsprung–Russell (HR) diagram and its main 

regions and features

• stellar parallax

• how to determine stellar radii.

At the beginning of the 20th century, the source of the 

Sun’s energy was not known. Gravitational collapse was 

a possible theory, but it predicted an age for the Sun of 

about 20 million years. There was geological evidence 

that Earth was at least ten times older.

In the 1920s, Sir Arthur Eddington proposed that the 

temperature and pressure at the centre of the Sun were 

sufficient for nuclear fusion to occur. Today, we believe that 

the Sun will exist in its current state for about ten billion 

years and that it is nearly halfway through this lifetime.

The evidence for nuclear fusion as the Sun’s energy source 

comes from the detection of solar neutrinos (see Topic E.3 

for more on neutrinos). These neutrinos hardly interact with 

matter and so the majority of them travel out of the Sun 

unimpeded. The large rate of fusion reactions in the Sun is 

predicted to release a huge number of neutrinos (almost 

100 billion neutrinos pass through 1 cm2 on Earth every 

second). The fact that their probability of interaction with 

matter is so small makes them difficult to detect.

In the 1960s, solar neutrinos were discovered for the 

first time. This provided evidence for fusion in the Sun. 

However, the number of neutrinos detected was lower 

than predicted. It was later found that there are three 

types of neutrino and that they can change from one type 

to another. As a result, the experiment, which was looking 

only for electron neutrinos, found a third of the number of 

neutrinos that it was expecting.

▴ Figure 2 Evidence for the nuclear reactions occurring in the 

core of the Sun comes from the detection of neutrinos.

Evidence — Fusion in the Sun
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Nuclear fusion in stars

There are necessary conditions for hydrogen fusion to begin. The hydrogen 

nuclei collide at high speeds so that the protons are within range of the strong 

force (see Topic E.3) to interact. Even then, the majority of collisions will not result 

in a fusion reaction. This means that the gas cloud must have:

• a high temperature (to ensure that collisions are energetic enough for  

the hydrogen nuclei to get sufficiently close)

• a high density and therefore a high pressure (to ensure a high rate  

of collisions).

When the conditions are right, then the proton–proton (p–p) cycle in main 

sequence stars begins. This process is sometimes called “hydrogen burning“ 

because four hydrogen nuclei overall fuse to give one helium atom. It occurs in 

Sun-like stars with masses in the range 0.07–4 solar masses, until no hydrogen 

remains unconverted. Stars that are more massive than this have additional 

processes.

The cycle proceeds in three stages. This form of the cycle dominates at core 

temperatures up to 10 MK.

The overall reaction is

4
1

1 H+ + 2
0

–1 β− → 
4
He2

2+ + 2νe

with an energy release of 26.7 MeV. Some of this energy is lost to the neutrinos.

p

p

p

p
n

p
n

p
n

stage I

overall reaction

stage II stage III

p
p

p
n

n n

p p

p
p

np

p

p
p

p

p
ν

ν

e+

e+

νgamma ray

p
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▴ Figure 3 The proton–proton cycle. (a) The individual stages. 

(b) The overall reaction — this does not include the two positron 

annihilations but shows them as emitted particles.

• Stage I  
1
H1 +

1
H1 → 

2
H1 +

0
β+

+1 + νe

 Two protons (hydrogen-1 nuclei) fuse into a hydrogen-2 

nucleus (also emitting a positron and a neutrino). The 

emitted positron is almost immediately annihilated by 

a nearby electron to give two gamma photons. The net 

energy release in stage I is 1.4 MeV including the positron 

annihilation. Stage I relies on the two protons remaining 

bound together long enough for a β+ decay to occur. 

This is very unlikely and most of the time the bound 

protons fall apart again. Therefore stage I happens at a 

low rate — the average proton in the Sun will wait a few 

billion years before successfully completing the reaction 

in Stage I.

• Stage II
1
H1 +

2
H1 → 

3
He2 + γ

 A third proton fuses with the hydrogen-2 to form a 

helium-3 nucleus + a gamma-ray photon. Stage II has 

an energy release of 5.5 MeV. This happens quickly, 

within one second of the production of the deuterium 

(hydrogen-2), on average.

• Stage III
3
He2 +

3
He2 → 

4
He2 +

1
H1 +

1
H1

 The helium-3 nuclei from two stage II reactions fuse to 

produce helium-4 and two hydrogen-1 nuclei. Stage III 

releases 12.9 MeV. The average helium-3 nucleus waits 

400 years for the interaction to occur.

The overall reaction is shown in Figure 3.

In both ssion and fusion, nuclei 

changes lead to the release of 

binding energy. As shown in 

both this topic and Topic E.4, 

this is because the initial mass of 

all reactants is greater than their 

nal mass. The nal products are 

more tightly bound than the initial 

materials and the excess energy  

is emitted.
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The reactions given here are not the only possible 

pathways for this cycle. There are three more: two 

observed and one theoretical.

When the core temperature is:

• between 10 MK and 23 MK there is sufficient energy 

to drive together a helium-3 nucleus from stage 

II and an already-formed helium-4 nucleus. This 

involves the creation of a beryllium nucleus that itself 

decays into a lithium nucleus which finally reacts with 

anotherproton:

3
He2 +

4
He2 → 

7
Be4 + γ

7
Be4 +

0
β1 → 

7
Li3 + νe

7
Li3 +

1
H1 → 2

4
2He

The beryllium and lithium do not survive the chain of 

reactions and are said to be catalytic.

• greater than 23 MK the catalytic nuclei are 

now beryllium (as before) and boron with a 

subsequent fission of the beryllium into two 

equalheliumfragments:

3
He2 +

4
He2 → 

7
Be4 + γ

7
Be4 +

1
H1 → 

8
B5 + γ

8
B5 → 

8
Be4 +

0
β+

+1 + γ

8
Be4 → 2

4
2He

In theory, it ought to be possible for a helium-3 nucleus 

to interact with a proton to form the helium-4 in one 

step. However, this has not been observed in the Sun. 

Theory shows that only 1 helium in 30 million would be 

produced this way.

83% of the total energy output of the Sun comes from the 

three-stage process given in the main text.

Models — Other branches to the p–p cycle

Worked example 1

Deuterium ( 2
H1 ) and tritium ( 3

H1 ) undergo fusion into helium-4 ( 4
He2 ) according to the reaction

2
H1 +

3
H1 →

4
He2 +

1
n0 + energy

Binding energies per nucleon of these nuclides are given in the table.

a. Calculate, in J, the energy released in this reaction.

b. Estimate the fraction of the mass of deuterium and tritium converted  

to energy.

Solutions
a. The binding energy of the helium nucleus is greater than the sum of the binding energies of both  

isotopes of hydrogen, and the difference is transferred to the kinetic energy of the products.  

ΔE = 4 × 7.074  (2 × 1.112 + 3 × 2.827) = 17.591 MeV. The neutron is released as a free,  

unbound particle. Hence it is not included in the binding energy balance. Energy expressed in J  

isΔE = 17.591 × 106 × 1.60 × 10 19 = 2.81 × 10 12 J.

b. The mass equivalent of the energy calculated in a. is ∆m =
∆E

c2
= 17.591 MeV c 2 =

17.591

931.5
= 1.89 × 10 2 u.  

The sum of the masses of deuterium and tritium is roughly 5 u, using their nucleon numbers as an estimate of mass. 

The fraction of mass released as energy is therefore 
1.89 × 10 2

5
≈ 4 × 10 3 = 0.4%. This is almost five times more 

than the fraction of initial mass transferred to energy in neutron-induced fission of uranium (see Worked example 1  

in Topic E.4). Fusion of light nuclei releases more energy per unit mass of fuel than fission!

Nuclide Binding energy / A

2
H1 1.112 MeV

3
H1 2.827 MeV

4
He2 7.074 MeV
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Worked example 2

Consider the proton–proton chain of fusion reactions, whose net result is the fusion of four protons into a nucleus  

of helium: 

4
1
H1 →

4
He2 + 2

0
β+

+1 + 2νe + 2γ

a. Determine, in MeV, the energy released in the reaction. The mass of the helium nucleus is 4.001506 u.

b. Calculate the additional energy released when the two positrons produced in the rst stage of the cycle 

annihilate with electrons in the surrounding matter.

c. Estimate the total energy, in J, transferred when 1 kg of hydrogen undergoes fusion according to the proton–

proton cycle.

Solutions
a. The change of mass in the reaction is ∆m = 4mp mHe – 2me = 4 × 1.007 276 – 4.001 506  2 × 0.000 549 =

0.026 500 u. The energy transferred is ΔE = Δmc2 = 0.0265 × 931.5 = 24.7 MeV.

b. When two positrons annihilate with two electrons, the total mass–energy of the particles is transferred to the energy 

of the emitted gamma photons. The mass–energy of one electron is 0.511 MeV (this is provided in your Physics Data 

Booklet), so ΔE = 4 × mec2 = 4 × 0.511 ≈ 2.0 MeV.

c. The total energy from one reaction is 24.7 + 2.0 = 26.7 MeV, which corresponds to a mass of  

26.7

931.5
= 2.87 × 10 2 u. The fraction of mass converted to energy is 

∆m

4mp + 2me

=
2.87 × 10 2 u

4.03 u
= 7.1 × 10 3.  

The energy available to fusion reactions in 1 kg of hydrogen is 7.1 × 10 3 × (3 × 108)2 = 6.4 × 1014 J. 

This is 107–108 times more than chemical energy in 1 kg of fossil fuels such as coal or crude oil.

Practice questions

1. The second stage of the proton–proton cycle  

is 
1
H1 +

2
H1 → 

3
He2 + γ. The binding energies  

per nucleon are given in the table.

Nuclide Binding energy / A

2
H1 1.112 MeV

3
He2 2.573 MeV

 Show that the energy released in this stage is about 

5.5 MeV.

2. Two nuclei of deuterium (
2
H1 ) undergo fusion into 

helium-3 (
3
He2 ) according to the reaction

2
H1 +

2
H1 →

3
He2 +

1
n0 + energy.

 The atomic masses are mH-2 = 2.014 102 u and 

mHe-3 = 3.016 029 u.

 a. Calculate the energy released in the reaction.

 b.  Determine the energy released as a result  

of fusion of 1 kg of deuterium according to  

this reaction.

3. Deuterium–tritium fusion in Worked example 1 is 

a proposed energy source for future fusion power 

stations. A disadvantage of this reaction is that natural 

tritium is a very rare isotope. It is suggested that 

neutrons emitted in the reaction can induce ssion of 

lithium-6 (
6
Li3 ) yielding tritium for further fusion. The 

equation for this process is 
1
n0 +

6
Li3 → 

3
H1 +

4
He2 .

 Use data provided in Worked example 1 to calculate 

the energy released in this reaction. The binding 

energy per nucleon of Li-6 is 5.332 MeV.

4. The Sun radiates 3.8 × 1026 J of energy every second.

 a.  Estimate, using the result of Worked example 2c. 

the mass of hydrogen that undergoes fusion in the 

Sun every second. Assume that 2% of the energy 

released in fusion is carried away by the neutrinos 

and does not contribute to the radiated power.

 b.  Estimate the decrease of the mass of the Sun every 

second as a result of fusion reactions.
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Induced fission was discovered in 1932 by Ernest Walton 

who split lithium into alpha particles using high-speed 

protons. However, the idea that nuclei can fuse was 

recognized earlier. In 1920, the UK scientist Francis 

Ashton found that the mass of four hydrogen atoms is 

greater than one helium atom. This suggests that there

can be a transfer from binding energy by fusing four 

hydrogen atoms together. Much theoretical work on 

stellar processes then followed, with Arthur Eddington 

suggesting the proton–proton cycle as the main 

mechanism operating in the Sun.

The variation of binding energy per nucleon with nucleon 

number A shows the possibilities at both ends of the 

Periodic Table. Whereas the plot for large A is relatively 

smooth, at small A there are points of stability where a 

nucleus can be considered to be made of integer numbers 

of alpha particles: helium, beryllium, carbon and so on. 

Figure 4 shows this plotted on a logarithmic scale for A

(the log plot emphasizes the differences for small nuclei). 

The larger the magnitude of the binding energy per 

nucleon, the more stable the nuclide.

Another obvious similarity between fission and fusion is 

that the processes both drive the nuclei towards the iron–

nickel stability region but — an obvious difference — in 

opposite directions.

A numerical difference is that the changes in binding 

energy per nucleon are relatively high in fusion and much 

smaller in fission.

How is fusion like — and unlike — fission?
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▴ Figure 4 Binding energy per nucleon plotted against log A.

Luminosity and temperature for a star

It is clear from the Stefan–Boltzmann equation that large stars with a high temperature 

must be bright. But what does the balance of radius R and temperature T tell us 

about a particular star? The tool that helps us to answer this question was devised in 

1900 independently by Ejnar Hertzsprung from Denmark and Henry Norris Russell 

from the USA: the Hertzsprung–Russell diagram (HR diagram). This is a scatter plot 

showing the variation of star luminosity with temperature.

Pattern recognition is a particular ability of the human 

brain. It allows us to match existing information in 

the brain with new inputs. It is not surprising that the 

identification of patterns and trends forms an important 

part in the development of science. The naming of 

biological species, due to Linnaeus in 1753, was a crucial 

step in the history and development of modern biology.

Physics, too, has classification tools. The division of 

quantities into vector and scalar types, the identification 

of energy sources and sinks, and the important and 

developing classification that is the Standard Model are 

all examples of classification in this subject.

Divergences from a classification system can lead  

to paradigm shift, as in the case of the known facts  

about beta-minus decay implying the existence of a  

new particle.

What other areas of classification can you identify in physics?

HR diagrams have been helpful in the classification of stars by finding patterns in their 
properties. Which other areas of physics use classification to help our understanding? (NOS)
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The HR diagram has several points of note.

• The plot is logarithmic on both axes with luminosity on the y-axis.

• The logarithmic temperature axis is plotted with lowest temperature on the 

right, with temperature increasing to the left.

• The logarithmic luminosity is often plotted relative to that of the Sun, which is 

therefore taken to have a luminosity of 1.

• Alternative x-axes that you may see are the spectral class of the stars and the 

BV index of the stars (a measure of the colour).

• The equation L = 4πσ R2T4 can be rewritten as R 2 = L

4πσT4
, so that, for a fixed 

star radius, L ∝ T 4 is a straight line on the log–log HR diagram. Some of these 

lines of constant radius are shown on Figure 5(a). The radius sizes are shown 

relative to that of the Sun R☉ for the lines of constant radius. 

The regions of the HR diagram shown on Figure 5(a) represent large numbers of 

stars as this is a scattergram. Figure 5(b) shows another representation of the HR 

diagram with individual stars plotted to make this clear.

▴ Figure 5 (a) A Hertzsprung–Russell diagram showing 

the principle regions. (b) A Hertzsprung–Russell diagram 

with individual stars.

In Topics B.1 and B.2, it is shown 

that the Stefan–Boltzmann law can 

be written to give a quantity called 

luminosity L for a star:

L = σAT 4

where σ is the Stefan–Boltzmann 

constant, A is the surface area of 

the star, and T is the temperature 

of the star. Luminosity is the total 

energy emitted by the star every 

second (also, the emitted power). 

In terms of the radius R of the star 

this becomes

L = 4πσ R2T4

The HR diagram shows stars at all ages in their evolution. As 

a star forms and ages, its position changes because both its 

temperature and luminosity change. Figure 5(a) shows the 

location of stars that are hot or cool, dim or bright.

These are the main features of the HR diagram.

• A main sequence of stars like the Sun (which is shown in 

both (a) and (b) versions of the diagram). These stars are 

fusing hydrogen into helium and constitute about 90% of all 

stars.

• Red giants above and to the right of the main sequence. 

These are stars cooler than the Sun (hence “red”), but with 

a large surface area (hence “giant”). Although they emit 

less energy per square metre than the Sun, their larger area 

means that they emit much more energy in total. 

  Red giants have a central core that is hot and that is 

surrounded by an envelope of a thin tenuous gas.

• Supergiants are large and very bright. They can emit 105

times the energy of the Sun or greater and therefore have a 

surface area 105 larger too. Their radius, in this case is 

√105 ≈ 300 times that of the Sun. The inner planets of the 

Solar System and the Sun will easily fit into the volume of 

a supergiant.

  Red giants and supergiants make up only 1% of the 

total number of stars. This indicates that their lifetime is 

comparatively short.

• White dwarfs are the remains of old stars. They have a small 

luminosity even though their temperature is high. Their 

surface area must be small. They make up about 9% of all 

stars. These stars take billions of years to cool. A typical white 

dwarf can have a mass roughly that of the Sun but a radius 

similar to that of Earth. The density of a white dwarf can be 

millions of times that of Earth.
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• The instability strip, a narrow region almost vertical on the HR diagram, 

which contains variable stars. Stars, usually more massive than the Sun, enter 

this region when they leave the main sequence. They then become unstable 

and pulsate, changing their size cyclically. As a result, their luminosity varies 

too. The stars in the instability strip include the Cepheid variables which can 

be used for astronomical distance estimates.

A common notation in astrophysics 

is the symbol ☉. This stands for 

“the Sun” so that the mass of the 

Sun can be written as M☉ and its 

radius as R☉

Worked example 3

In the following examples, assume that the surface temperature of the Sun is T☉ = 5800 K.

Vega is a bright star in the constellation of Lyra. The luminosity of Vega is 40L☉, where L☉ is  

the luminosity of the Sun. The average surface temperature of Vega is 9600 K.

Determine the radius of Vega. State the answer in terms of the solar radius, R☉

Solution

As L = 4π σ R 2T 4, using ratios we get

LVega

L⊙
= RVega

R⊙


2

× TVega

T⊙


4

⟹
R Vega

R⊙
 =  T⊙

TVega


2

√ L Vega

L⊙

RVega = 5800

9600


2

√40  R⊙ = 2.3R⊙

Worked example 4

Mirach is a star in the constellation of Andromeda. The radius of Mirach is approximately  

100R☉ and its surface temperature is 3800 K.

Estimate, in terms of L☉, the luminosity of Mirach.

Solution

LMirach = RMirach

R⊙


2

× TMirach

T⊙


4 

L⊙ = 1002 × 3800

5800


4 

L⊙ = 1800L⊙

Worked example 5

Mark approximate locations of Vega and Mirach in the HR diagram. 

Hence, state the stellar type of each star.
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Practice questions 

5. Procyon A is a star of surface temperature 6500 K and 

radius 2.0 R☉

a. Calculate 
luminosity of Procyon

L⊙

b. Suggest the likely stellar type of Procyon A.

6. Star Theta Centauri has surface temperature 5000 K 

and luminosity 60 L☉. Calculate, in terms of R☉, the 

radius of Theta Centauri.

7. Stars P and Q have the same luminosity. The surface 

temperature of star P is 5000 K and the surface 

temperature of star Q 20 000 K.  

What is  
radius of P

radius of Q
?

 A. 
1

16
   B. 

1

4
   C. 4   D. 16

Stellar evolution and stellar mass

The region between the star systems in a galaxy is composed of the interstellar 

medium. This is mainly hydrogen atoms, with some helium and traces of carbon, 

oxygen and nitrogen. There is also a small quantity of dust together with the 

inevitable cosmic rays. The density of the interstellar medium is extremely small. 

It changes depending on the local temperature conditions, but can vary from 

10 4 ions cm 3 where the medium is hot to 106 ions cm 3 in cooler regions. A 

good working average is that there is 1 hydrogen atom in every cubic centimetre. 

By contrast, the best vacuum that we can achieve on Earth is around 104–105

molecules per cm3

The role of the interstellar medium is crucial in the evolution of a star. A region of 

the medium begins to contract under gravity and as it does so the temperature of 

the gas cloud begins to increase. This happens because gravitational potential 

energy of the particles must be released (they are becoming bound together) 

and this energy is transferred into thermal energy.

The temperature continues to rise as the cloud compresses more and more. It 

is now a protostar. When the temperature reaches about 107 K, nuclear fissions 

can begin. The star moves into the HR diagram on the extreme right-hand side 

as a main sequence star. The exact position on the diagram depends on its 

temperature and luminosity.

Solution

Vega is a main sequence star hotter and larger than the Sun. Mirach is 

a red giant.
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During its time on the main sequence, the star is stable and in a hydrostatic 

equilibrium. Two competing sets of forces make up this equilibrium:

• inwards force due to the gravitational attraction between the interior of the 

star and the outer layers

• outwards forces due to the thermal and radiation pressure that are trying to 

expand the star.

The greater the mass, the greater the gravitational attraction and, therefore, in 

equilibrium the greater the thermal and radiation effects.

• The core temperature of the star must be larger in a more massive star to 

provide the greater outwards pressure.

• The higher the temperature, the more probable are the fusion events inside 

the star.

• There is a greater rate of nuclear reaction and more energy per unit time  

is emitted.

• The mass of the star and its luminosity must therefore be related.

Nuclear physics theory indicates that the mass M of a star on the main sequence 

is related to its luminosity L by L ∝ M3.5. (You are not required to be able to use  

this equation.)

When the luminosity is taken to be the mean power radiated by the star over its 

lifetime T and by assuming that all the mass of the star is converted to energy (it is 

not), then

L =

total energy released by star

T
∝ M3.5

The total energy and the star’s mass are proportional (E ∝ M and related by  

E = c2M) and therefore

c2M

T
∝ M3.5 and T ∝ M−2.5

The larger the mass, the shorter the time the star remains  

on the main sequence.

The differences in lifetime can be dramatic because of the 2.5 power dependence. 

The Sun is likely to spend 10 billion years on the main sequence. A star of 10 times 

the Sun’s mass will have a lifetime that is a factor of 102.5 smaller, about 30 million 

years. The larger star has a luminosity 3200 times that of the Sun.

Remember that this analysis applies to stars on the main sequence. Figure 6 gives 

some examples of stellar lifetimes on a HR diagram together with the positions of 

some of the more famous stars in the night sky.

As the hydrogen inside the star is converted to helium, it is no longer available for 

fusion and the radiation and thermal pressures begin to decrease. The star shrinks 

and heats up again. The hydrogen in the layers around the smaller core can now 

fuse. This raises the temperature of these layers and they expand to give the star 

a much greater diameter (but a smaller core). The star has moved off the main 

sequence to become a red giant. The core continues to shrink and heat up and 

the helium in the core fuses to form heavier elements such as oxygen and carbon. 

But the extent to which this can continue depends, again, on the mass of the star.
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▸ Figure 6 Some typical stellar 

lifetimes matched to position on 

the HR diagram.

The mass-luminosity relationship for main sequence stars 

is L ∝ M3.5 for stars above 2 M⊙ in mass. For other masses, 

the relationship can be slightly different.

Measuring the mass of a star is difficult unless another 

object is interacting with its gravitational field. Binary 

stars therefore form useful systems to measure the mass 

of stars. The following data for the mass M and the 

luminosity L of some stars are taken from a survey of binary 

systems: Semi-detached double-lined eclipsing binaries

(Malkov, O.Y., 2020. Monthly Notices of the Royal 

Astronomical Society, Vol. 491, No. 4, pp. 5489–5497).

• Tabulate values of log  M

M⊙

 and log  L

L⊙


• Plot a graph of log  L

L⊙
 against log  M

M⊙



Star
M

M⊙

Absolute 

uncertainty 

in 
M

M⊙

L

L⊙

Absolute 

uncertainty 

in 
L

L⊙

Y Cam 2.08 0.09 36 5

V716 

Cen

2.39 0.05 66 3

UX Mon 3.38 0.4 309 94

MP Cen 4.40 0.2 1000 480

mu01 

Sco

8.30 1.0 4600 1100

V448 

Cyg

13.7 0.7 37200 2600

AQ Cas 17.6 0.9 87000 15 000

XZ Cep 18.7 1.3 112000 16 000

Data-based questions
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• Show that your graph is consistent with the 

observation that L∝M3.5

• Tabulate values of L
1

3.5 including uncertainties in these 

values.

• Plot a graph of L
1

3.5 against M. Include error bars on 

your graph.

• The mass–luminosity relationship can be written as 

L

L⊙
= k  M

M⊙

3.5

. Use your graph to determine a value 

for the constant k and use maximum and minimum 

gradients to determine an uncertainty for your value.

Scientists represent physical phenomena as 

models — artificial representations of reality. The scientists 

then extend these models into more and more complex 

systems. One example of this is the work undertaken to 

model the interior processes in stars. Direct observations 

of such processes are extremely difficult if not impossible. 

We can see the visible surface of our own Sun but 

cannot send spacecraft to measure the properties of 

stellar matter.

Scientists make reasonable assumptions about the nature 

of the stellar material in the light of their observations of 

stars and then hypothesize about the plasma that suns 

must contain. This knowledge requires not just the theory 

of gases (Topic B.3) but also knowledge of nucleons and 

electrons that are the constituents of the stars (Topics E.3 

and E.4).

How can gas laws be used to model stars? (NOS)

The nature of astronomy and 

astrophysics is such that scientists 

rely on models to gain insights into 

how things work. Is knowledge 

gained through modelling 

and simulation as valuable as 

knowledge gained through  

direct experiment?

Modelling versus 

experiments 

Evolution of stars of moderate mass (<4 M☉)

The temperature of the core in these stars is not sufficient to allow fusion to form 

elements beyond carbon. When the helium in the core is used up, the core can 

only shrink as it continues to emit radiation.

A double shell now forms outside the core: an inner helium-fusing shell and 

an outer hydrogen-fusing shell. (The terms “helium burning” and “hydrogen 

burning” are often used by astronomers, but no combustion as a chemical 

process is implied here.)

This process forces the outer layers of the star away from the centre to form a 

planetary nebula around the core. The core will shrink to an object the size of 

Earth containing ions together with a free electron gas. (The term “planetary” is 

misleading — no planets are formed.)

This core cannot shrink further. The electron gas exerts a pressure called the 

electron degeneracy pressure. This arises from an important rule about particles 

known as the Pauli exclusion principle which forbids two electrons from having 

the same quantum state. The degeneracy pressure prevents further collapse and 

the star is now known as a white dwarf. It will cool over billions of years. A simple 

calculation using the mass of the Sun (about 2 × 1030 kg) and the radius of Earth 

(about 6400 Km) shows that the final density of the Sun will be of the order of 

109 kg m−3. A cup of a liquid with this density has a mass of 1000 tonnes.
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The progress of a star like the Sun to the white dwarf stage is shown in an HR 

diagram (Figure 7(a)) and diagrammatically (Figure 7(b)).
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▴ Figure 7 (a) The journey of the Sun through the HR diagram. (b) The separate states of a star like the Sun.

Evolution of stars of large mass (>4 M☉)

Stars with significantly larger masses than the Sun have a 

very different evolution.

As main sequence stars (with a higher temperature as 

they are more massive), the core is large. When the star 

moves into the red giant phase, the higher temperature 

in the core leads to the creation of elements heavier 

than carbon. The giant phase ends when the star has a 

layered structure, like an onion. Different elements form 

in these layers with the heaviest (highest proton number) 

in the core and the proton number decreasing  with 

distance from the core (Figure 8).

non-burning hydrogen

hydrogen fusion

helium fusion

oxygen fusion

carbon fusion

neon fusion

magnesium

fusion

silicon fusion

iron ash
◂ Figure 8 The structure of a heavy star at the end of the giant 

phase. Note that the diagram is not to scale. The core (where fusion 

takes place) may be 104 km across while the outer surface of the star 

may be over 109 km in diameter.
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As with stars the mass of the Sun, gravitational contraction occurs and is opposed 

by electron degeneracy pressure. However, with the increased mass, stability is 

not possible.

The Chandrasekhar limit predicts that stars with a remnant mass greater than 1.4 

times that of the Sun (1.4 M☉) cannot form a white dwarf. These large stars must 

go down a different evolutionary path.

As the core continues to contract, the electrons and protons in the core interact 

to form neutrons as

0
β1 +

1
p1 → 

1
n0 + νe

with the emission of electron neutrinos, as expected. The core collapses still 

further and eventually the free neutrons are separated by nuclear distances. 

This collapse is very rapid, taking about one second. The outer layers of the 

star also contract rapidly, so rapidly that they bounce off the core creating a 

huge explosion known as a supernova. The outer layers containing the formed 

elements are blown away to leave only the core.

This small but dense core of neutrons obeys a similar exclusion principle to the 

electrons and a neutron degeneracy pressure is established to prevent further 

collapse of the core.

Two outcomes are now possible: the core can remain as a dense neutron star with 

the neutron degeneracy balancing the gravitational collapse, or further collapse can 

occur with the core remnant forming a black hole. Work by Robert Oppenheimer 

and George Volkoff using ideas from Richard Tolman established the limiting case 

for this transition: it is a mass somewhere between 2 and 3 solar masses.

The Oppenheimer–Volkoff limit (OV limit) of 2–3 solar masses is the maximum 

mass that a neutron star can have without collapsing to form a black hole. For 

stars smaller than the limit, neutron degeneracy can resist the ultimate collapse to 

the black hole. Stars greater than the mass limit will collapse further.

The OV limit relates to the mass of the star (the core) after the supernova, not 

before. When the mass after the supernova stage is 2–3 solar masses, the original 

mass of the star will have been roughly 15 to 20 solar masses.

The black holes formed by the collapse of these most massive stars are 

singularities in spacetime: objects so dense with a gravity so strong that nothing 

can escape them, not even electromagnetic radiation. Supermassive black holes 

have now been directly observed (Figure 9). This figure shows the supermassive 

black hole at the centre of galaxy M87 together with the effects of a strong 

magnetic field associated with the black hole.

▴ Figure 9 An image taken by the Event 

Horizon Telescope of a supermassive black 

hole at the centre of M87. The dark centre 

is the shadow of the event horizon and 

outside this is a heated accretion ring that 

radiates in the radio region. The radius of 

the accretion ring is about ten times the 

radius of Neptune’s orbit around the Sun.
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supernova

▴ Figure 10 An illustration of the typical history of a large star.

Other ways to infer the existence of a black hole include the following.

• X-radiation is emitted as mass spirals towards the edge and heats up as it 

travels. X-ray telescopes mounted on satellites have observed this.

• Jets of matter are emitted from the cores of some galaxies. It is conjectured 

that only a rotating black hole could produce these.

• Some stars are observed to be influenced by strong gravitational fields that 

cause the star to spiral for no apparent visual reason. There is the suggestion 

that this is caused by the presence of a massive black hole nearby.

Figure 10 shows the life cycle for stars of large mass with the two possible outcomes.

The upper limit for the mass of a white dwarf star (≈1.4 M⊙) 

is called the Chandrasekhar limit after the American–Indian 

astrophysicist Subrahmanyan Chandrasekhar (1910–95).

Chandrasekhar was only 24 years of age when he 

presented his work at a meeting of the Royal Astrophysics 

society in the UK. He described how a star with a mass 

greater than his limit of 1.4 M⊙ would collapse and 

he predicted the existence of black holes as a result. 

Sir Arthur Eddington, a highly respected astronomer 

and physicist, was in the audience but did not believe 

Chandrasekhar’s findings. Eddington publicly refuted 

these ideas, calling them “outlandish”. Chandrasekhar felt 

humiliated saying “Eddington made a fool of me … I did 

not know whether to continue my career.”

Chandrasekhar did continue, but he moved to the USA 

and turned his attention to other problems in physics. Later 

discoveries confirmed that Chandrasekhar was correct.

Chandrasekhar was also renowned for his diligence 

and love of teaching. In the 1940s, Chandrasekhar was 

working at the Yerkes observatory. Every weekend he 

drove 240 km on the return journey to the University 

of Chicago to teach an astrophysics class of only two 

students. Those two students (Tsung-Dao Lee and Chen-

Ning Yang) went on to be awarded the 1957 Nobel Prize 

for Physics. Chandrasekhar had to wait until 1983 before 

he won his Nobel Prize.

Social skills — Resolving conict ATL

▴ Figure 11 Subrahmanyan Chandrasekhar.
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Practice questions 

8. Mu Columbae is a luminous main sequence star of a 

mass of approximately 16 M☉.

 a.  Outline why Mu Columbae is likely to remain a 

shorter time on the main sequence than the Sun.

 b.  Compare and contrast fusion processes that will 

take place in Mu Columbae and the Sun aer the 

stars leave the main sequence.

 c.  Explain, by reference to the Chandrasekhar 

and Oppenheimer–Volko limits, the likely nal 

evolutionary stages of Mu Columbae and the Sun.

9. a. Describe main physical properties of white dwarfs.

 b.  Outline how a white dwarf maintains a constant 

radius.

 c.  State the origin of the energy radiated by  

white dwarfs.

Astronomical distances and their determination

Atomic and nuclear physics has developed units designed to cope with the 

small masses and energies involved in this area of the subject. In a similar way, 

astrophysics has non-SI units to cope with the immense distances that arise 

in astronomy. Although these are not strictly part of the SI, they are common 

currency amongst astrophysicists and allow relative distances to be compared 

more easily.

Light year (ly)

The speed of light is (as a result of the 2019 revision of the SI) one of the seven 

defined constants. The value assigned to it is 299 792 458 m s−1. The light year is 

the distance travelled by a photon in one Julian year (365.25 days exactly, rather 

than the Gregorian year of 365.2425 days). This is 9460 730 472 580 800 m 

exactly — or 9.46 × 1015 m to three significant figures.

Concepts such as the light minute and light second are also used. The light 

year is of most use when indicating distances to stars in our galaxy and to all 

astronomical objects at distances greater than this.

Astronomical unit (AU)

Although the distance of the centre of Earth from the centre of the Sun varies 

throughout the year, the average Earth–Sun distance, known as the astronomical 

unit, is of use when discussing distances within the Solar System. Light takes 

about 8minutes to travel from the Sun to Earth’s orbit and therefore 1 AU is 8 light 

minutes which is 1.5 × 1011 m.

Parsec (pc)

The most commonly used distance unit in astrophysics is the parsec. It links to 

the measurements of nearby stars using the stellar-parallax method. One parsec 

is 3.26 light years and therefore 3.1 × 1016 m. Typical distances to nearby stars 

are orders of pc whereas distant stars in our galaxy are kiloparsec (kpc) away and 

galaxies can be Mpc and Gpc distant.
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Determination of stellar distance using stellar parallax

Triangulation is a surveying technique in which a baseline is constructed some 

distance from an object whose position is to be determined. The angle between 

the object and the baseline is measured at each end of the baseline. The distance 

of the object from the baseline can then be calculated.

Stellar parallax uses the same principle. The term parallax comes from the 

movement of one object relative to another when viewed from different 

positions. When travelling in a car, distant hills are virtually stationary, but nearby 

objects move quickly relative to the hills and, apparently, in the opposite 

direction to that of the car.

The baseline for stellar parallax is on a larger scale than Earth-bound 

surveying — the diameter of Earth’s orbit is used. Figure 12 shows the principle 

of the technique. The yellow stars are very distant and are known as the “fixed” 

stars. The red star is much closer and its position amongst the fixed stars varies 

during the year.

star for which

distance is being

measured

‘fixed’ stars in 

background

parallax

angle

pJuly image

January image

position 

of Earth

in July
baseline =

diameter of 

Earth’s orbit

= 2 A position of

Earth in

January

▴ Figure 12 The basis of astronomical distance measurements using stellar parallax.

The baseline distance is known. It is 2 AU. The angles between baseline and  

the star are measured six months apart (January and July in the figure) and  

the total angle between the star’s position is halved. This new angle is p.  

Because the angle is small, it is generally measured by astronomers not  

in degrees but in a subdivision of degrees known as arcseconds:  

1° ≡ 60 arcminutes ≡ 60 × 60 = 3600 arcseconds.

The distance d to the star from the baseline can then be given directly in parsec as

d =
1

p

Experiments are important in 

science. They underpin the 

scientific method, and their 

outcomes determine whether a 

hypothesis is supported. This may 

lead to further experiments and 

testing. A contradiction will lead to 

the hypothesis being modified or 

rejected. As Richard Feynman said: 

“Experiment is the sole judge of 

scientific ‘truth’”

In astronomy and astrophysics, 

experiments are not possible in 

the usual sense. A star cannot 

be constructed in a laboratory. 

It is impossible to carry out an 

experiment where the mass of 

a star is changed in order to 

investigate the change in its 

luminosity. Instead, astrophysics 

relies on observations of a 

dierent sort. Astrophysicists 

make measurements of the 

millions of observable stars and 

test their hypotheses against the 

observed data.

Do astronomy and astrophysics 

qualify as a science?

The scientic method in 

astronomy
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Atmospheric turbulence and light absorption in Earth’s 

atmosphere limit stellar parallax to a minimum p of about 

0.01 arcsec. From Earth’s surface this is a distance of 

100 pc. Telescopes mounted on orbiting satellites give 

better resolution and the Gaia satellite is the second 

generation of these. The Gaia mission began in 2013 and 

is predicted to go on until 2025. The resolution of the 

instruments onboard is about 7 µ arcsec for bright stars 

giving a maximum distance of up to about 100 000 pc.

The aim of the Gaia mission is to measure the positions of 

one billion stars in three dimensions, including stars not 

just in the Milky Way but in the Local Group galaxies too. 

Other aims include the search for further evidence for 

Einstein’s general theory of relativity and the measurement 

of the orbital properties of planets outside the Solar 

System.

Such satellite development and launching are very 

expensive. They are often the work of national consortia 

showing the benefits of undertaking science and 

engineering as a shared endeavour.

In which ways has technology helped to collect data from observations of distant stars? (NOS)

Determination of stellar radius

The luminosity L of a star (the power emitted by the star’s surface area A) is given 

by the Stefan–Boltzmann law

L = σ AT 4

as a star is a good approximation to a black body. When the radius of the star is R, 

this becomes

L = σ × 4π R 2T 4

assuming a spherical star. The luminosity can be derived from a knowledge of the 

apparent brightness b, which is the emitted power of the star that arrives on one 

square metre of Earth’s surface:

L = 4π bd 2

where d is the distance of the star from Earth.

• The distance d is obtained from stellar-parallax or using other methods.

• The apparent brightness can be measured and so the luminosity is known.

• The temperature T of the star can be obtained from measurements of the 

peak wavelength in the emitted black-body spectrum.

• All these quantities can be compared with the same quantities measured for 

the Sun. This gives the equation

L

L⊙
= R 2T 4

R⊙
2T⊙

4

 where the symbol ☉ signifies the Sun.

• Therefore

R

R⊙
= T⊙

2

T 2
× √ L

L⊙

 and an estimate of the stellar radius can be made.

Determining the radius of a distant 

star uses techniques discussed in 

Topic B.1.

The Gaia mission is just one 

example of a project which will 

collect vast amounts of data on 

stars. Astronomers share these data 

among themselves so that they can 

all construct models and test their 

theories using the data.

An internet search for “Gaia data” 

will allow you to access the data 

yourself. Many other star catalogues 

and datasets are also available for 

anyone to access.

Science as a shared 

endeavour — Sharing 

data
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Worked example 6

The following data are given about star Epsilon Tauri: surface temperature = 4900 K and luminosity = 3.7 × 1028 W.

Calculate the radius of Epsilon Tauri.

Solution

This is a direct application of the Stefan–Boltzmann law. 

 L = 4πσ R2T 4 ⇒ R = √ L

4πσT 4

 R = √ 3.7 × 1028

4π × 5.67 × 10 8 × 49004
= 9.5 × 109 m.

Worked example 7

The parallax angle for star Tau Ceti is 0.274 arcsecond.

a. Calculate, in light years, the distance to Tau Ceti.

The apparent brightness of Tau Ceti as observed from Earth is 1.18 × 10 9 W m 2

b. Determine the luminosity of Tau Ceti relative to the luminosity of the Sun, L☉ = 3.83 × 1026 W.

The peak wavelength of the black-body spectrum of Tau Ceti is 540 nm.

c. Estimate the radius of Tau Ceti. Use T☉ = 5800 K.

Solutions

a. The distance in parsec can be calculated directly from the parallax angle in arcseconds.  

d = 1

p
= 1

0.274
= 3.65 pc. As 1 pc = 3.26 ly, the distance in light years is 3.65 × 3.26 = 11.9 ly.

b. The apparent brightness b is related to the luminosity L of the star by the equation  

b = L

4πd 2
; hence L = 4πd 2b = 4π (11.9 × 9.46 × 1015)2 × 1.18 × 10 9 = 1.88 × 1026 W. 

 Note that, for this calculation, the distance to the star must be expressed in metres,  

1 ly = 9.46 × 1015 m.

 Finally, the luminosity in terms of L☉ is L =  1.88 × 1026

3.83 × 1026
L☉ = 0.49 L☉

c. The peak wavelength provides the information of the surface temperature of the star.  

T = 2.9 × 10 3

540 × 10 9
= 5370 K. Since L ∝ R 2T 4, the radius of Tau Ceti can be estimated from 

R = T⊙

T


2

√ L

L⊙
R⊙ = 5800

5370


2 

√0.49 R⊙ = 0.82 R⊙
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How do emission spectra provide information about observations of the cosmos?

Practice questions 

10. a.  Discuss limitations of the parallax method for 

measuring distances to stars.

  The parallax angle for star Arcturus is  

8.9 × 10 2 arcsecond and its apparent brightness is 

4.3 × 10 8 W m 2

 b. Calculate:

  i. the distance to Arcturus, in m

  ii. the luminosity of Arcturus, in W.

 c. The black-body radiation curve of Arcturus has 

a maximum at 680 nm. Calculate the surface 

temperature of Arcturus.

 d. Hence, estimate the radius of Arcturus.

11. Sirius, the brightest star in the night sky, is 8.7 ly from 

the Sun.

 a. Calculate the distance to Sirius in AU.

 b. Calculate the parallax angle for Sirius, in arcsecond.

 c. The luminosity of Sirius is 25 L☉. Calculate the 

apparent brightness of Sirius, in W m 2

12. The following data are given about the star Denebola.

 Parallax angle = 9.09 × 10 2 arcsecond

 Surface temperature = 8500 K

 Radius = 1.2 × 109 m

 a. Calculate, in ly, the distance to Denebola.

 b.  Calculate the luminosity of Denebola relative to 

the solar luminosity L☉ = 3.83 × 1026 W.

 c.  Describe how the knowledge of the luminosity 

and the temperature of a star helps to predict its 

future evolution.

The link between luminosity and stellar radius emphasizes 

the importance of Topic B.1 to astrophysics. Our terrestrial 

knowledge of the properties of black-body radiation is 

extended to cosmological observations. By assuming 

that stars are black bodies — or close approximations to 

them — we can determine the properties of local stars 

and use these as standard candles to allow us to calibrate 

the universe in terms of stellar and galactic distance. 

A standard candle is an object in astronomy that has a 

known energy output. By comparing this output with the 

brightness of the object as we observe it, we can estimate 

the distance from Earth to the object.

In a similar way, the work on terrestrial emission spectra 

in Topic E.1 can help to extend our knowledge of the 

universe. The emission spectra themselves give invaluable 

information about the elements in the outer atmospheres 

of stars and the absorption spectra tell us about any 

materials between a star and the observer. Wien’s law and 

a determination of the peak wavelength give us a measure 

of stellar temperature (Topic B.1). Finally, the shifts in the 

spectra (redshifts and blueshifts) described in Topic C.5 

link our knowledge of galactic motion to our hypotheses 

about the universe and the existence of dark matter.

How can the understanding of black-body radiation help to determine the properties of stars?
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Theme E     End-of-theme questions

Theme E — End-of-theme questions
1. The diagram shows the position of the principal lines in 

the visible spectrum of atomic hydrogen and some of 

the corresponding energy levels of the hydrogen atom.
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–5.44

a. Determine the energy of a photon of blue light 

(435 nm) emitted in the hydrogen spectrum.

b. Identify, with an arrow on the diagram, the 

transition in the hydrogen spectrum that gives rise 

to the photon with the energy in (a).

2. a. In a classical model of the singly-ionized helium 

atom, a single electron orbits the nucleus in a 

circular orbit of radius r

helium nucleus

electron

r

 i. Show that the speed v of the electron with 

mass m, is given by v =
2ke2

mr

 ii. Hence, deduce that the total energy of the 

electron is given by Etot = – 
ke2

r

 iii. In this model the electron loses energy by 

emitting electromagnetic waves. Describe the 

predicted eect of this emission on the orbital 

radius of the electron.

b. The Bohr model for hydrogen can be applied to the 

singly-ionized helium atom. In this model the radius 

r, in m, of the orbit of the electron is given by 

r = 2.7 × 10−11 × n2, where n is a positive integer.

 i. Show that the de Broglie wavelength λ of the 

electron in the n = 3 state is λ = 5.1 × 10−10 m.

 ii. Estimate for n = 3, the ratio 

circumference of orbit

de Broglie wave length of electron

3. A nucleus of uorine-18 (18
9F) decays by beta plus (β+) 

decay into a nucleus of oxygen-18 (18
8O).

a. Write down the nuclear reaction for this decay.

b. The atomic mass of 18
9F is 18.000937 u and that of 

18
8O it is 17.999160 u.

 i. Determine the energy released in this decay.

 ii. Explain why every beta particle emitted in this 

decay can have a dierent kinetic energy.

c. The graph shows how the count rate from a sample 

of 18
9F varies with time.
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 i. Determine the half-life of 18
9F.

 ii. Calculate, in s−1, the decay constant of 18
9F.

 iii. The sample initially contains 5.0 mg of 18
9F. 

Determine the mass of 18
9F remaining in the 

sample aer 8 hours.
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E. End-of-theme questions

4. Radioactive uranium-238 (238
92U) produces a series 

of decays ending with a stable nuclide of lead. The 

nuclides in the series decay by either alpha (α) or beta-

minus (β ) processes.

a. Uranium-238 decays into a nuclide of thorium-234 

(Th). Write down the complete equation for this 

radioactive decay.

b. The graph shows the variation with the nucleon 

number A of the binding energy per nucleon.
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 i. Outline why high temperatures are required for 

fusion to occur.

 ii. Outline, with reference to the graph, why 

energy is released both in fusion and in ssion.

 iii. Uranium-235 (235
92U) is used as a nuclear fuel. 

The ssion of uranium-235 can produce 

krypton-89 and barium-144.

   Determine, in MeV and using the graph, the 

energy released by this ssion.

5. Eta Cassiopeiae A and B is a binary star system located 

in the constellation Cassiopeia.

a. The following data are available:

Apparent brightness of 

Eta Cassiopeiae A
= 1.1 × 10–9 W m–2

Apparent brightness of 

Eta Cassiopeiae B
= 5.4 × 10–11 W m–2

Luminosity of the Sun, L⊙ = 3.8 × 1026 W

 i. The peak wavelength of radiation from Eta 

Cassiopeiae A is 490 nm. Show that the surface 

temperature of Eta Cassiopeiae A is about 

6000 K.

 ii. The surface temperature of Eta Cassiopeiae B is 

4100 K. Determine the ratio

radius of Eta Cassiopeiae A

radius of Eta Cassiopeiae B .

 iii. The distance of the Eta Cassiopeiae system 

from the Earth is 1.8 × 1017 m. Calculate, in 

terms of L⊙, the luminosity of Eta Cassiopeiae 

A.

b. A Hertzsprung–Russell (HR) diagram is shown.
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 i. On the HR diagram, draw the present position 

of Eta Cassiopeiae A.

 ii. State the star type of Eta Cassiopeiae A.O
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Extended-response questions
Paper 2 in the IB Diploma Programme physics course 

includes extended-response questions — one at standard 

level or two at higher level. They make up about 40% of the 

marks available in Paper 2, so it is important that you give 

yourself enough time to complete them. The questions will 

involve more than one theme. You will be required to use a 

range of skills and techniques, and apply these to unfamiliar 

situations or contexts. You will be asked to perform specic 

calculations, reect on the solutions and generalize ndings.

The following are representative of the types of extended 

question you will meet in Paper 2. Read quickly through the 

whole question before you start to write your answer.

Question 1

Marian rides an electric bicycle. The combined mass of 

Marian and the bicycle is 75 kg. The bicycle starts from rest 

at time t= 0. The graph shows how the net force on the 

bicycle varies with t during the initial acceleration. 
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a. Explain why the kinematic equation v= u+ at

cannot be used to calculate the speed of the  

bicycle aer time t. [2 marks]

b. Estimate, using the graph:

 i. the maximum acceleration of the bicycle [1 mark]

 ii. the speed of the bicycle at time t= 10 s. [3 marks]

c. Energy is transferred to the bicycle’s motor from a battery 

that has an emf of 48 V. When the motor develops the 

maximum power, the terminal potential dierence of the 

battery is 42 V and the current from the battery is 6.2 A.

 i.  Calculate the electrical power output of the  

battery when the motor is developing its  

maximum power. [1 mark]

 ii.  Determine the internal resistance of  

the battery. [2 marks]

 Marian rides up a hill of constant gradient. She starts at 

sea level and reaches the top of the hill at 420 m above 

sea level in a time of 40 minutes. The motor develops 

the maximum power during the entire ride.

 iii.  Determine the rate at which the gravitational 

potential energy of Marian and the bicycle 

increases with time. [2 marks]

 iv.  Outline why the answers in parts c.i. and  

c.iii. are dierent. [2 marks]

d. Show, with an appropriate calculation, that the 

gravitational eld of Earth can be considered uniform 

across the range of heights above sea level that Marian 

encounters during her ride. The radius of Earth  

is 6370 km. [2 marks]

e. Marian’s bicycle is equipped with a disc brake system, 

which produces a frictional force between brake rotors 

and brake pads. The diagram shows the working 

principle of the brakes. The total mass of brake rotors 

and pads is 300 g and they are made of a material of 

specic heat capacity 850 J kg−1 K−1. 

calliper

brake pads

wheel hub

rotor

piston

 i.  The bicycle comes to rest from an initial speed of 

25 km h−1. Estimate the increase in the temperature 

of the brake system. [3 marks]

 ii.  Discuss any assumptions you made in working out 

your answer to e.i.. [2 marks]

Question 2

a. The diagram shows the position of some of the lines in 

the laboratory line spectrum of helium.
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i. Explain how the observation of spectral  

lines provides evidence for atomic  

energy levels. [2 marks]

ii. Calculate the energy of the most energetic  

photon in the line spectrum above. [2 marks]

Extended-response questions
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A
H
Lb. The helium line at 587.6 nm is present in the absorption 

spectrum of a star. The observed wavelength of the line 

varies between 586.5 nm and 588.7 nm with a period 

of several days.

i. Explain, without calculation, what the variation  

in wavelength suggests about the nature of  

the star. [3 marks]

ii. Calculate, relative to the Earth, the maximum 

velocity of the star along the line of sight. [2 marks]

c. The spectrum of the star has a maximum intensity at a 

wavelength of 340 nm.

i. Calculate the surface temperature of the  

star. Assume that the star radiates as a  

black body. [1 mark]

The parallax angle of the star is 6.5 × 10−3 arc-second. 

ii. Calculate, in light years (ly), the distance  

to the star. [2 marks]

The apparent brightness of the star is also measured.

iii. State what is meant by apparent  

brightness. [1 mark]

iv. Explain, without calculation, how the  

radius of the star can be determined from  

these data. [3 marks]

d. Kepler deduced his laws of orbital motion by analysing 

observations of the planets in the Solar System.

i. Discuss why these same laws can be applied to 

orbital motion of objects outside the  

Solar System. [2 marks]

 Astronomers have discovered many planets orbiting 

stars other than the Sun. The orbital periods have been 

directly measured for some of these planets.

ii. Outline how Kepler’s laws can be used  

to determine the orbital radii of these  

planets. [2 marks]

Question 3

a. State what is meant by an elastic collision. [1 mark]

b. Two stones collide on a horizontal frictionless ice 

surface. Stone A, of mass 0.10 kg, moving with a 

velocity of 1.6 m s−1 hits stone B of mass 0.20 kg that 

is initially at rest. Aer the collision, A moves with a 

velocity of 1.0 m s−1 at an angle of 60° to the original 

direction of motion.

1.6 ms–1

A

B

1.0 m s–1

 i.  Calculate the magnitude of the momentum of B 

aer the collision. [2 marks]

The stones are in contact for a time of 4.0 × 10−4 s. 

ii. Estimate the average force between the stones 

during the collision. [2 marks]

iii. Determine whether the collision is elastic. [2 marks]

The collision of two stones is an analogue of Compton 

scattering. In a Compton scattering experiment, a 

monochromatic beam of X-rays is incident on a graphite 

target. Scattered X-rays are observed at an angle of 60° 

relative to the direction of the incident beam.

detector

graphite

target
X-ray source

60°

c. Some of the scattered X-rays have a longer wavelength 

than the incident X-rays. Outline how this observation 

supports the particle model of electromagnetic 

radiation. [1 mark]

d. The wavelength of the incident X-rays is 1.0 × 10−10 m. 

i. Calculate the change in the wavelength of the 

scattered X-rays. [1 mark]

ii. Outline how conservation laws allow us to predict 

the initial motion of the recoil electron in this 

experiment. [2 marks]

iii. Show that the energy gained by the recoil  

electron is about 150 eV. [2 marks]

e. A recoil electron leaves the graphite target and enters 

a region of a uniform magnetic eld of strength 2.0 mT 

perpendicular to the initial velocity of the electron. The 

electron moves in a circular path.

 i.  Determine the radius of the electron’s path. [3 marks]

ii. Explain why relativistic eects on the motion  

of the electron can be ignored. [1 mark]

f. The energy of the recoil electron calculated in  

d.iii. is only about 1% of the energy of the incident 

X-ray photon. The experiment is repeated with X-rays 

of shorter wavelength. Discuss the eect, if any, of this 

change on the percentage of the photon’s energy 

transferred to the electron. [2 marks]

g. State one other example of an analogy between two 

areas in physics. Go on to outline how your example 

helps us to understand the phenomenon. [1 mark]

Extended-response questions
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The inquiry process

Figure 1 shows the cycle of inquiry used in science. Although the description of 

the stages is written here in terms of an internal assessment, this cycle applies 

to all the science you carry out in a practical context. You should regard your 

experimental work in physics as a preparation for the internal assessment. 

Step 1

exploring a

research question

Step 2

experimental

design to answer the

research question

Step 3

collect, process,

interpret the

data 

Step 4

reach conclusions

about the research

question

Step 5

evaluate the

experiment

▴ Figure 1 The inquiry cycle for science expressed in ve steps.

Exploring a research question

Scientists formulate a research question that usually features a hypothesis. 

Hypotheses lead to predictions that need to be clearly stated and explained 

in terms of scientic understanding. To support the research questions, a 

variety of existing relevant sources of information must be consulted. There 

must be sucient of these sources to justify the research proposal. The 

sources of knowledge can be in many forms: research papers, advanced 

books, suggestions from the Internet and so on. It is important to demonstrate 

independent thought and initiative in generating the research question(s) and 

you will need insight to recognize the relevance of your proposal.

1
The experiment on page 454 

in Topic C.4 is a good example 

of deciding what data to collect 

to answer a particular research 

question.O
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Collect, process and interpret your data

Sucient data are required (they may be qualitative or, more usually, 

quantitative) and they must be relevant to your research question. The data 

may prove to be insucient for some reason or there may be unforeseen issues 

in their collection. If this is the case, you will need to address these issues or 

return to, and modify, your research question.

Your data processing must be accurate and relevant. Always check where 

possible that the collection itself has been carried out with accuracy and that 

these data have been manipulated appropriately and correctly. There is advice 

on these matters in the Tools for physics section of the book.

Your data need to be interpreted to decide the extent to which your research 

question has been answered. Again, there is advice here, but you will need 

to decide on the presentation of your data. Will it be as a graph, a chart or a 

table? Will it be quantitative or qualitative? Some of these decisions may have 

arisen naturally as a result of your chosen research question.

• What relationships can you identify from your data? 

• Are there obvious patterns and trends? 

• Do any of your data need to be rechecked because they are outliers? 

• Are there good reasons for you to disregard outliers or to include them in 

the nal data set? 

• Are you satised about the accuracy and precision of your measurements? 

• Are your measurements reliable and valid?

3

Experimental design to answer the research question

The research question leads to an experimental design. Here you will need 

to be creative at all stages of your investigation: in the initial work, when it is 

implemented and when it is nally presented.  The investigation should consist 

of real laboratory experiments that you can safely carry out, investigations of 

databases, or simulations. It could even be a combination of these. 

You need to decide on your independent and dependent variables and 

propose ways to maintain the control variables that you select. You will also 

need to choose suitable ranges for your measurements and to decide how 

much data you can reasonably collect in the time available to you.

You need to be able to justify the methodology of your nal experiment. All 

these factors may be informed by early trial (pilot) experiments when you can 

decide on the nature and quantity of your experimentation.

You need to make decisions about the instruments and sensors that you use 

for your data collection. Do they, for example, require calibration or zero-

setting? Can this be done once or should it be done more frequently? To what 

extent do you need to consider the environment of the laboratory? Is control 

required? It is dicult to carry out experiments involving oscillations of a light 

pendulum when a window is open and a strong wind aects your apparatus. 

Will friction be a problem? Is there excessive uncontrolled electrical resistance 

in a circuit? 

2
Practise experimental design 

using the example in Topic A.4 

on page 144.

There is more on processing and 

presenting data in Experimental 

tools on page 353.

The range of approaches 

to data collection in an IA is 

very great. You can carry out 

hands-on lab work, use 

spreadsheets or simulations 

for modelling and subsequent 

analysis of the models, and 

extract data from a scientic 

database for your own analysis.

See page 263 (Topic B.3) for 

an example of constructing and 

interpreting graphs.

See Topic A.3 (page 121) for an 

example of devising the best 

method for an experiment.

See page 663 in Topic E.3 for 

an example of dealing with 

uncertainties carefully in an 

experiment.

There is advice about the use 

of data-logging equipment in 

Experimental tools for physics

(page 343).

The inquiry process
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Reach conclusions about the research question

When you have processed and examined your data critically and thoroughly, 

you will need to decide on the conclusions that they oer. Do the conclusions 

answer the research question and are they aligned with the present scientic 

context? At this step or in the previous stage, you will need to consider how 

measurement uncertainties impact on the conclusion. Are the uncertainties 

large, so that your conclusion can only be provisional, or do you have more 

condence in it because measurement uncertainties are small? You should ask 

yourself whether there are any simulations that can support your conclusions. 

4
Carry out the experiment on 

page 422 and compare the 

outcomes with the accepted 

scientic context covered in 

Topic C.3.

Practise evaluating the outcomes 

of your experiment with the 

practical simulation on page 665 

in Topic E.3.

The experiment on page 614 

in Topic E.1 gives a useful 

example of developing your 

research further in the light of the 

conclusions you reach.

There is advice in Tools for physics

(page 362) about the use of 

physics simulation soware.

There is an example of reviewing 

and extending your experiment 

in Topic A.2 on page 80.

Evaluate the experiment

The nal stage is to evaluate your whole experiment. 

• To what extent is the strength of your conclusion aected by the impacts of 

random and systematic errors? 

• Can you conrm or reject your initial hypotheses? 

• When you reect on your work as a whole, does it have weaknesses in 

approach that you would correct in further work? 

• What are the limitations in your work and how did these impact the 

 conclusions? 

• What further work do you propose to move the research question 

 forward? 

• Finally, to what extent did you manage to answer your research question? 

It is very important to recognize that, in an internal assessment, it is the 

processes that are important not necessarily the results. If you achieve a null 

result, that can be as important as a new discovery. Remember Michelson and 

Morley (page 166) and their “failure” to discover the aether. 

5

Refining research

In professional science, this is not the end. Scientists will rene their research 

questions in the light of their conclusions and evaluation and move on to 

 dierent or similar experiments depending on the outcomes. 

6

The inquiry process
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Approaching your internal assessment

Internal assessment structure

Your internal assessment is marked in terms of the inquiry process and is assessed 

using these criteria:

• research design

• data analysis

• conclusion

• evaluation.

Each criterion is marked with equal weight and is out of six marks. 

To attain full marks in each criterion, you need to demonstrate the following 

qualities in your work.

• Your research question must be described within a specic and appropriate 

context. You must explain your methods for the collection of relevant data 

with enough data to answer the research question. Your investigation must 

be described clearly enough for it to be reproduced by someone else. 

• The recording and processing of your data must be clear and precise. You 

must provide evidence that you have shown an appropriate consideration 

of experimental uncertainties. You must show that the processing of 

your data is relevant and appropriate to the research question and is 

completelyaccurate.

• Your conclusion must be justied and relevant to the research question. It 

should be fully consistent with your analysis. It should also be justied by a 

relevant comparison with the accepted scientic context such as research 

 papers, your textbooks or other sources. You must cite anyone else’s 

 materials fully and correctly.

• Your report must discuss the relative impact of specic methodological 

weaknesses or limitations that you have identied in your work. You should 

give realistic and meaningful improvements to your work.

Choosing and planning

You need to discuss your plans at an early stage with your teachers. Try to keep 

an open mind on your work for as long as possible. You may need to adapt 

your plans based on what apparatus is available and on your teacher’s advice. 

Listen carefully to what they have to say and modify your plans in the light of 

theircomments.

The internal assessment (IA)
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When you think you have arrived at a topic, ask yourself these dicult questions:

• Is the physics at IB Diploma Programme physics standard?

• Can a sucient amount of data be collected in the time available? 

• Will preliminary work during the rst few hours allow the project to develop 

to a better and more rened experiment?

• Will you be able to draw conclusions from your experiments?

• Are you going to be as interested in the experiment and its results on the last 

day of the project as on the rst?

If the answers to all these are “yes”, then this is a possible project for you.

Choose an investigation in which you can:

• use your understanding of physics to plan out an investigation and choose 

appropriate experiments or data sets

• demonstrate that any experimental working is safe

• show initiative and work independently or within a group setting

• take and record observations appropriately using instruments correctly or 

manipulate data sets in a creative and accurate way

• analyse results and evaluate what you have done, checking the reliability of 

the results

• communicate your results and conclusions well using appropriate 

techniques, including graphs, charts, tables, diagrams and so on.

If possible, try out some preliminary experiments before the time set for the 

proper investigation, to see if your idea is going to work. Retain the preliminary 

data and incorporate them into your report. You should be able to get a feel 

for the results you are likely to get and the size of the eects that you hope to 

measure. It will also show if there are any major defects in your apparatus design 

that will need to be corrected before the proper investigation begins.

There may be some aspects of your work that can be researched through books 

or the Internet. See what others have done by all means, but if you do use anyone 

else’s work (whether their text or data) you must credit this in your  report — and 

it is sensible to gain your teacher’s permission to use the work of other people 

before you begin. 

You will need to have a sense of ow and development. Good investigators at 

any level are rarely doing exactly the same experiment at the end of a project as 

at the beginning. Begin with simple ideas and extend these as your experience of 

the experiment changes.

Recording data

It is vital that you keep an accurate, daily record of what you do. Many 

professional scientists keep their records in a hard-backed notebook. You could 

keep your records on loose paper in a le, or in an electronic form in a computer. 

Make sure that you back-up your computer records and do not lose any papers.

Perhaps let your project grow 

out of your personal interests. If 

you play a musical instrument, 

you could  investigate the way 

the sound is produced. A string 

player might look at the variation 

of note frequency with string 

tension or some other parameter 

of the string (Topic C.3). If you 

play a sport, consider some 

aspect of the mechanics of the 

game: the “sweet spot” on the 

racquet in tennis or badminton, 

for example (Topic A.4). Devise 

an investigation of why a baseball 

bat sometimes jars the wrists 

or about the power delivered 

to a pedal cycle and so on. 

Photographers, artists, stage 

technicians can all nd some 

aspect of their art or cra to 

investigate. Just think creatively.

The best topics enable you to 

collect data and are well dened. 

What happens when I heat maple 

syrup? may not be as good a 

suggestion as How do the ow 

properties of maple syrup change 

with temperature?

The internal assessment (IA)
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At the end of each day of the project, spend some time reviewing the work you 

have done. Work out any results, draw the graphs of any data you have taken 

during the day. Think about the direction of the work and about what you want 

to achieve next. Then write down your aims and targets in your notebook. Plan 

your work ahead. Make the most of laboratory access, so do this planning and 

thinking at home.

Keep asking yourself the questions: Where is the work going? Can you explain 

the results you have so far? Do they make physical sense? Can you present the 

results in ways that enhance their meaning and quality?

Writing-up an internal assessment

You are required to produce a formal report of your internal assessment. Here are 

some ideas to consider.

• Begin by writing a brief summary of the whole project, state your research 

question at the outset and indicate the extent to which you achieved 

theseaims.

• Discuss early on in the report the underlying science on which your work is 

based. You need to cite any data that come from someone else. There are 

particular ways to do this that are agreed by all scientists, but you can use any 

citation style providing that someone else can nd the particular article or 

book that you are referencing. 

• Mention in your report any diculties that you had or any blind alleys you 

followed for a while. An internal assessment is as much about your ability to 

carry work through as it is about producing innovative science. Put down 

everything in the daily record of your work, including setbacks as well as 

triumphs. Give details of your preliminary results, including the experiments, 

and the graphs or tables showing the results themselves.

• Write about the safety arrangements. If there are corrosive chemicals or 

 electrical experiments, your teachers may need a risk assessment. Include 

this too as part of your evidence.

• Include details of all the apparatus you used. Include pictures of your 

 experimental setup if necessary. 

• Graphs and diagrams should be added in the text at the place where they 

are discussed rst, rather than collected together at the end. On the other 

hand, large tables of data are best placed in an appendix at the conclusion of 

the report.

• The data analysis should come aer your account of the experiment, 

 followed by the conclusions you reached. 

• Thoroughly evaluate your work. Comment on the results themselves, 

 drawing attention to any anomalies, although you should have tried to 

 eliminate these. Discuss the extent to which your results support your 

 conclusions and try to account for why this support may be less than 

youwish.

• Be critical of your work. No one does perfect science. One of the marks of a 

good scientist is the ability to be self-critical.

The internal assessment (IA)
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Page numbers in italics refer to end-of-theme 
questions.

absolute electric potential  526
absolute refractive index  410–11
absolute temperature  214
absolute zero  202
absorption spectra  242, 598, 599–600, 697
acceleration  17–22, 131

and air resistance  36–7, 38, 39, 68–9
angular  131–3, 134–5, 143–4
average/instantaneous  17
centripetal  96–8, 100–2, 131
constant  22–3
force, mass and acceleration  43–6, 48–9, 
51–2
kinematic equations  22–5, 27, 28–30
object in a lift  51–2
projectile motion  28–33
rockets  48–9, 77–9
rolling objects  156–8
simple harmonic motion  372–3, 380–2, 
383

acceleration due to gravity  26–30, 117, 477, 
478
acceleration-time graphs  36, 380
adiabatic change  280–2
air resistance  35–9, 68–9, 114, 138, 501–3
albedo  237–8, 239–40, 241
alpha decay  632–4, 638, 652
alpha particles  559, 591–6, 639, 647
alternating current (ac)  578–9

generators  560, 574–7
transformers  582–3

ammeters  308, 309
ampere  300–1, 550
Ampère’s law  547, 549
amplitude

oscillators and SHM  371, 385
waves  390, 391, 395

angle of incidence  409, 410
angle of reflection  409
angle of refraction  410, 412, 414
angular acceleration  131–3, 134–5, 143–4
angular displacement  94, 96, 132–5
angular frequency  373
angular impulse  152–3
angular momentum  130, 147–54

electron in Bohr model  606–7, 608
angular speed  94–5, 96
angular velocity  94–5, 132–5
antinodes  437
approximation  338–9
Archimedes’ principle  60–1
Aristotle  41, 42
astronomical distances  236, 466–8, 693–7
astronomical observations  162, 229–31, 
466–8, 486–7
astronomical unit (AU)  236, 693
atmosphere  232–3, 240–2, 246–7, 270

energy balance  236–7, 244–5, 247, 250
muon decay  179–80
and orbits  501–3
atomic structure  588, 590–1, 698
Bohr model  170, 483, 602, 604–10, 622
energy levels  598–601, 604–6, 607, 608
Geiger–Marsden–Rutherford experiment  
559, 591–5
plum pudding model  589
Standard Model  588

atomic vibrations  309
average acceleration  17
average speed/velocity  14–16

Avogadro number  255
Avogadro’s law  257

background radiation  655, 656
Bainbridge mass spectrometer  557
Balmer series  602–3, 606
batteries  307, 324–5
Becquerel, Henri  630, 631
beta decay  632, 634–5, 638
beta particles  639
Big Bang  678, 679
binary star systems  494
binding energy  640–6, 666

nuclear fission  669, 670
nuclear fusion  683

black holes  130, 691–2
black-body radiation  225–31, 612, 695, 697
Bohr model  170, 483, 602, 604–10, 622
Bohr radius  150
Boltzmann, Ludwig  296
Boltzmann constant  203, 258
bound state  605
boundary conditions  440–4, 445–7
Boyle, Robert  262
Boyle’s law  256–7, 258
bremsstrahlung  637
Brownian motion  262–3
buoyancy  59–62, 70

car safety  91
Carnot cycle  283–5
catapult field  542, 564
cathode rays  589
cells  302–5, 307, 324–9
Celsius scale  200, 201
centre of gravity  481–2
centre of mass  143–5, 482
centre of percussion  144
centrifugal force  99, 162
centripetal acceleration  96–8, 100–2, 131
centripetal force  99–102
Cerenkov radiation  676
chain reactions  668, 671–2
Chandrasekhar limit  691, 692
charge  299, 300–2, 505–10, 523–5
charge carriers  300, 302
charge density  302
charge separation  505
charge transfer  505–7, 530–1
charged particles  55, 150, 550–8, 559
Charles’s law  257, 259
circuit diagrams  307
circuits see electric circuits
circular motion  94–105

angular displacement  94, 96
centripetal acceleration  96–8, 100–2
centripetal force  99–102
charge in a magnetic field  553–6
frequency and period  95
and simple harmonic motion  373, 379–81, 
383
speed and angular velocity  94–5, 96
in a vertical plane  104–5

Clausius law  290
climate change  238–9, 241, 246–9, 677
climate models  238–9, 243–5, 249
coherence  424, 425
collisions  73–4, 79–81

elastic  81–3, 86–7
electrons in a conductor  83, 299–300
gas particles  86, 253, 264–5
inelastic  83
nuclear fusion  680–1

in nuclear reactor moderators  673–4
photon-electron interaction  620–1, 622, 
623

Compton effect  619–24, 629
conduction  214–21, 224, 225, 299–300
conduction electrons  299–300
conductors  83, 215, 216, 299–300

charge carrier speeds in  302
electrical resistance  308–12
good/bad  215, 216, 219–20, 225
Ohm’s law  310–12
resistivity  313–15
thermal conductivity  216–18, 219–21
thermal resistivity  314

conservation of charge  505
conservation of energy  81–2, 109, 117, 118, 274

alpha particle scattering experiments  595
determining moment of inertia  159
electrical energy  505
electromagnetic induction  564
motion in electromagnetic fields  559
radioactive decay  632–3, 638
resonance  452
rolling objects  156–7
special relativity  625

conservation of momentum  79–81
angular momentum  130, 147–8
linear momentum  81–5
nuclear reactor moderators  673–4
radioactive decay  632–3, 638
real world examples  89–92
in two dimensions  85–8

contact forces  51, 55
control rods  675
convection  221–3, 224
conventional current  303, 304
coordinate systems  10, 161–2
Copenhagen interpretation  628, 629
Coriolis force  162, 222
correlation  339
coulombs  300–1
Coulomb’s constant  509
Coulomb’s law  507–10
couples  139–40, 143–4
critical angle  414–15
critical damping  387, 450
Curie, Marie  632
current-time graph  578
cycle (oscillation)  371

damping  387, 449–50, 452, 455
data handling  348–65, 703–4

displaying data  352–60
errors  348–9, 524
interpolation/extrapolation  360
modelling and simulation  362–5
plotting/drawing graphs  355, 357–8
uncertainties  349–51, 352, 358–9
using graphs  355–6, 360–2

data loggers  27, 345–6
Davisson–Germer experiment  626–7
de Broglie hypothesis  624–5, 626–7
de Broglie wavelength  606–7, 625, 626, 627
decay chains  632, 664
decay constant  658–9, 660–1
degeneracy pressure  689, 691
density  59–60, 61, 117, 359
deuterium nucleus  640–1
diffraction  406, 417–19, 432–5, 471

double-slit interference  424–31
electron diffraction  626–7
emission spectra  598
of light  419–23, 425, 427–31
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multiple-slit interference  431–2
single-slit  419–24

diffraction gratings  432–5, 598, 600
diffusion  262–3
dimensional analysis  336–7
dipole field  549
direct current (dc)  579
displacement  9–10, 11, 12, 19–21

angular displacement  94, 96
kinematic equations  22–5, 27, 28–30
oscillators and SHM  371, 372–3, 380–4, 
385
projectile motion  28–33
wave displacement  390–6, 398, 416–17

displacement-distance graphs  390–4
displacement-time graphs

projectile motion  28
simple harmonic motion  378, 380–1, 
382–3
wave motion  390, 395–6, 416
distance  9, 10–12
astronomical  236, 466–8, 693–7
kinematic equations  22–5, 27, 28–30
projectile motion  28–33

distance-time graphs  13–16, 28, 36, 38
Doppler effect  172, 456–9, 471

applications  465–9
calculating observed frequency  459–62
and light  463–5, 468

double-slit interference  424–31, 628, 629
drag see viscous drag force
drift speed  302, 312

Earth  151, 222, 232–51, 330–1
atmosphere  233, 240–4, 501–2
energy balance  236–9, 243–5, 250
gravitational field strength inside  495–6
gravity  117, 479, 480–1
magnetic field  539
orbit  236, 485–6
rotation  151
satellites  485–6, 496–503
tunnels through  495–6, 498

eccentricity  484
edge effects  516
efficiency  207, 284, 285, 288, 578
Einstein, Albert  160, 161, 292, 448, 611

gas behaviour  263, 266
general relativity  181, 476, 478
mass–energy equivalence  625, 641
photoelectric effect  611, 613–14
special relativity  160, 164, 167, 171, 176, 
177, 182, 625

elastic constant  57
elastic potential energy  122–3, 377
electric cells  302–5, 307, 324–9
electric circuits  305, 307, 330–1

measuring current and pd  308
parallel connections  308, 315–16, 317–19
potential difference (pd)  302–3, 308
potential divider  321–2
resistance  308–12
resistors in parallel  316, 317–19
resistors in series  316–17, 318–20
series connections  308, 315, 316–17, 
318–20
variable resistors  321–2

electric current  150, 300–4, 330–1

chemical effect  304–5, 324
in gases and liquids  300
heating effect  304–5, 323–4
induced  561–4
measuring  308
power, current and pd  305–6
and resistance  308–12

electric fields  299, 510–11, 584
adding  512–14
close to a conductor  521–2

conductor in  299–300
due to conducting sphere  522–3, 530
field lines  514–16
motion of a charged particle  550–2, 556–7
perpendicular to magnetic field  556–7
radial  515
between two parallel plates  516–19, 520–1
between two point charges  515–16

electric field strength  511–12, 517–19, 520, 
529–31
electric potential  526–31, 532
electric potential difference  526
electric potential energy  531, 532
electric power  305–6, 323–4, 329
electricity generation  206, 247, 574–80
electricity supply  579, 582–3
electromagnetic fields  540, 585

charge to mass ratio for charged particle  
555–6
conservation of energy  559
force between two parallel wires  546–50
force on moving charges  541–6
motion of a charged particle  550–8, 559
motor effect  542–3

electromagnetic force  55, 533
electromagnetic induction  560–83, 585

alternating current (ac) generators  574–80
changing fields/moving coils  570–3
energy transfers  564–6
Faraday’s law  569
generating emfs and currents  561–5, 570–3
Lenz’s law  563–4
magnetic flux/magnetic flux density  566–9
mutual induction  580
real world applications  560, 574, 576, 578, 
582–3
self-induction  580–2
transformers  582–3

electromagnetic radiation  223, 372, 431
absorption by greenhouse gases  240–3, 
379
black-body  225–31, 612
Doppler effect  463–4
emission spectra  466, 598
gamma emission  632, 636–7
particle-like properties  402, 619
photoelectric effect  613–14
wave-like properties  401–5, 619

electromagnetic spectrum  401–4
electromagnetic waves  389, 401–5, 463–5, 
466–9
electromagnetism  504, 536–9
electromotive force (emf)  305, 326–7, 580

induced  563, 564–6
electron antineutrinos  634
electron capture  635
electron diffraction  626–7, 628
electron neutrinos  634–5
electron orbitals  170
electronic band theory  300
electrons

beta decay  634, 635
Bohr model  604–9
charge to mass ratio  555
charge transfer  505–7
Compton effect  620–1
in a conductor  83, 215, 216, 299–300
in a current  302–3
energy levels  604–6, 607, 608
estimating charge on  523–5
motion in perpendicular magnetic and 
electric fields  556–7
motion in uniform electric field  550–2
motion in uniform magnetic field  553–7
photoelectric effect  613–14
spin  539

electronvolt (eV)  519–20, 600, 615
electrostatic force  639–40, 669

electrostatic induction  506–7, 530–1
electrostatics  505
emission spectra  598–9, 600–1, 697

black body  226–7
determining astronomical distances  466–7
hot gases  602–3

emissivity  233–5, 238
energy  106–9, 126–9

Earth’s energy balance  236–9, 243–5, 250
mechanical energy of a system  118
and momentum  81–4
of satellite in orbit  497–8, 500
see also conservation of energy; kinetic 
energy; potential energy

energy density  128–9
energy levels  604–6, 607, 608, 636–7
energy transfer  106–8, 109

air resistance  35
conduction in metals  299–300 
efficiency  124–5
elastic potential energy  122–3
electromagnetic induction  564–6
equations  384–7
internal energy  202–4
kinetic and gravitational potential energy  
115–21, 377–8
nuclear fission  668–71, 673–4
nuclear fusion  680–1, 683
nuclear reactor moderators  673–4
power  113–14
radioactive decay  640–6
Sankey diagrams and energy flow  126–8
simple harmonic motion  377–9, 384–7
temperature and phase changes  199–200, 
202–13
work done  110–13
see also thermal energy transfer

energy transitions  604–6, 607, 637
entropy  291–7
equilibrium  81, 108, 370, 372–3

translational  52–4, 139
equipotentials  491–3, 527–9
equivalence principle  478
errors  348–9, 357, 524, 663
escape speed  500–1
estimation  338–9
exchange particles  476
experimental skills  343–7, 348–9, 351

inquiry process  702–4, 705
internal assessment (IA)  705–7

exponential decay  651
extended bodies  481
extended response questions  700–1
extrapolation  360

falling objects  26–30, 36–8, 50, 68–72
models and modelling  363–4, 365

falsifiability and falsification  84, 169, 612, 619
Faraday’s law  569, 576
Fermi question  339
Fermi radius  596
field lines  480–1, 487

electric fields  514–16
magnetic fields  533–4, 567, 570

fields  299, 301, 474, 475–6
fission see nuclear fission
Fleming’s left-hand rule  542–3, 562, 564
Fleming’s right-hand rule  564
fluids

buoyancy  59–62
convection  221–3
energy transfer  286–7
laminar/turbulent flow  69, 70
motion in  35–9, 68–72

force  40–1, 55
action–reaction pair  47–9
buoyancy force  59–62, 70
centripetal force  99–102
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between charged objects  507–10
conservative/non-conservative  117
contact/non-contact  55
defining unit of force  43
elastic restoring force  56–9
force, mass and acceleration  43–7, 48–9, 
51–2
free-body force diagrams  50–2
graphs  75–7, 112–13, 122
and momentum  72–3, 74, 75–6, 80–1, 93
Newton’s laws of motion  42–9, 52, 74, 78, 
99, 137–8
normal force  51, 54, 101
resultant force  52, 74
simple harmonic motion  372–3, 374
translational equilibrium  52–4
triangle of forces  53, 55
work done  110–13, 114–15
see also friction; torque; viscous drag force

force-distance graphs  112–13
force-extension graphs  122
force-time graphs  75–7
forced vibrations  452–4
fossil fuels  126, 127, 128–9, 246, 247
Fourier analysis  369
Franklin, Benjamin  523
Fraunhofer lines  598
free electrons  216, 299–300, 562–3
free vibrations  449
free-body force diagrams  50–2
frequency  95, 372

electromagnetic waves  401, 403
harmonics  441–2, 443, 444, 446–7
oscillators and SHM  371, 373, 449
waves  390, 397–8
see also Doppler effect

friction  62–8, 110
and centripetal force  100–2
charge transfer  505–6
coefficient of  63, 64–6, 100
dynamic  63, 64, 65–6
static  63, 64, 65, 66, 67
theories  68
see also viscous drag force

fringe spacing  426
fuel rods  673, 674, 676
fundamental constants  333–5, 478
fundamental forces  533
fundamental units  218, 255, 300–1, 334–5
fusion (melting)  204, 210–12

galaxies  231, 464–5, 467
Galilean relativity  160, 162–5, 182
Galilean transformations  163–4, 169, 171–2
Galileo  13, 42, 44, 369–70, 448, 475
gamma emission  632, 636–7
gamma photons  402, 637, 639
gamma radiation  402, 403
gas laws  254, 256–61, 266
gases  199–200, 252

Brownian motion  262–3
conduction  215, 300
diffusion  262–3
emission/absorption spectra  598–9
greenhouse gases  240–1, 242–3, 246–7, 
379
internal energy  202–4, 268–9
kinetic model  264–8
real gas approximation  269–71
specific latent heat  210
see also ideal gases

Gay-Lussac’s law  257
Geiger–Müller tube  653–4
geostationary orbits  499
geosynchronous satellites  499
global positioning systems (GPS)  180–1
global warming  238–9, 241, 246–9

graphical analysis  355
graphs  13–23, 353–62

area under  14, 19–20, 22–3, 75–6, 112, 
133, 277, 362
gradient  13–16, 19, 22–3, 360
intercepts  361
interpolation/extrapolation  360
line of best fit  358–9
logarithms  356
plotting/drawing  355, 357–8
pressure-volume diagrams  276–83
rotational mechanics  133–5
wave motion  390–6
see also specific types

gravimetry  117
gravitational field strength  476–7, 478, 480–1, 
493–6
gravitational fields  117, 475–6, 511, 584

escaping  500–1
extended bodies  481
field lines  480–1, 487, 491
motion of an object in  35

gravitational force  47–8, 50–1, 117, 475–80, 
533
gravitational mass  44, 478
gravitational potential  489–95
gravitational potential difference  491
gravitational potential energy (GPE)  117–21, 
378, 487–9
graviton  476
gravity  479, 485–7

acceleration due to  26–30, 117, 477, 478
centre of  481–2
greenhouse effect  232–3, 240–5
Earth’s energy balance  240–5, 249–50
emissivity  233–5, 238
enhanced  240–1, 247
global warming/climate change  246–8
solar radiation  235–40
temperature balance  238–9, 243–4

greenhouse gases  240–1, 242–3, 246–7, 249, 
379
grey bodies  233–5, 238
ground state  605, 606, 607
gun recoil  89
gyroscopes  150, 151

half-life  649–53, 655, 661–4
harmonics  440
heat engines  283–90, 305
heat exchangers  675
heat pumps  286–7
heavy elements  666, 667
Heisenberg uncertainty principle  172
helicopters  91–2
helium nucleus  632
Hertzsprung–Russell diagrams  683–6
Hooke, Robert  56
Hooke’s Law  56–8, 372
hot air balloons  254
hot gases  599, 602–3
Huygens’ principle  410, 411, 418, 421
hydrogen atom

emission spectra  598, 602–3
energy levels  604–5, 607, 609

hydrogen fusion  680, 681
hydrogen spectrum  602–3

Ibn Sahl  411
Ibn Sīna  42–3
ideal gases  86, 256–61, 330–1

equation of state  257–8, 268, 270
first law of thermodynamics  277, 279–83
internal energy  268–9
kinetic model  264–8
pressure-volume diagrams  276–83

impulse  74–5, 77–8

incident ray  409
inertia  41–2
inertial frame of reference  99, 162, 167–8
inertial mass  44, 478
infrared  404
instability strip  685
instantaneous acceleration  17
instantaneous speed/velocity  14–16
intensity  226, 405
interference

constructive/destructive  416–17
diffraction gratings  432–5
double-slit  424–31, 628, 629
light  425, 427–31, 432–5
microwaves  428
multiple-slit  431–2
particle diffraction  628
sound waves  424, 426–7

interferometers  166
intermolecular potential energy  202–3
internal assessment (IA)  705–7

inquiry process  702–4, 705
internal energy  202–4, 215, 274–5

and electricity  310
ideal gas  268–9, 279–81

internal resistance  326–8
interpolation  360
interstellar medium  686
invariant hyperbola  178, 184–8
invariant quantities  177–8

invariant energy  625
invariant hyperbola  178, 184–8
proper length  174–5
proper time interval  167–8, 170
spacetime interval  177–9, 184–6

inverse-square laws  230, 405, 474, 478–9, 
530, 549
ionization  605, 639
ionizing radiation  639
ions  215
isobaric change  279
isothermal change  280
isothermals  256
isotones  632
isotopes  631
isovolumetric change  279, 281

Joule, James  274

Kelvin scale  200, 201
Kepler-90 system  486–7
Kepler’s laws of orbital motion  150, 482–5, 496
kinematic equations  22–5, 27, 28–33
kinematics  8–39

describing motion  9–25
motion in fluids  35–9
projectile motion  26–34
suvat equations  22–5, 27, 28–33

kinetic energy (KE)  115–16
energy transfer with GPE  118–21
internal energy  202–4
and momentum  81–4
rolling objects  156–8
rotational motion  145–7, 148–9
simple harmonic motion  377–8, 384–7

kinetic model of an ideal gas  264–8

Lagrange point  494
laminar flow  69
lasers  422, 425
length contraction  174, 179, 187–8, 190
Lenz’s law  563–4
light  401, 404, 431

diffraction gratings  432–5
Doppler effect  463–5, 468
double-slit experiment  425–31
refraction  410–11, 414–15
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single slit diffraction  419–23
speed of  165, 166, 171–2, 463–4
total internal reflection  414–15
wave-particle duality  619, 628

light year (ly)  693
light-dependent resistors (LDRs)  320, 322
line spectra  598–9
lines of force  516
liquefaction  269–70
liquids  199–200

conduction  215, 300
pressure  253
specific heat capacity  205, 207–8
specific latent heat  210–13

logarithms  356
longitudinal waves  389, 391–4, 398–400

standing waves  445–9
Lorentz factor  169–70
Lorentz transformations  169, 171–2, 173, 176, 
184
luminosity  229–31, 683–5, 688–9, 695–6
Lyman series  603, 606

macrostates  294–5
magnetic field strength  537, 538, 544–5, 
546–7, 566–7, 568
magnetic fields  533–9, 584–5

due to current in air-core solenoid  537–8
due to current in circular coil  537
due to current in long straight wire  536–7, 
541–2, 544–5
field lines  533–4, 536–8, 567, 570
motion of a charged particle  553–7
perpendicular to electric field  556–7
see also electromagnetic fields; 
electromagnetic induction

magnetic flux  567–8
magnetic flux density  566–8, 569
magnetic flux linkage  569, 574
magnetic forces  55, 533, 541–6

between two current-carrying wires  541–2, 
546–7
on charged particle  553–4, 556
on current-carrying conductor  542–3, 
544–6

electromagnetic induction  563, 565–6
per unit length of wire  547

magnetic poles  534
main sequence stars  684, 687
mass  44, 478

centre of mass  143–5, 482
force, mass and acceleration  43–6, 51–2
and momentum  72–3
moving in a vertical circle  104
rotational motion  130, 135–7
on a spring  56–9, 140, 370–1, 372, 374, 
376–7, 449, 451–2
of a star  686–92

mass defect  641–2
mass spectrometers  557–8
materials testing  658
maths skills  333–42
Maxwell, James Clerk  161, 166
Maxwell-Boltzmann distribution  270
mean square speed  265
mean-speed theorem  23
measurements  10–11, 343–6, 511

errors  348–9, 524
uncertainties  82, 349–51

mechanical energy  118
mechanical waves  389, 405
medicine  403, 455, 465, 657–8
Melde’s experiment  439–40
metals  215, 216, 299–300
microstates  293–5
microwave radiation  404, 425, 428
Millikan’s oil drop experiment  523–5
Millikan’s photoelectric experiment  615–16

Minkowski diagram see spacetime diagrams
modelling  17–18, 39, 238, 249, 362–5
moderators  673–4
molar mass  255–6
mole (unit)  255
moment of inertia  135–7, 159
momentum  73–93

angular momentum  130, 147–53
change in  73–6, 92–3
collisions  73–4, 79–88, 264–5
impulse  74–5, 77–8
transfer  73–4, 93
see also conservation of momentum

Moon  479, 481
motion  8–13

charged particles  55, 150, 550–8, 559
in fluids  35–9, 68–72
graphing  13–16, 18–22
horizontal  30–3
kinematic equations  22–5, 27, 28–33
laws see Newton’s laws of motion
rolling and sliding  155–8
vertical motion  28–32
see also circular motion; falling objects; 
orbital motion; projectile motion; rotational 
motion

motor effect  542–3, 565
multiple-slit interference  431–2
muons  179–80
mutual induction  580

natural frequency  449
neutral buoyancy  60–1
neutrinos  634–5, 638, 679
neutron number (N)  590–1, 632
neutron stars  136, 640, 691
neutron-induced fission  668–9
neutrons  590–1, 639–40

nuclear fission  668–9, 671–2, 673–4
radioactive decay  632, 633, 634

Newton, Sir Isaac  48, 164, 479
Newton’s cradle  73–4
Newton’s law of cooling  223
Newton’s law of gravitation  475, 478, 485–6
Newton’s laws of motion  25, 41–9, 165

first law  42, 52, 137–8
and momentum  74, 78, 79
rotational motion  137–8, 145, 154
second law  43–5, 52, 74, 78, 99, 137, 154
third law  47–9, 52, 79, 145

Newton’s postulates of special relativity  164
Nobel Prizes  611
nodes  437–9
Noether’s theorem  109
non-ohmic behaviour  312
normal  409
normal force  51, 101
nuclear density  596–7
nuclear energy levels  636–7
nuclear equation  632
nuclear fission  643, 648, 649, 666–7, 699

chain reactions  668, 671–2
energy released  668–71
moderators and control rods  673–5
reaction process  668–9
reactors  672–7
spontaneous/induced  667–8
weapons  677

nuclear fusion  644, 679–83, 684, 687
nuclear mass  641, 642
nuclear power  91, 672–7

energy production rate  670
fuel  668, 672–3
safety  675–7

nuclear stability  648–9
nuclear waste  676–7
nucleon number (A)  590–1, 596–7, 631
nucleons  590–1, 596–7

average binding energy  643–4, 645, 
647–8
nucleus of an atom  590–1
alpha particle scattering experiments  591–6
binding energy and mass defect  640–6, 
647–8
density  596–7
electrostatic force  639–40
excited state  636
radioactive decay  630, 631, 632
stability  640
strong nuclear force  639–40

nuclides  631–2, 635
medical uses  657–8
stability  643–4, 648–9

Ohm’s law  310–12
Oppenheimer–Volkoff limit  691
optical density  414
orbital motion  35, 482–7, 496–7, 584
orbital speed  496–7
orbits  96, 97, 150, 152

electrons  606–7
and gravity  35, 485–7
heliocentric  475, 482
Kepler-90 system  486–7
Kepler’s laws  482–5
low-Earth  497, 501–3
see also satellites

orders of magnitude  338
oscillations  57, 368–70

damping  387, 449–51
forced vibrations  452–4
natural frequency  449
resonance  449–55
see also simple harmonic motion

Otto cycle  288

pair production  624
parabolas  32, 35
paradigm shifts  161, 297, 482–3
parsec (pc)  693
particle diffraction  626–7, 628
particles  181–2, 199

collisions  86, 253, 264–5, 673–4
diffusion and Brownian motion  262–3
in an ideal gas  264–8
motion in a travelling wave  391–6
motion of charged particles  55, 150, 
550–8, 559
see also specific types

Paschen series  603, 606
path difference  421
pendulums  373

Barton’s pendulum  453, 454
damped oscillations  455
energy transfer  378
simple pendulum  337, 374–5, 378, 455
timing mechanism  369–70
Wilberforce pendulum  140
period
circular motion  95
oscillators  371, 374
waves  390, 395

permanent magnetism  539
permittivity  509
phase angle  380, 382–4
phase changes  203, 204, 210–13
phase difference  382–4
phases of matter  199–200

phase changes  203, 204, 210–13
photoelectric effect  611, 613–19, 622
photoelectric equation  614–15
photoelectrons  615, 617, 619, 622
photons  624–5, 637

in the atmosphere  242
Compton effect  619–24
emission  598–9
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photoelectric effect  613–14
worldlines  181–2, 186

Planck constant  598, 600, 606
planetary nebula  689
planets  240, 241–2, 482–5
polar orbits  498–9
Popper, Karl  84
positron decay  634–5
potential difference (pd)  302–4

measuring  308
between parallel plates  517–18
power, current and pd  305–6
and resistance  308–12

potential divider  321–2
potential energy  377–8, 384–7

elastic  122–3, 377
electric  531, 532
gravitational  117–21, 378, 487–9
intermolecular  202–3

potentiometer  321–2
power  113–14, 145

alternating currents  578–9
electric power  305–6, 323–4, 329

power-time graph  578–9
pressure  59–60, 253–4, 359

of a gas  256–61, 265–6, 279
and sound waves  398

pressure (Gay-Lussac’s) law  257, 259
pressure-volume diagrams  276–83
principle of moments  137–8
projectile motion  23, 26–34

with air resistance  35–9
horizontal/vertical components  30–3
in two dimensions  28–34, 38–9

proper length  174–5
proper time interval  167–8, 170
proportionality  339
proton number (Z)  590–1, 619, 631–2
proton–proton (p–p) cycle  680–2
protons  590–1, 604–5, 639–40

proton–proton (p–p) cycle  680–2
radioactive decay  632, 634

protostars  686

quantities  333–5, 343–4, 351
quantization  605, 606–7, 612
quantum mechanics  404–5, 628–9
quarks  647

radar  466, 469
radiation  402, 403, 632–9, 653–6

ionizing  639
measuring  653–5, 656
nuclear waste  676
solar  235–8, 240, 241
thermal  223–9
uses  657–8
see also electromagnetic radiation

radiative forcing  249
radio waves  404, 419
radioactive dating  657
radioactive decay  630–1, 632, 698–9

activity and count rate  654
alpha decay  632–4, 638, 652
applications  657–8
beta decay  632, 634–5, 638
decay chains  632, 664
decay constant  658–9, 660–1
energy transfers  640–6
gamma emission  632, 636–7
half-life  649–53, 655, 661–4
measurements  653–6, 663
nuclear stability  648–9
probability of decay  658–9
randomness  632, 649, 654
rate of decay  650
simulating  664

spontaneous fission  667
radioactive growth  665
radioactive series  632
randomness  293–5, 632, 649, 654
range (projectiles)  31
rates of change  113, 575
Rayleigh–Jeans law  612
rays  407, 409
red giants  684, 687, 690
redshift  466–7
reference frames  99, 161–2, 167–8, 176, 182–4
reflected ray  409
reflection  408–9, 410

standing wave formation  436, 440–1
total internal reflection  414–16

refraction  408–13
refractive index  410–12
refrigerators  286–7
relativity  160–93

Einstein’s general relativity  181, 476, 478
Einstein’s special relativity  160, 164, 167, 
171, 176, 177, 182, 625
Galilean relativity  160, 162–5, 182
Galilean transformations  163–4, 169, 171–2
 length 
contraction  174, 179, 187–8, 190
linear motion in relativistic context  168
Lorentz transformation  169, 171–2, 173, 
176, 184
Newton’s postulates  164
reference frames  161–2
relativistic effects on GPS  180–1
simultaneity  164, 182–4, 187, 188–9
speed of light  165, 166, 171–2
time dilation  168–9, 172, 179–80, 187–8
time travel  186
twin paradox  193
two postulates of special relativity  164
velocity addition  164, 176–7
see also invariant quantities; spacetime 
diagrams

resistance  308–12
resistivity  216, 313–15
resistors

non-ohmic conductors  312
ohmic conductors  310–11
in parallel  315, 316, 317–19
in series  315, 316–17, 318–20
variable resistors  320–4

resonance  242–3, 449–55
resonance curves  452–3
restoring force  56–9, 372, 374
resultant force  52
rheostat  321–2
right-hand corkscrew rule  138, 536–7
rigid body mechanics see rotational motion
ripple tanks  408, 409
rockets  48, 77–9, 494
root mean square (rms)  266
rotational acceleration see angular acceleration
rotational motion  130–59

angular acceleration  131–3, 134–5, 143–4
angular momentum  147–53
angular velocity  131, 132–5, 148–9
centre of mass  143–4
conservation of energy  159
equations of motion  132–3, 158
graphs  133–5
moment of inertia  135–7, 141, 159
Newton’s laws of motion  137–8, 145, 154
rolling objects  155–8
rotational kinetic energy  145–7, 148–9

torque  137–9
Rutherford scattering  559, 591–6, 647
Rydberg formula  603, 604, 608

Sankey diagrams  126–8

satellites  485–6, 496–503
and atmosphere  501–3
energy of  497–8, 500, 501–3
global positioning systems (GPS)  180–1
launching  500–1
types of orbit  100, 498–9

scalar quantities  108, 340
scalars  9, 10, 12, 339–40
Schrodinger’s Cat  629
scientific collaboration  229, 230, 238, 677
scientific method  694
self-induction  580–2
semiconductors  312
sensors  345–6
shielding  675
SI units  334–6, 478
sign conventions  274–5
significant figures  337–8
simple harmonic motion  57, 368–77, 470–1

and circular motion  373, 379–81, 383
damping  451
energy transfer  377–9, 384–7
and greenhouse gases  243, 379
mass-spring systems  140, 370–1, 372–3, 
374, 376–7, 451
modelling  363, 382
pendulums  373, 374–5, 378
requirements for  372–3
and torque  140

simultaneity  164, 182–4, 187, 188–9
single-slit diffraction  419–24
smartphones  345, 359, 398, 400, 535
Snell’s law  410–11
solar cells  325
solar constant  235–6
solar radiation  235–8, 240, 241
Solar System  152, 475, 482–5, 487
solids  199–200

conduction  215
emission spectra  599
internal energy  202–3
pressure  253
refractive index  411
specific heat capacity  205, 206
specific latent heat  210–13

sonar  405
sound waves  398–400, 463

Doppler effect  456, 457–62, 465
interference  424

spacetime  161
spacetime diagrams  181–2, 188–92

simultaneity  183, 188–9
spacetime interval  184–6
time dilation and length contraction  187–8, 
190
twin paradox  193
worldlines  181, 182, 183, 188, 190

spacetime interval  177–9, 184–6
specific charge  555–6
specific heat capacity  204–9, 258
specific latent heat  204, 210–13
spectrometers  226
speed  12–16

angular speed  94–5, 96
instantaneous and average  14–16
kinematic equations  22–5, 27, 28–30
and kinetic energy  115–16
linking angular and linear  95, 96
maximum speed of a car  114
measuring using Doppler effect  468–9
projectile motion  28–33
terminal  36, 68–9, 70

speed of light  165, 166, 171–2, 463–4
speed of sound  271, 399–400
speed-time graphs  22–3

falling objects  36–7, 69
motion in a fluid  69, 71
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Index

projectile motion  29
spreadsheet models  17–18, 363–4
spring constant  56–7, 58, 123–4
springs  56–9, 122–4, 140

elastic potential energy  122–3
natural frequency  449
resonance  140, 451–2
simple harmonic motion  140, 370–1, 
372–3, 374, 376–7, 451

standard candles  697
standing waves  436–41, 470

boundary conditions  440, 443, 445–6
harmonics  440, 441–4, 446–9
in pipes  445–9
in strings  439, 440–5

stars  699

apparent brightness  230–1
binary star systems  494
distance using stellar parallax  694–5
emission spectra  601
equilibrium  640
evolution  684–5, 686–92
HR diagrams  683–6
luminosity  229–31, 683–5, 688–9, 695–6
mass  686–92
neutron stars  136, 640, 691
nuclear fusion  679–82, 684, 687
radius  695–6
temperature  683–7
variable  685

static charge  299
steady state  217
steam engines  273
Stefan-Boltzmann law  227–8, 229–31, 233, 
684, 695–6
stellar parallax  694–5
Stokes’ law  69–70
stopping potential  615, 616
strong nuclear force  533, 639–40, 647–8
Sun  226, 679

luminosity  230
solar constant  235–6
solar radiation  235–8, 240, 241

supergiants  684
superheavy elements  648
supernovae  678, 679, 691
superposition  398, 416–17, 437
surface frictional force  63
suvat equations  22–5, 27, 28–33
symbols  12
systems, defining  211, 272

temperature  199–202, 274
absolute temperature  214
change  204–9, 214
Earth’s  240–1, 243–4, 246–8
of a gas  256–61, 280

temperature scales  200, 201
terminal speed  36, 68–9, 70
test objects  477
theory, developing  229
thermal energy transfer  83, 198–200, 214–25

black-body radiation  225–9
conduction  214–21, 224, 225
conductivity  216–18, 219–21
convection  221–3, 224
thermal radiation  223–9
thermal resistivity  314
see also thermodynamics

thermal equilibrium  202
thermal neutrons  673
thermal radiation  223–9
thermionic emission  626
thermistors  320, 322
thermocouples  201
thermodynamics  272, 330–1

Carnot cycle  283–5
first law  274–5

heat cycles and engines  283–90
implications for universe and life  296, 297
refrigerators and heat pumps  286–7
second law  290–7
zeroth law  288

Thomson, Joseph J  589
thought experiments  42, 183–4, 511
threshold frequency  613
time dilation  168–9, 172, 179–80, 187–8
time travel  186
torque  130, 137–42

couples  139–40, 143–4
Newton’s laws of rotational motion  137–8, 
145
rolling and sliding objects  155–6

total internal reflection  414–16
trajectories  28, 31, 32, 38, 181–2
transformers  582–3
translational equilibrium  52–4, 139
transmission  440
transmittance  244–5
transport phenomena  215
transverse waves  389, 390–1, 397, 398, 401, 
439–45
travelling waves  389–400, 436–8

see also electromagnetic waves
triangle of forces  53, 55
triboelectric effect  505–6
turbulent flow  69, 70
twin paradox  193

ultrasound  405, 465
ultraviolet  403
uncertainties  82, 349–51, 352, 358–9
unified atomic mass unit  596, 641
uniform circular motion  94
units  11, 43, 59, 333, 334–6

angular impulse  152
astronomical distances  693
energy  108, 274
fundamental units  218, 255–6, 300–1, 
334–5, 478
resistivity  313
rotational mechanics  134
temperature  201, 205

universal gravitational constant  478
upthrust see buoyancy

V-I graphs  310–12
vacuum  401, 402, 410–11
valley of stability  645
Van der Waals equation  270
vaporization  204, 210, 212–13
variable resistors  320–4
variables  333–4, 355–6, 703
vector quantities  9–10, 17, 40, 50, 94, 147, 340
vectors  9–10, 12, 17, 339–42

addition  340–1, 512–13
products  550
resolution of  53

velocity  12–17
angular velocity  94–5, 132–5
instantaneous and average  14–16
kinematic equations  22–5, 27, 28–30
and momentum  72–3, 74, 81, 83–8
Newton’s laws of motion  42
particles in an ideal gas  264–6
projectile motion  28–33
relativistic velocity addition  176–7
simple harmonic motion  380–2, 383

velocity addition  164, 176–7
velocity addition equation  164
velocity-time graphs  17–22

projectile motion  29
simple harmonic motion  380, 382

vibration generator  439–40
viscosity  69–71
viscous drag force  35, 68–72

air resistance  35–9, 68–9, 114, 138, 501–3
voltmeters  308, 309
volume of a gas  256–61, 279

water
density  60–1
specific heat capacity  205, 206, 207, 210
specific latent heat  210–12

water hoses  89–90
water waves  374, 407, 408, 409
Watt, James  114
wave equation  397–8
wave phenomena  406–35, 470–1

Huygens’ principle  410, 411, 418, 421
reflection  408–9, 410, 440–1
refraction  408–13
Snell’s law  410–11
superposition  416–17
total internal reflection  414–16
transmission  408–9
see also diffraction; interference

wave profiles  390–4
wave speed  390, 397–8

at boundary between two media  408, 409, 
410–11

wave-particle duality  404–5, 619, 624–5, 628
wavefronts  407, 409, 410, 457–9
wavelength  390, 391, 397–8

Compton effect  619, 620–1
Doppler shift  463, 466–9
electromagnetic radiation  401–4
harmonics  441, 443
measuring with double slits  426, 428
standing waves  437, 438

waves  379, 388–90, 470–1

compression/rarefaction  389, 392
electromagnetic waves  401–5
energy transfer  109
graphing wave motion  390–6
phase difference  438
sound waves  398–400
standing waves  436–49
types of  389–90
see also wave phenomena

weak nuclear force  533
weber (Wb)/weber-turns  568, 569
white dwarfs  684, 689–90
Wien’s displacement law  227, 233
Wilberforce pendulum  140
work done  110, 112–13, 115, 274–5

on charge between parallel plates  517
by/on a gas  276–9, 280–3
by gas particles  268
heat engines  283–4, 287
moving a charge in electric field  517, 
526–7, 531
by objects in gravitational field  488, 489
rate of doing work  113–14
against a resistive force  110–11
stretching a spring  122–3
by torque  145–6

work function  613–14, 615–16
worldlines  181–2, 186, 188

X-ray photons  637
X-rays  402, 403, 404, 619–21, 631

Young’s slit experiment  425–31

zeroth law of thermodynamics  288
zone of stability  648–9
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